Weak Quantifier Elimination for the Integers Beyond the Linear Case

A. Lasaruk ${ }^{1} \quad$ T. Sturm ${ }^{2}$

FORWISS, University of Passau
FIM, University of Passau
September 17, 2007

Quantifier Elimination (QE) by Virtual Substitution

- Input: First order formula $\exists x \varphi$
- General idea: Compute an elimination set E, such that

Quantifier Elimination (QE) by Virtual Substitution

- Input: First order formula $\exists x \varphi$
- Output: Quantifier-free formula φ^{\prime} with

$$
\exists x \varphi \longleftrightarrow \varphi^{\prime}
$$

- General idea: Compute an elimination set E, such that
- For the reals and for the integers: Elements of elimination sets are built essentially from interval boundaries

Quantifier Elimination (QE) by Virtual Substitution

- Input: First order formula $\exists x \varphi$
- Output: Quantifier-free formula φ^{\prime} with

$$
\exists x \varphi \longleftrightarrow \varphi^{\prime}
$$

- General idea: Compute an elimination set E, such that

$$
\exists x \varphi \longleftrightarrow \bigvee_{(\gamma, t) \in E}(\gamma \wedge \varphi[t / / x])
$$

- For the reals and for the integers: Elements of elimination sets are built essentially from interval boundaries

Quantifier Elimination (QE) by Virtual Substitution

- Input: First order formula $\exists x \varphi$
- Output: Quantifier-free formula φ^{\prime} with

$$
\exists x \varphi \longleftrightarrow \varphi^{\prime}
$$

- General idea: Compute an elimination set E, such that

$$
\exists x \varphi \longleftrightarrow \bigvee_{(\gamma, t) \in E}(\gamma \wedge \varphi[t / / x])
$$

- For the reals and for the integers: Elements of elimination sets are built essentially from interval boundaries

Recall Real QE by Virtual Substitution

Virtual substitution scheme:

$$
\exists x \varphi \longleftrightarrow \bigvee_{(\gamma, t) \in E}(\gamma \wedge \varphi[t / / x])
$$

- Consider: \mathbb{R}, arithmetic, ordering, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

- One possible QE result using $E=\{($ true,$b / 3)\}$

- Fact: For linear formulas one can always find elimination sets.

Recall Real QE by Virtual Substitution

Virtual substitution scheme:

$$
\exists x \varphi \longleftrightarrow \bigvee_{(\gamma, t) \in E}(\gamma \wedge \varphi[t / / x])
$$

- Consider: \mathbb{R}, arithmetic, ordering, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

- One possible QE result using $E=\{($ true,$b / 3)\}$:

$$
\varphi \longleftrightarrow \bigvee_{t \in\{(t r u e, b / 3)\}}(3 x-b=0)[t / / x] \longleftrightarrow 0=0 \longleftrightarrow \text { true }
$$

Recall Real QE by Virtual Substitution

Virtual substitution scheme:

$$
\exists x \varphi \longleftrightarrow \bigvee_{(\gamma, t) \in E}(\gamma \wedge \varphi[t / / x])
$$

- Consider: \mathbb{R}, arithmetic, ordering, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

- One possible QE result using $E=\{($ true,$b / 3)\}$:

$$
\varphi \longleftrightarrow \bigvee_{t \in\{(\text { true }, b / 3)\}}(3 x-b=0)[t / / x] \longleftrightarrow 0=0 \longleftrightarrow \text { true. }
$$

- Fact: For linear formulas one can always find elimination sets.

Recall Real QE by Virtual Substitution

Virtual substitution scheme:

$$
\exists x \varphi \longleftrightarrow \bigvee_{(\gamma, t) \in E}(\gamma \wedge \varphi[t / / x])
$$

- Consider: \mathbb{R}, arithmetic, ordering, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

- One possible QE result using $E=\{($ true,$b / 3)\}$:

$$
\varphi \longleftrightarrow \bigvee_{t \in\{(\text { true }, b / 3)\}}(3 x-b=0)[t / / x] \longleftrightarrow 0=0 \longleftrightarrow \text { true. }
$$

- Fact: For linear formulas one can always find elimination sets.
- Fact: This can be extended to higher degrees to some extent.

