# On the computation of $A_{\infty}$-maps 

A. Berciano, M.J. Jiménez, P. Real

Universidad de Sevilla
September 2007

## Summary

## Notion of $A_{\infty}$-structures.

## Summary

## Notion of $A_{\infty}$-structures.

Theoretical results to compute them.

## Summary

## Notion of $A_{\infty}$-structures.

Theoretical results to compute them.

Improvements in the theoretical algorithms.

## Index

(1) Introduction

- Preliminaries
- Historical origin
- Mathematical notion
(2) $A_{\infty}$-structures via perturbation
- Contractions
- The tensor trick
(3) Theoretical study of complexity
- Main Results
- Computational advantages


## Index

(1) Introduction

- Preliminaries
- Historical origin
- Mathematical notion

2 $A_{\infty}$-structures via perturbation

- Contractions
- The tensor trick
(3) Theoretical study of complexity
- Main Results
- Computational advantages


## Rings

Let us suppose that $\Lambda$ is a commutative ring with $1 \neq 0$.

## Rings

Let us suppose that $\Lambda$ is a commutative ring with $1 \neq 0$.

## Modules

A $D G$-module is a graded module $M=\left\{M_{n}\right\}_{n \geq 0}$, endowed with a differential $d: M \rightarrow M$ (that is, a morphism of graded modules of degree -1 such that $d^{2}=0$ ).

## Algebras

## Definition

A differential graded algebra $\left(A, \mu_{A}, \eta\right)$, or simply DG-algebra, is a DG-module equipped with two morphisms $\mu_{A}: A \otimes A \rightarrow A$ and $\eta: \Lambda \rightarrow A$, such that $\mu_{A}$ is an associative product, i.e., $\mu_{A}\left(\mu_{A} \otimes 1\right)=\mu_{A}\left(1 \otimes \mu_{A}\right)$, and $\eta$ is a bilateral unit $\eta: \Lambda \rightarrow A$, i.e.,


## $A_{\infty}$-structures: Historical evolution

The notion of $A_{\infty}$-algebras appears in the literature as a generalization of "associative up to homotopy".

## $A_{\infty}$-structures: Historical evolution

The notion of $A_{\infty}$-algebras appears in the literature as a generalization of "associative up to homotopy".

## Definition

Given $M$ a differential graded module (DG-module), a morphism $\mu_{2}: M \otimes M \rightarrow M$ of degree zero is said associative up to homotopy if

## $A_{\infty}$-structures: Historical evolution

The notion of $A_{\infty}$-algebras appears in the literature as a generalization of "associative up to homotopy".

## Definition

Given $M$ a differential graded module (DG-module), a morphism $\mu_{2}: M \otimes M \rightarrow M$ of degree zero is said associative up to homotopy if

- it is compatible with the differential of $M$;


## $A_{\infty}$-structures: Historical evolution

The notion of $A_{\infty}$-algebras appears in the literature as a generalization of "associative up to homotopy".

## Definition

Given $M$ a differential graded module (DG-module), a morphism $\mu_{2}: M \otimes M \rightarrow M$ of degree zero is said associative up to homotopy if

- it is compatible with the differential of $M$;
- there exists $\mu_{3}: M^{\otimes 3} \rightarrow M$ of degree +1 , such that

$$
\mu_{2}\left(\mu_{2} \otimes 1\right)-\mu_{2}\left(1 \otimes \mu_{2}\right)
$$

## $A_{\infty}$-structures: Historical evolution

The notion of $A_{\infty}$-algebras appears in the literature as a generalization of "associative up to homotopy".

## Definition

Given $M$ a differential graded module (DG-module), a morphism $\mu_{2}: M \otimes M \rightarrow M$ of degree zero is said associative up to homotopy if

- it is compatible with the differential of $M$;
- there exists $\mu_{3}: M^{\otimes 3} \rightarrow M$ of degree +1 , such that

$$
\mu_{2}\left(\mu_{2} \otimes 1\right)-\mu_{2}\left(1 \otimes \mu_{2}\right) \neq 0
$$

## $A_{\infty}$-structures: Historical evolution

The notion of $A_{\infty}$-algebras appears in the literature as a generalization of "associative up to homotopy".

## Definition

Given $M$ a differential graded module (DG-module), a morphism $\mu_{2}: M \otimes M \rightarrow M$ of degree zero is said associative up to homotopy if

- it is compatible with the differential of $M$;
- there exists $\mu_{3}: M^{\otimes 3} \rightarrow M$ of degree +1 , such that

$$
\mu_{3} d+d \mu_{3}=\mu_{2}\left(\mu_{2} \otimes 1\right)-\mu_{2}\left(1 \otimes \mu_{2}\right) \neq 0
$$

## $A_{\infty}$-structures: Classical Example

Let $(X, *)$ be a topological space with a base point $*$ and let $\Omega X$ denote the space of based loops in $X$ : a point of $\Omega X$ is a continuous map $f: \mathbb{S}^{1} \rightarrow X$ taking the base point of the circle to the base point $*$.

## $A_{\infty}$-structures: Classical Example

Let $(X, *)$ be a topological space with a base point $*$ and let $\Omega X$ denote the space of based loops in $X$ : a point of $\Omega X$ is a continuous map $f: \mathbb{S}^{1} \rightarrow X$ taking the base point of the circle to the base point $*$.

Let us take as multiplication the composition map

$$
\begin{array}{r}
\mu_{2}: \Omega X \times \Omega X \rightarrow \Omega X \\
\left(f_{1}, f_{2}\right) \longrightarrow f_{1} * f_{2}
\end{array}
$$



## $A_{\infty}$-structures: Classical Example

## Non associative

$\mu_{2}$ is not associative because of

$$
\left(f_{1} * f_{2}\right) * f_{3}
$$



## $A_{\infty}$-structures: Classical Example

## Non associative

$\mu_{2}$ is not associative because of

$$
\left(f_{1} * f_{2}\right) * f_{3}
$$

$$
f_{1} *\left(f_{2} * f_{3}\right)
$$



## $A_{\infty}$-structures: Classical Example

## Non associative

$\mu_{2}$ is associative up to homotopy

$$
\left(f_{1} * f_{2}\right) * f_{3}
$$

Homotopy operator

$$
f_{1} *\left(f_{2} * f_{3}\right)
$$



## $A_{\infty}$-Structures: Mathematical notion

## Definition

An $A_{\infty}$-algebra is a graded module $A$, with a family of graded maps $m_{i}: A^{\otimes i} \rightarrow A$, of degree $i-2$, such that for all $i \geq 1$ :

$$
\sum_{n=1}^{i} \sum_{k=0}^{i-n}(-1)^{n+k+n k} m_{i-n+1}\left(1^{\otimes k} \otimes m_{n} \otimes 1^{\otimes i-n-k}\right)=0
$$

## $A_{\infty}$-structures: Mathematical notion

## Definition

An $A_{\infty}$-algebra is a graded module $A$, with a family of graded maps $m_{i}: A^{\otimes i} \rightarrow A$, of degree $i-2$, such that for all $i \geq 1$ :

$$
\sum_{n=1}^{i} \sum_{k=0}^{i-n}(-1)^{n+k+n k} m_{i-n+1}\left(1^{\otimes k} \otimes m_{n} \otimes 1^{\otimes i-n-k}\right)=0
$$

- $m_{1} m_{1}=0 \Rightarrow m_{1}$ is a differential.


## $A_{\infty}$-Structures: Mathematical notion

## Definition

An $A_{\infty}$-algebra is a graded module $A$, with a family of graded maps $m_{i}: A^{\otimes i} \rightarrow A$, of degree $i-2$, such that for all $i \geq 1$ :

$$
\sum_{n=1}^{i} \sum_{k=0}^{i-n}(-1)^{n+k+n k} m_{i-n+1}\left(1^{\otimes k} \otimes m_{n} \otimes 1^{\otimes i-n-k}\right)=0
$$

- $m_{1} m_{1}=0 \Rightarrow m_{1}$ is a differential.
- $m_{1} m_{2}=m_{2}\left(m_{1} \otimes 1+1 \otimes m_{1}\right) \Rightarrow m_{2}$ compatible with dif.