The Same Problem Over the Integers

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

The Same Problem Over the Integers

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

- One possible QE result:

$$
\varphi \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge(3 x-b=0)\left[\frac{b+k}{3} / / x\right]\right)
$$

The Same Problem Over the Integers

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

- One possible QE result:

$$
\begin{aligned}
\varphi & \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge(3 x-b=0)\left[\frac{b+k}{3} / / x\right]\right) \\
& \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge k=0\right)
\end{aligned}
$$

- Presburger Arithmetic: No multiplication (coefficients are integers, $3 x$ is short for $x+x+x$) [Presburger 1929]

The Same Problem Over the Integers

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

- One possible QE result:

$$
\begin{aligned}
\varphi & \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge(3 x-b=0)\left[\frac{b+k}{3} / / x\right]\right) \\
& \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge k=0\right) \longleftrightarrow b \equiv_{3} 0
\end{aligned}
$$

The Same Problem Over the Integers

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

- One possible QE result:

$$
\begin{aligned}
\varphi & \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge(3 x-b=0)\left[\frac{b+k}{3} / / x\right]\right) \\
& \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge k=0\right) \longleftrightarrow b \equiv_{3} 0
\end{aligned}
$$

- Presburger Arithmetic: No multiplication (coefficients are integers, $3 x$ is short for $x+x+x$) [Presburger 1929]

The Same Problem Over the Integers

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0) .
$$

- One possible QE result:

$$
\begin{aligned}
\varphi & \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge(3 x-b=0)\left[\frac{b+k}{3} / / x\right]\right) \\
& \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge k=0\right) \longleftrightarrow b \equiv_{3} 0 .
\end{aligned}
$$

- Presburger Arithmetic: No multiplication (coefficients are integers, $3 x$ is short for $x+x+x$) [Presburger 1929]
- Observation: QE in the virtual substitution framework:

$$
E=\left\{\left(b+k \equiv_{3} 0,(b+k) / 3\right)| | k \mid \leq 3\right\} .
$$

The Same Problem Over the Integers

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(3 x-b=0)
$$

- One possible QE result:

$$
\begin{aligned}
\varphi & \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge(3 x-b=0)\left[\frac{b+k}{3} / / x\right]\right) \\
& \longleftrightarrow \bigvee_{k=-3}^{3}\left(b+k \equiv_{3} 0 \wedge k=0\right) \longleftrightarrow b \equiv_{3} 0
\end{aligned}
$$

- Presburger Arithmetic: No multiplication (coefficients are integers, $3 x$ is short for $x+x+x$) [Presburger 1929]
- Observation: QE in the virtual substitution framework: $E=\left\{\left(b+k \equiv_{3} 0,(b+k) / 3\right)| | k \mid \leq 3\right\}$.
- Observation: Systematically occurring formal \bigvee-notation decreases complexity [Weispfenning 1990]

Introducing Parameters Into Presburger Arithmetic

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(a \cdot x-b=0)
$$

Introducing Parameters Into Presburger Arithmetic

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(a \cdot x-b=0)
$$

- Trying the same technique:

$$
\begin{aligned}
\varphi \longleftrightarrow & b=0 \vee \\
& \bigvee_{k=-a}^{a}\left(a \neq 0 \wedge b+k \equiv{ }_{a} 0 \wedge(a x-b=0)\left[\frac{b+k}{a} / / x\right]\right)
\end{aligned}
$$

Introducing Parameters Into Presburger Arithmetic

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(a \cdot x-b=0)
$$

- Trying the same technique:

$$
\begin{aligned}
\varphi \longleftrightarrow & b=0 \vee \\
& \bigvee_{k=-a}^{a}\left(a \neq 0 \wedge b+k \equiv{ }_{a} 0 \wedge(a x-b=0)\left[\frac{b+k}{a} / / x\right]\right) \\
\longleftrightarrow & b=0 \vee \bigvee_{k=-a}^{a}\left(a \neq 0 \wedge b+k \equiv{ }_{a} 0 \wedge k=0\right) \longleftrightarrow b \equiv{ }_{a} 0
\end{aligned}
$$

Introducing Parameters Into Presburger Arithmetic

- Consider: \mathbb{Z}, arithmetic, ordering, congruences, Boolean combination, first-order quantification

$$
\varphi=\exists x(a \cdot x-b=0)
$$

- Trying the same technique:

$$
\begin{aligned}
\varphi \longleftrightarrow & b=0 \vee \\
& \bigvee_{k=-a}^{a}\left(a \neq 0 \wedge b+k \equiv{ }_{a} 0 \wedge(a x-b=0)\left[\frac{b+k}{a} / / x\right]\right) \\
\longleftrightarrow & b=0 \vee \bigvee_{k=-a}^{a}\left(a \neq 0 \wedge b+k \equiv{ }_{a} 0 \wedge k=0\right) \longleftrightarrow b \equiv{ }_{a} 0
\end{aligned}
$$

- Problem: $\bigvee_{k=-a}^{a}\left(a \neq 0 \wedge b+k \equiv{ }_{a} 0 \wedge(a x-b=0)\left[\frac{b+k}{a} / / x\right]\right)$ is not a first-order formula!

Introducing Bounded Quantifiers

- Formal extension of logic by new quantifiers with the semantics:

$$
\bigsqcup_{k: \beta} \varphi \quad \text { iff } \quad \exists k(\beta \wedge \varphi), \quad \prod_{k: \beta} \varphi \quad \text { iff } \quad \forall k(\beta \longrightarrow \varphi) .
$$

Introducing Bounded Quantifiers

- Formal extension of logic by new quantifiers with the semantics:

$$
\bigsqcup_{k: \beta} \varphi \quad \text { iff } \quad \exists k(\beta \wedge \varphi), \quad \prod_{k: \beta} \varphi \quad \text { iff } \quad \forall k(\beta \longrightarrow \varphi) .
$$

- Bounded quantifiers: Range β is finite for all choices of parameters
- Questionable formula:

Introducing Bounded Quantifiers

- Formal extension of logic by new quantifiers with the semantics:

$$
\bigsqcup_{k: \beta} \varphi \quad \text { iff } \quad \exists k(\beta \wedge \varphi), \quad \prod_{k: \beta} \varphi \quad \text { iff } \quad \forall k(\beta \longrightarrow \varphi) .
$$

- Bounded quantifiers: Range β is finite for all choices of parameters
- If β contains only k, then $\bigsqcup_{k: \beta} \varphi \longleftrightarrow \bigvee_{i \in\{z \in \mathbb{Z} \mid \beta(z)\}} \varphi[i / k]$
- Questionable formula:

Introducing Bounded Quantifiers

- Formal extension of logic by new quantifiers with the semantics:

$$
\bigsqcup_{k: \beta} \varphi \quad \text { iff } \quad \exists k(\beta \wedge \varphi), \quad \prod_{k: \beta} \varphi \quad \text { iff } \quad \forall k(\beta \longrightarrow \varphi) .
$$

- Bounded quantifiers: Range β is finite for all choices of parameters
- If β contains only k, then $\bigsqcup_{k: \beta} \varphi \longleftrightarrow \bigvee_{i \in\{z \in \mathbb{Z} \mid \beta(z)\}} \varphi[i / k]$
- Questionable formula:

$$
\bigsqcup_{k:|k|<|a|}\left(a \neq 0 \wedge b+k \equiv_{3} 0 \wedge(a x-y=0)\left[\frac{b+k}{3} / / x\right]\right)
$$

Introducing Bounded Quantifiers

- Formal extension of logic by new quantifiers with the semantics:

$$
\bigsqcup_{k: \beta} \varphi \quad \text { iff } \quad \exists k(\beta \wedge \varphi), \quad \prod_{k: \beta} \varphi \quad \text { iff } \quad \forall k(\beta \longrightarrow \varphi) .
$$

- Bounded quantifiers: Range β is finite for all choices of parameters
- If β contains only k, then $\bigsqcup_{k: \beta} \varphi \longleftrightarrow \bigvee_{i \in\{z \in \mathbb{Z} \mid \beta(z)\}} \varphi[i / k]$
- Questionable formula:

$$
\bigsqcup_{k:|k|<|a|}\left(a \neq 0 \wedge b+k \equiv_{3} 0 \wedge(a x-y=0)\left[\frac{b+k}{3} / / x\right]\right)
$$