## $A_{\infty}$-Structures: Mathematical notion

## Definition

An $A_{\infty}$-algebra is a graded module $A$, with a family of graded maps $m_{i}: A^{\otimes i} \rightarrow A$, of degree $i-2$, such that for all $i \geq 1$ :

$$
\sum_{n=1}^{i} \sum_{k=0}^{i-n}(-1)^{n+k+n k} m_{i-n+1}\left(1^{\otimes k} \otimes m_{n} \otimes 1^{\otimes i-n-k}\right)=0
$$

- $m_{1} m_{1}=0 \Rightarrow m_{1}$ is a differential.
- $m_{1} m_{2}=m_{2}\left(m_{1} \otimes 1+1 \otimes m_{1}\right) \Rightarrow m_{2}$ compatible with dif.
- $m_{3}\left(m_{1} \otimes 1^{2}+1^{2} \otimes m_{1}+1 \otimes m_{1} \otimes 1\right)+m_{1} m_{3}=m_{2}\left(m_{2} \otimes 1-1 \otimes m_{2}\right)$.


## $A_{\infty}$-structures: Mathematical notion

## Example

Every DG-algebra is, in particular, an $A_{\infty}$-algebra with $m_{1}=d$, $m_{2}=\mu$ and $m_{i}=0$ for all $i \geq 3$.

## $A_{\infty}$-Structures: Mathematical notion

## Example

Every DG-algebra is, in particular, an $A_{\infty}$-algebra with $m_{1}=d$, $m_{2}=\mu$ and $m_{i}=0$ for all $i \geq 3$.

## Example

The chain complex of the loop space of $X, C_{*}(\Omega X)$ has an $A_{\infty}$-algebra structure.

## Index

(1) Introduction

- Preliminaries
- Historical origin
- Mathematical notion
(2) $A_{\infty}$-structures via perturbation
- Contractions
- The tensor trick
(3) Theoretical study of complexity
- Main Results
- Computational advantages


## Contractions

## Definition

A contraction c: $\{N, M, f, g, \phi\}$ is a 5-tuple, such that

A. Berciano, M.J. Jiménez, P. Real

On the computation of $A_{\infty}$-maps

## Contractions

## Definition

A contraction c: $\{N, M, f, g, \phi\}$ is a 5-tuple, such that

- $\left(N, d_{N}\right),\left(M, d_{M}\right)$ DG-modules.

A. Berciano, M.J. Jiménez, P. Real


## Contractions

## Definition

A contraction c: $\{N, M, f, g, \phi\}$ is a 5-tuple, such that

- $\left(N, d_{N}\right),\left(M, d_{M}\right)$ DG-modules.
- $f: N_{*} \rightarrow M_{*}$ and $g: M_{*} \rightarrow N_{*}$ morphisms of degree zero;



## Contractions

## Definition

A contraction c: $\{N, M, f, g, \phi\}$ is a 5-tuple, such that

- $\left(N, d_{N}\right),\left(M, d_{M}\right)$ DG-modules.
- $f: N_{*} \rightarrow M_{*}$ and $g: M_{*} \rightarrow N_{*}$ morphisms of degree zero;
- $\phi: N_{*} \rightarrow N_{*+1}$ is a homotopy operator;


## $\phi$ <br> $\left(N, d_{N}\right)$ <br> $g \uparrow{ }_{f}$ <br> $\left(M, d_{M}\right)$

## Contractions

## Definition

A contraction c: $\{N, M, f, g, \phi\}$ is a 5-tuple, such that

- $\left(N, d_{N}\right),\left(M, d_{M}\right)$ DG-modules.
- $f: N_{*} \rightarrow M_{*}$ and $g: M_{*} \rightarrow N_{*}$ morphisms of degree zero;
- $\phi: N_{*} \rightarrow N_{*+1}$ is a homotopy operator;
$\stackrel{\phi}{\curvearrowleft}\left(N, d_{N}\right)$
$g\left(\downarrow_{f}\right.$
$\left(M, d_{M}\right)$
- $f g=1_{M}, \quad \phi d_{N}+d_{N} \phi+g f=1_{N}$;


## Contractions

## Definition

A contraction c: $\{N, M, f, g, \phi\}$ is a 5-tuple, such that

- $\left(N, d_{N}\right),\left(M, d_{M}\right)$ DG-modules.
- $f: N_{*} \rightarrow M_{*}$ and $g: M_{*} \rightarrow N_{*}$ morphisms of degree zero;
- $\phi: N_{*} \rightarrow N_{*+1}$ is a homotopy operator;
$\stackrel{\phi}{\curvearrowleft}\left(N, d_{N}\right)$
$g \uparrow)_{f}$
$\left(M, d_{M}\right)$
- $f g=1_{M}, \quad \phi d_{N}+d_{N} \phi+g f=1_{N}$;
- $f \phi=0, \quad \phi g=0, \quad \phi \phi=0$.