- Weak quantifier elimination: Results contain bounded quantifiers

Introducing Bounded Quantifiers

- Formal extension of logic by new quantifiers with the semantics:

$$
\bigsqcup_{k: \beta} \varphi \quad \text { iff } \quad \exists k(\beta \wedge \varphi), \quad \prod_{k: \beta} \varphi \quad \text { iff } \quad \forall k(\beta \longrightarrow \varphi) .
$$

- Bounded quantifiers: Range β is finite for all choices of parameters
- If β contains only k, then $\bigsqcup_{k: \beta} \varphi \longleftrightarrow \bigvee_{i \in\{z \in \mathbb{Z} \mid \beta(z)\}} \varphi[i / k]$
- Questionable formula:

$$
\bigsqcup_{k:|k|<|a|}\left(a \neq 0 \wedge b+k \equiv_{3} 0 \wedge(a x-y=0)\left[\frac{b+k}{3} / / x\right]\right)
$$

- Weak quantifier elimination: Results contain bounded quantifiers
- Fact: The discussed framework is sufficient for linear weak QE with polynomial coefficients [L. and S. AAECC 2007].

Towards Higher Degrees

- Is our extension of logic suitable even for nonlinear formulas?
- Yes, for certain ones!

Output: φ is equivalent to

Towards Higher Degrees

- Is our extension of logic suitable even for nonlinear formulas?
- Yes, for certain ones!

Output: φ is equivalent to

Towards Higher Degrees

- Is our extension of logic suitable even for nonlinear formulas?
- Yes, for certain ones!

Example

Input: Eliminate $\exists x$ from

$$
\varphi=\exists x\left(a x-y<0 \wedge x^{2}+x+a>0\right)
$$

Towards Higher Degrees

- Is our extension of logic suitable even for nonlinear formulas?
- Yes, for certain ones!

Example

Input: Eliminate $\exists x$ from

$$
\varphi=\exists x\left(a x-y<0 \wedge x^{2}+x+a>0\right)
$$

Output: φ is equivalent to

$$
\begin{aligned}
\bigsqcup_{k:|k| \leq|a|}\left(a \neq 0 \wedge y+k \equiv \equiv_{a} 0 \wedge k<0 \wedge|a y+a k|>|a|^{3}+2 a^{2}\right) \vee \\
\bigsqcup_{k:|k| \leq|a|+2}\left(a k-y<0 \wedge k^{2}+k+a>0\right) .
\end{aligned}
$$

Towards Higher Degrees

- Is our extension of logic suitable even for nonlinear formulas?
- Yes, for certain ones!

Example

Input: Eliminate $\exists x$ from

$$
\varphi=\exists x\left(a x-y<0 \wedge x^{2}+x+a>0\right)
$$

Output: φ is equivalent to

$$
\begin{aligned}
& \bigvee_{k=-10}^{10}\left(y+k \equiv_{10} 0 \wedge k<0 \wedge|y+k|>120\right) \vee \\
& \bigvee_{k=-12}^{12}\left(10 k-y<0 \wedge k^{2}+k+10>0\right)
\end{aligned}
$$

Formulas We Can Handle

We are able to eliminate all the regular quantifiers from formulas φ specified as follows:

Consequences:

- Linear formulas are just special univariately nonlinear formulas

Formulas We Can Handle

We are able to eliminate all the regular quantifiers from formulas φ specified as follows:

Univariately nonlinear formulas:
$\left(\mathrm{U}_{1}\right)$ None of the quantified variables occurs within moduli of congruences or incongruences.

Consequences:

- Linear formulas are just special univariately nonlinear formulas

Formulas We Can Handle

We are able to eliminate all the regular quantifiers from formulas φ specified as follows:

Univariately nonlinear formulas:
$\left(\mathrm{U}_{1}\right)$ None of the quantified variables occurs within moduli of congruences or incongruences.
$\left(\mathrm{U}_{2}\right)$ Congruences are linear in the quantified variables.

Consequences:

- Linear formulas are just special univariately nonlinear formulas

Formulas We Can Handle

We are able to eliminate all the regular quantifiers from formulas φ specified as follows:

Univariately nonlinear formulas:
$\left(\mathrm{U}_{1}\right)$ None of the quantified variables occurs within moduli of congruences or incongruences.
$\left(\mathrm{U}_{2}\right)$ Congruences are linear in the quantified variables.
$\left(\mathrm{U}_{3}\right)$ Equations and inequalities are either
(i) linear in the quantified variables or

Consequences:

- Linear formulas are just special univariately nonlinear formulas

Formulas We Can Handle

We are able to eliminate all the regular quantifiers from formulas φ specified as follows:

Univariately nonlinear formulas:
$\left(\mathrm{U}_{1}\right)$ None of the quantified variables occurs within moduli of congruences or incongruences.
$\left(\mathrm{U}_{2}\right)$ Congruences are linear in the quantified variables.
$\left(\mathrm{U}_{3}\right)$ Equations and inequalities are either
(i) linear in the quantified variables or
(ii) superlinear univariate in one of the quantified variables.

Consequences:

- Linear formulas are just special univariately nonlinear formulas

Formulas We Can Handle

We are able to eliminate all the regular quantifiers from formulas φ specified as follows:

Univariately nonlinear formulas:
$\left(\mathrm{U}_{1}\right)$ None of the quantified variables occurs within moduli of congruences or incongruences.
$\left(\mathrm{U}_{2}\right)$ Congruences are linear in the quantified variables.
$\left(\mathrm{U}_{3}\right)$ Equations and inequalities are either
(i) linear in the quantified variables or
(ii) superlinear univariate in one of the quantified variables.

Consequences:

- Linear formulas are just special univariately nonlinear formulas

Formulas We Can Handle

We are able to eliminate all the regular quantifiers from formulas φ specified as follows:

Univariately nonlinear formulas:

$\left(\mathrm{U}_{1}\right)$ None of the quantified variables occurs within moduli of congruences or incongruences.
$\left(\mathrm{U}_{2}\right)$ Congruences are linear in the quantified variables.
$\left(\mathrm{U}_{3}\right)$ Equations and inequalities are either
(i) linear in the quantified variables or
(ii) superlinear univariate in one of the quantified variables.

Consequences:

- Linear formulas are just special univariately nonlinear formulas
- We can positively decide in advance, whether or not all quantifiers can be eliminated by our method.

Explanation of Notions

- Equations, inequalities, congruences (w.r.t. x and y)

Linear:

$$
a x-y<0, \quad a x-y \equiv_{m} 0
$$

Explanation of Notions

- Equations, inequalities, congruences (w.r.t. x and y)

Linear:

$$
a x-y<0, \quad a x-y \equiv_{m} 0
$$

Superlinear univariate: $x^{2}+x+a>0$

Explanation of Notions

- Equations, inequalities, congruences (w.r.t. x and y)

Linear:

$$
a x-y<0, \quad a x-y \equiv_{m} 0
$$

Superlinear univariate: $x^{2}+x+a>0$ Neither linear nor superlinear univariate:

$$
x^{2}+x y+y^{2}>0, \quad x^{2}+y^{2}+a>0
$$

Explanation of Notions

- Equations, inequalities, congruences (w.r.t. x and y)

Linear:

$$
a x-y<0, \quad a x-y \equiv_{m} 0
$$

Superlinear univariate: $x^{2}+x+a>0$ Neither linear nor superlinear univariate:

$$
x^{2}+x y+y^{2}>0, \quad x^{2}+y^{2}+a>0
$$

- Formulas

Linear:

$$
\forall a \forall b(a<b \longrightarrow \exists z(a<z \wedge z<b))
$$

Neither linear nor univariately nonlinear:

Explanation of Notions

- Equations, inequalities, congruences (w.r.t. x and y)