## Contractions: $A_{\infty}$-structures

## Theorem (Kad80,GLS91)

Let $\left(A, d_{A}, \mu\right)$ and $\left(M, d_{M}\right)$ be a connected $D G$-algebra and a $D G$-module, respectively and $c:\{A, M, f, g, \phi\}$ a contraction between them. Then the $D G$-module $M$ is provided with an $A_{\infty}$-algebra structure

## Contractions: $A_{\infty}$-structures

given by

$$
m_{n}: M^{\otimes n} \rightarrow M
$$

$$
\begin{align*}
& m_{1}=-d_{M} \\
& m_{n}=(-1)^{n+1} f \mu^{(1)} \phi^{[\otimes 2]} \mu^{(2)} \cdots \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}, \quad n \geq 2 \tag{1}
\end{align*}
$$

with

$$
\begin{gathered}
\mu^{(k)}=\sum_{i=0}^{k-1}(-1)^{i+1} 1^{\otimes i} \otimes \mu_{A} \otimes 1^{\otimes k-i-1}, \\
\phi^{[\otimes k]}=\sum_{i=0}^{k-1} 1^{\otimes i} \otimes \phi \otimes(g f)^{\otimes k-i-1}
\end{gathered}
$$

## Contractions: $A_{\infty}$-structures

## Computational Consequence

A contraction from a DG-algebra $A$ to a DG-module $M$ provides an algorithm to compute an $A_{\infty}$-algebra structure on $M$.

## Index

(1) Introduction

- Preliminaries
- Historical origin
- Mathematical notion
(2) $A_{\infty}$-structures via perturbation
- Contractions
- The tensor trick
(3) Theoretical study of complexity
- Main Results
- Computational advantages


## Main Results

## Theorem

Any composition of the kind $\phi^{[\otimes s]} \mu^{(s)}(s=2, \ldots, n-1)$ in the formula (1), which is given by

$$
\left(\sum_{j=0}^{s-1} 1^{\otimes j} \otimes \phi \otimes(g f)^{\otimes s-j-1}\right) \circ\left(\sum_{i=0}^{s-1}(-1)^{i+1} 1^{\otimes i} \otimes \mu_{\mathrm{A}} \otimes 1^{\otimes s-i-1}\right)
$$

can be reduced to

$$
\phi^{[\otimes s]} \mu^{(s)}=\sum_{i=0}^{s-1}(-1)^{i+1} 1^{\otimes i} \otimes \phi \mu_{A} \otimes 1^{\otimes s-i-1}
$$

## Main Results

$$
\begin{equation*}
\phi^{[\otimes s]} \mu^{(s)}=\sum_{i=0}^{s-1}(-1)^{i+1} 1^{\otimes i} \otimes \phi \mu_{A} \otimes 1^{\otimes s-i-1} \tag{2}
\end{equation*}
$$

## Main Results

$$
\begin{equation*}
\phi^{[\otimes s]} \mu^{(s)}=\sum_{i=0}^{s-1}(-1)^{i+1} 1^{\otimes i} \otimes \phi \mu_{A} \otimes 1^{\otimes s-i-1} \tag{2}
\end{equation*}
$$

Moreover, given a composition of the kind

$$
\left(\phi^{[\otimes s-1]} \mu^{(s-1)}\right) \circ\left(\phi^{[\otimes s]} \mu^{(s)}\right) \quad s=3, \ldots, n-2
$$

for every index $i$ in the sum (2) of $\phi^{[\otimes s]} \mu^{(s)}$, the formula of $\phi^{[\otimes s-1]} \mu^{(s-1)}$ in such a composition can be reduced to

$$
\begin{equation*}
\sum_{j=i-1, j \geq 0}^{s-2}(-1)^{j+1} 1^{\otimes j} \otimes \phi \mu_{A} \otimes 1^{\otimes s-j-2} \tag{3}
\end{equation*}
$$

## Main Results

In other words, the whole composition
$\left(\phi^{[\otimes 2]} \mu^{(2)}\right) \circ \cdots \circ\left(\phi^{[\otimes n-1]} \mu^{(n-1)}\right)$ in the formula of $m_{n}$ can be expressed by

$$
\sum_{i_{n-1}=0}^{n-2}\left(\cdots\left(\sum_{i_{2}=i_{3}-1}^{1}(\phi \mu)^{\left(2, i_{2}\right)}\right) \cdots\right)(\phi \mu)^{\left(n-1, i_{n-1}\right)}
$$

where $(\phi \mu)^{(k, j)}=(-1)^{j+1} 1^{\otimes j} \otimes \phi \mu_{A} \otimes 1^{\otimes k-j-1}$ and each addend exists whenever the corresponding index $i_{k} \geq 0$.