Linear:

$$
a x-y<0, \quad a x-y \equiv_{m} 0
$$

Superlinear univariate: $x^{2}+x+a>0$ Neither linear nor superlinear univariate:

$$
x^{2}+x y+y^{2}>0, \quad x^{2}+y^{2}+a>0
$$

- Formulas

Linear: $\quad \forall a \forall b(a<b \longrightarrow \exists z(a<z \wedge z<b))$
Univariately nonlinear:

$$
\forall y \exists x\left(a x-y<0 \wedge x^{2}+x+a>0\right)
$$

Explanation of Notions

- Equations, inequalities, congruences (w.r.t. x and y)

Linear:

$$
a x-y<0, \quad a x-y \equiv_{m} 0
$$

Superlinear univariate: $x^{2}+x+a>0$ Neither linear nor superlinear univariate:

$$
x^{2}+x y+y^{2}>0, \quad x^{2}+y^{2}+a>0
$$

- Formulas

Linear: $\quad \forall a \forall b(a<b \longrightarrow \exists z(a<z \wedge z<b))$ Univariately nonlinear:

$$
\forall y \exists x\left(a x-y<0 \wedge x^{2}+x+a>0\right)
$$

Neither linear nor univariately nonlinear:

$$
\exists x \exists y \exists z\left(x^{5}+y^{5}=z^{5}\right)
$$

Basic Technical Ideas

- Test points depend on on the equation/inequality/congruence, which has generated the test point:

Basic Technical Ideas

- Test points depend on on the equation/inequality/congruence, which has generated the test point:
- Known test points for the linear case [L. and S. 2007]

Basic Technical Ideas

- Test points depend on on the equation/inequality/congruence, which has generated the test point:
- Known test points for the linear case [L. and S. 2007]
- Terms consisting only of one variable and Cauchy bounds as ranges for the superlinear univariate case

Basic Technical Ideas

- Test points depend on on the equation/inequality/congruence, which has generated the test point:
- Known test points for the linear case [L. and S. 2007]
- Terms consisting only of one variable and Cauchy bounds as ranges for the superlinear univariate case
- Virtual substitution depends on the equation/inequality/ congruence, which the test point is substituted into

Basic Technical Ideas

- Test points depend on on the equation/inequality/congruence, which has generated the test point:
- Known test points for the linear case [L. and S. 2007]
- Terms consisting only of one variable and Cauchy bounds as ranges for the superlinear univariate case
- Virtual substitution depends on the equation/inequality/ congruence, which the test point is substituted into
- Regular virtual substitution methods for the linear case

Basic Technical Ideas

- Test points depend on on the equation/inequality/congruence, which has generated the test point:
- Known test points for the linear case [L. and S. 2007]
- Terms consisting only of one variable and Cauchy bounds as ranges for the superlinear univariate case
- Virtual substitution depends on the equation/inequality/ congruence, which the test point is substituted into
- Regular virtual substitution methods for the linear case
- Constrained virtual substitution for the superlinear univariate case

Basic Technical Ideas

- Test points depend on on the equation/inequality/congruence, which has generated the test point:
- Known test points for the linear case [L. and S. 2007]
- Terms consisting only of one variable and Cauchy bounds as ranges for the superlinear univariate case
- Virtual substitution depends on the equation/inequality/ congruence, which the test point is substituted into
- Regular virtual substitution methods for the linear case
- Constrained virtual substitution for the superlinear univariate case

Remider: Regular virtual substitution

$$
(a x \leq b)\left[\frac{b^{\prime}}{a^{\prime}} / / x\right]:=\left(a a^{\prime} b^{\prime} \leq a^{\prime 2} b\right), \quad\left(a x \equiv_{m} b\right)\left[\frac{b^{\prime}}{a^{\prime}} / / x\right]:=\left(a b^{\prime} \equiv_{m a^{\prime}} a^{\prime} b\right)
$$

Parametric Elimination Sets

$$
E=\left\{\left(\gamma_{i}, t_{i}, \sigma_{i}, B_{i}\right) \mid 1 \leq i \leq n\right\}, \quad B_{i}=\left(\left(k_{i j}, \beta_{i j}\right) \mid 1 \leq j \leq m_{i}\right)
$$

Parametric Elimination Sets

$$
E=\left\{\left(\gamma_{i}, t_{i}, \sigma_{i}, B_{i}\right) \mid 1 \leq i \leq n\right\}, \quad B_{i}=\left(\left(k_{i j}, \beta_{i j}\right) \mid 1 \leq j \leq m_{i}\right)
$$

- Substitution procedure σ_{i}
- Ranges of bounded quantifiers B_{i}

Parametric Elimination Sets

$$
E=\left\{\left(\gamma_{i}, t_{i}, \sigma_{i}, B_{i}\right) \mid 1 \leq i \leq n\right\}, \quad B_{i}=\left(\left(k_{i j}, \beta_{i j}\right) \mid 1 \leq j \leq m_{i}\right)
$$

- Substitution procedure σ_{i}
- Ranges of bounded quantifiers B_{i}

Parametric Elimination Sets

$$
E=\left\{\left(\gamma_{i}, t_{i}, \sigma_{i}, B_{i}\right) \mid 1 \leq i \leq n\right\}, \quad B_{i}=\left(\left(k_{i j}, \beta_{i j}\right) \mid 1 \leq j \leq m_{i}\right)
$$

- Substitution procedure σ_{i}
- Ranges of bounded quantifiers B_{i}
- Elimination result:

$$
\exists x \varphi \longleftrightarrow \bigvee_{\left(\gamma_{i}, t, \sigma_{i}, B_{i}\right) \in E}
$$

Parametric Elimination Sets

$$
E=\left\{\left(\gamma_{i}, t_{i}, \sigma_{i}, B_{i}\right) \mid 1 \leq i \leq n\right\}, \quad B_{i}=\left(\left(k_{i j}, \beta_{i j}\right) \mid 1 \leq j \leq m_{i}\right)
$$

- Substitution procedure σ_{i}
- Ranges of bounded quantifiers B_{i}
- Elimination result:

$$
\exists x \varphi \longleftrightarrow \bigvee_{\left(\gamma_{i}, t_{i}, \sigma_{i}, B_{i}\right) \in E} \bigsqcup_{k_{i j}: \beta_{i 1}} \cdots \bigsqcup_{k_{i m i} ; \beta_{m_{i}}}
$$

Parametric Elimination Sets

$$
E=\left\{\left(\gamma_{i}, t_{i}, \sigma_{i}, B_{i}\right) \mid 1 \leq i \leq n\right\}, \quad B_{i}=\left(\left(k_{i j}, \beta_{i j}\right) \mid 1 \leq j \leq m_{i}\right)
$$

- Substitution procedure σ_{i}
- Ranges of bounded quantifiers B_{i}
- Elimination result:

$$
\exists x \varphi \longleftrightarrow \bigvee_{\left(\gamma_{i}, t_{i}, \sigma_{i}, B_{i}\right) \in E} \bigsqcup_{k_{i 1}: \beta_{i 1}} \cdots \bigsqcup_{k_{i m i} ; \beta_{i m_{i}}}\left(\gamma_{i} \wedge \sigma_{i}\left(\varphi, t_{i}, x\right)\right)
$$

Parametric Elimination Sets

$$
E=\left\{\left(\gamma_{i}, t_{i}, \sigma_{i}, B_{i}\right) \mid 1 \leq i \leq n\right\}, \quad B_{i}=\left(\left(k_{i j}, \beta_{i j}\right) \mid 1 \leq j \leq m_{i}\right)
$$

- Substitution procedure σ_{i}
- Ranges of bounded quantifiers B_{i}
- Elimination result:

- Notice: Substitute t_{i} into φ applying σ_{i} to each equality, inequality and congruence in φ

Example

Consider $\exists x \varphi$ with $\varphi=a x-y<0 \wedge x^{2}+x+a>0$ Result:

$$
\exists x \varphi \longleftrightarrow \bigvee_{\left(\gamma_{i}, t_{i}, \sigma_{i},(k, \beta)\right) \in E} \bigsqcup_{k: \beta}\left(\gamma_{i} \wedge \sigma_{i}\left(\varphi, t_{i}, x\right)\right)
$$

Consider the first entry of E :