## Scheme of the proof

$$
m_{n}=(-1)^{n+1} f \mu^{(1)} \underbrace{\phi^{[\otimes 2]} \mu^{(2)} \cdots \underbrace{\phi^{[\otimes n-2]} \mu^{(n-2)} \underbrace{\phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}}_{k=1}}_{k=2}}_{k=n-2}
$$

## Scheme of the proof

$$
k=1 \quad \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}
$$

$$
\left(\sum_{j=0}^{n-2} 1^{\otimes j} \otimes \phi \otimes(g f)^{\otimes n-j-2}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \mu_{A} g^{\otimes 2} \otimes g^{\otimes n-i-2}\right)
$$

## Scheme of the proof

$$
k=1 \quad \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}
$$

$$
\left(\sum_{j=0}^{n-2} 1^{\otimes j} \otimes \phi \otimes(g f)^{\otimes n-j-2}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \mu_{A} g^{\otimes 2} \otimes g^{\otimes n-i-2}\right)
$$

$$
\begin{aligned}
& \phi g=0 \\
& f g=1
\end{aligned}
$$

## Scheme of the proof

$$
k=1 \quad \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}
$$

$$
\left(\sum_{j=0}^{n-2} 1^{\otimes j} \otimes \phi \otimes(g f)^{\otimes n-j-2}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \mu_{A} g^{\otimes 2} \otimes g^{\otimes n-i-2}\right)
$$

$$
\begin{aligned}
& \phi g=0 \\
& f g=1 \quad \Rightarrow
\end{aligned}
$$

## Scheme of the proof

$$
k=1 \quad \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}
$$

$$
\left(\sum_{j=0}^{n-2} 1^{\otimes j} \otimes \phi \otimes(g f)^{\otimes n-j-2}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \mu_{A} g^{\otimes 2} \otimes g^{\otimes n-i-2}\right)
$$

$$
\phi g=0
$$

$$
f g=1 \quad \Rightarrow
$$

$$
\sum_{i=0}^{n-2} \pm 1^{\otimes i} \otimes \phi \mu_{A} \otimes 1^{\otimes n-i-2}
$$

## Scheme of the proof

$$
k=2
$$

$$
\left(\phi^{[\otimes n-2]} \mu^{(n-2)}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \phi(s t h .) \otimes g^{\otimes n-i-2}\right)
$$

## Scheme of the proof

$$
k=2
$$

$$
\left(\phi^{[\otimes n-2]} \mu^{(n-2)}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \phi(s t h .) \otimes g^{\otimes n-i-2}\right)
$$

$$
\phi g=0
$$

$$
\phi \phi=0
$$

## Scheme of the proof

$$
k=2
$$

$$
\begin{aligned}
& \quad\left(\phi^{[\otimes n-2]} \mu^{(n-2)}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \phi(s t h .) \otimes g^{\otimes n-i-2}\right) \\
& \phi g=0 \\
& \phi \phi=0 \quad \Rightarrow
\end{aligned}
$$

## Scheme of the proof

$$
k=2
$$

$$
\begin{aligned}
& \left(\phi^{[\otimes n-2]} \mu^{(n-2)}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \phi(\text { sth. }) \otimes g^{\otimes n-i-2}\right) \\
\phi g & =0 \\
\phi \phi & =0 \quad \Rightarrow \quad \sum_{j=0}^{n-3} \pm 1^{\otimes j} \otimes \phi \mu_{A} \otimes(g f)^{\otimes n-j-3}
\end{aligned}
$$

## Scheme of the proof

$$
k=2
$$

$$
\begin{aligned}
& \left(\phi^{[\otimes n-2]} \mu^{(n-2)}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \phi(\text { sth. }) \otimes g^{\otimes n-i-2}\right) \\
\phi g & =0 \\
\phi \phi & =0 \quad \Rightarrow \\
f \phi & =0
\end{aligned}
$$

## Scheme of the proof

$$
k=2
$$

$$
\begin{array}{ll} 
& \left(\phi^{[\otimes n-2]} \mu^{(n-2)}\right) \circ\left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \phi(s t h .) \otimes g^{\otimes n-i-2}\right) \\
\phi g=0 \\
\phi \phi=0 & \Rightarrow \\
f \phi=0 & \sum_{j=0}^{n-3} \pm 1^{\otimes j} \otimes \phi \mu_{A} \otimes(g f)^{\otimes n-j-3} \\
& \Rightarrow
\end{array}
$$

## Scheme of the proof

$$
k=2
$$

$$
\begin{array}{lll} 
& \left(\phi^{[\otimes n-2]} \mu^{(n-2)}\right) \circ & \left(\sum_{i=0}^{n-2} \pm g^{\otimes i} \otimes \phi(s t h .) \otimes g^{\otimes n-i-2}\right) \\
\phi g=0 \\
\phi \phi=0 & \Rightarrow & \sum_{j=0}^{n-3} \pm 1^{\otimes j} \otimes \phi \mu_{A} \otimes(g f)^{\otimes n-j-3} \\
f \phi=0 & \Rightarrow & \\
& & \sum_{j=i-1}^{n-3} \pm 1^{\otimes j} \otimes \phi \mu_{A} \otimes 1^{\otimes n-j-3}
\end{array}
$$

## Initial formulation

$$
m_{n}=(-1)^{n+1} f \mu^{(1)} \phi^{[\otimes 2]} \mu^{(2)} \cdots \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}, \quad n \geq 2 .
$$

## Initial formulation

$$
m_{n}=(-1)^{n+1} f \mu^{(1)} \phi^{[82]} \mu^{(2)} \cdots \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}, \quad n \geq 2 .
$$

- $\phi^{[8 k]}=\sum_{i=0}^{k-1} 1^{\otimes i} \otimes \phi \otimes(g f)^{\otimes k-i-1} \rightarrow k$ addends.


## Initial formulation

$$
m_{n}=(-1)^{n+1} f \mu^{(1)} \phi^{[82]} \mu^{(2)} \cdots \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}, \quad n \geq 2 .
$$

- $\phi^{[\otimes k]}=\sum_{i=0}^{k-1} 1^{\otimes i} \otimes \phi \otimes(g f)^{\otimes k-i-1} \rightarrow k$ addends.
- $\mu^{(k)}=\sum_{i=0}^{k-1}(-1)^{i+1} 1^{\otimes i} \otimes \mu_{A} \otimes 1^{\otimes k-i-1} \rightarrow k$ addends.


## Initial formulation

$$
m_{n}=(-1)^{n+1} f \mu^{(1)} \phi^{[82]} \mu^{(2)} \cdots \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}, \quad n \geq 2 .
$$

- $\phi^{[\otimes k]}=\sum_{i=0}^{k-1} 1^{\otimes i} \otimes \phi \otimes(g f)^{\otimes k-i-1} \rightarrow k$ addends.
- $\mu^{(k)}=\sum_{i=0}^{k-1}(-1)^{i+1} 1^{\otimes i} \otimes \mu_{A} \otimes 1^{\otimes k-i-1} \rightarrow k$ addends.
- $\phi^{[8 k]} \mu^{(k)}$ contributes with $k^{2}$ addends.


## Initial formulation

$$
m_{n}=(-1)^{n+1} f \mu^{(1)} \phi^{[82]} \mu^{(2)} \cdots \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}, \quad n \geq 2 .
$$

- $\phi^{[8 k]}=\sum_{i=0}^{k-1} 1^{\otimes i} \otimes \phi \otimes(g f)^{\otimes k-i-1} \rightarrow k$ addends.
- $\mu^{(k)}=\sum_{i=0}^{k-1}(-1)^{i+1} 1^{\otimes i} \otimes \mu_{A} \otimes 1^{\otimes k-i-1} \rightarrow k$ addends.
- $\phi^{[8 k]} \mu^{(k)}$ contributes with $k^{2}$ addends.
- $m_{n}$ is $O\left((n-1)!^{2}\right)$ in space.


## Initial formulation

$$
m_{n}=(-1)^{n+1} f \mu^{(1)} \phi^{[82]} \mu^{(2)} \cdots \phi^{[\otimes n-1]} \mu^{(n-1)} g^{\otimes n}, \quad n \geq 2 .
$$

- $\phi^{[\otimes k]}=\sum_{i=0}^{k-1} 1^{\otimes i} \otimes \phi \otimes(g f)^{\otimes k-i-1} \rightarrow k$ addends.
- $\mu^{(k)}=\sum_{i=0}^{k-1}(-1)^{i+1} 1^{\otimes i} \otimes \mu_{A} \otimes 1^{\otimes k-i-1} \rightarrow k$ addends.
- $\phi^{[8 k]} \mu^{(k)}$ contributes with $k^{2}$ addends.
- $m_{n}$ is $O\left((n-1)!^{2}\right)$ in space.

The number of basic operations can be expressed by $n+n(n-1)!^{2}+\frac{(n+3)(n-2)}{4}(n-1)!^{2}$, so $m_{n}$ is $O\left((n)!^{2}\right)$ in time.

## First reduction

$$
\phi^{[\otimes k]} \mu^{(k)}=\sum_{i=0}^{k-1}(-1)^{i+1} 1^{\otimes i} \otimes \phi \mu_{A} \otimes 1^{\otimes k-i-1}
$$

## First reduction

$$
\phi^{[\otimes k]} \mu^{(k)}=\sum_{i=0}^{k-1}(-1)^{i+1} 1^{\otimes i} \otimes \phi \mu_{A} \otimes 1^{\otimes k-i-1}
$$

$\phi^{[\otimes k]} \mu^{(k)}: k^{2}$ addends $\rightarrow k$ addends. So, now $m_{n}$ is $O((n-1)!)$ in space.

## First reduction

$$
\phi^{[\otimes k]} \mu^{(k)}=\sum_{i=0}^{k-1}(-1)^{i+1} 1^{\otimes i} \otimes \phi \mu_{A} \otimes 1^{\otimes k-i-1}
$$

$\phi^{[\otimes k]} \mu^{(k)}: k^{2}$ addends $\rightarrow k$ addends. So, now $m_{n}$ is $O((n-1)!)$ in space.

Now, the number of operations is exactly

$$
n+(n-1)!(2 n-2)
$$

so, $m_{n}$ is $O((n)!)$ in time.

## Second reduction

$$
\phi^{[\otimes k]} \mu^{(k)}=\sum_{j=i-1, j \geq 0}^{k-2}(-1)^{j+1} 1^{\otimes j} \otimes \phi \mu_{A} \otimes 1^{\otimes k-j-2}
$$

## Second reduction

$$
\phi^{[\otimes k]} \mu^{(k)}=\sum_{j=i-1, j \geq 0}^{k-2}(-1)^{j+1} 1^{\otimes j} \otimes \phi \mu_{A} \otimes 1^{\otimes k-j-2}
$$

The number of addends becomes $(n-1)!-S_{n}$,

$$
\frac{(n-1)!}{2}<(n-1)!-S_{n}<(n-1)!
$$

But $(n-1)!-S_{n}$ is much "closer" to $\frac{(n-1)!}{2}$ than to $(n-1)!$ :

## Second reduction

$$
\phi^{[\otimes k]} \mu^{(k)}=\sum_{j=i-1, j \geq 0}^{k-2}(-1)^{j+1} 1^{\otimes j} \otimes \phi \mu_{A} \otimes 1^{\otimes k-j-2}
$$

The number of addends becomes $(n-1)!-S_{n}$,

$$
\frac{(n-1)!}{2}<(n-1)!-S_{n}<(n-1)!
$$

But $(n-1)!-S_{n}$ is much "closer" to $\frac{(n-1)!}{2}$ than to $(n-1)$ !:

| $n$ | 5 | 10 | 50 | 100 |
| :---: | :---: | :---: | :---: | :---: |
| $\left((n-1)!-S_{n}\right) /(n-1)!$ | 0,70833 | 0,5637 | 0,51042 | 0,5051 |

## Comparative table

Summing up,

|  | original formula |  | new formula |  |
| :---: | :---: | :---: | :---: | :---: |
|  | time | space | time | space |
| $m_{n}$ | $O\left(n!^{2}\right)$ | $O\left((n-1)!^{2}\right)$ | $O(n!)$ | $O((n-1)!)$ |