Example

Consider $\exists x \varphi$ with $\varphi=a x-y<0 \wedge x^{2}+x+a>0$ Result:

$$
\exists x \varphi \longleftrightarrow \bigvee_{\left(\gamma_{i}, t_{i}, \sigma_{i},(k, \beta)\right) \in E} \bigsqcup_{k: \beta}\left(\gamma_{i} \wedge \sigma_{i}\left(\varphi, t_{i}, x\right)\right)
$$

$$
\begin{aligned}
& E=\left\{\left(a \neq 0 \wedge y+k \equiv a 0, \frac{y+k}{a},[\cdot / / \cdot],((k,|k| \leq|a|))\right)\right. \\
&\quad(\text { true }, k,[\cdot / \cdot],((k,|k| \leq|a|+2)))\}
\end{aligned}
$$

Consider the first entry of E :
The pseudo-term $\frac{y+k}{a}$ describes a finite set of points around the
solution of $a x-y=0$ using the range $|k| \leq|a|$.

- The guard $a \neq 0 \wedge y+k \equiv \equiv_{a} 0$ ensures that $\frac{y+k}{a}$ evaluates to an

Example

Consider $\exists x \varphi$ with $\varphi=a x-y<0 \wedge x^{2}+x+a>0$ Result:

$$
\begin{gathered}
\exists x \varphi \longleftrightarrow \bigvee_{\left(\gamma_{i}, t_{i}, \sigma_{i},(k, \beta)\right) \in E} \bigsqcup_{k: \beta}\left(\gamma_{i} \wedge \sigma_{i}\left(\varphi, t_{i}, x\right)\right) \\
E=\left\{\left(a \neq 0 \wedge y+k \equiv a, \frac{y+k}{a},[\cdot / / \cdot],((k,|k| \leq|a|))\right),\right. \\
\quad(\text { true }, k,[\cdot / \cdot],((k,|k| \leq|a|+2)))\}
\end{gathered}
$$

Consider the first entry of E :

- The pseudo-term $\frac{y+k}{a}$ describes a finite set of points around the solution of $a x-y=0$ using the range $|k| \leq|a|$.

Example

Consider $\exists x \varphi$ with $\varphi=a x-y<0 \wedge x^{2}+x+a>0$ Result:

$$
\begin{gathered}
\exists x \varphi \longleftrightarrow \bigvee_{\left(\gamma_{i}, t_{i}, \sigma_{i},(k, \beta)\right) \in E} \bigsqcup_{k: \beta}\left(\gamma_{i} \wedge \sigma_{i}\left(\varphi, t_{i}, x\right)\right) \\
E=\left\{\left(a \neq 0 \wedge y+k \equiv a, \frac{y+k}{a},[\cdot / / \cdot],((k,|k| \leq|a|))\right)\right. \\
\quad(\text { true }, k,[\cdot / \cdot],((k,|k| \leq|a|+2)))\}
\end{gathered}
$$

Consider the first entry of E :

- The pseudo-term $\frac{y+k}{a}$ describes a finite set of points around the solution of $a x-y=0$ using the range $|k| \leq|a|$.
- The guard $a \neq 0 \wedge y+k \equiv{ }_{a} 0$ ensures that $\frac{y+k}{a}$ evaluates to an integer.

Example

Consider $\exists x \varphi$ with $\varphi=a x-y<0 \wedge x^{2}+x+a>0$ Result:

$$
\begin{gathered}
\exists x \varphi \longleftrightarrow \bigvee_{\left(\gamma_{i}, t_{i}, \sigma_{i},(k, \beta)\right) \in E} \bigsqcup_{k: \beta}\left(\gamma_{i} \wedge \sigma_{i}\left(\varphi, t_{i}, x\right)\right) \\
E=\left\{\left(a \neq 0 \wedge y+k \equiv{ }_{a} 0, \frac{y+k}{a},[\cdot / / \cdot],((k,|k| \leq|a|))\right),\right. \\
\quad(\text { true }, k,[\cdot / \cdot],((k,|k| \leq|a|+2)))\}
\end{gathered}
$$

Consider the first entry of E :

- The pseudo-term $\frac{y+k}{a}$ describes a finite set of points around the solution of $a x-y=0$ using the range $|k| \leq|a|$.
- The guard $a \neq 0 \wedge y+k \equiv{ }_{a} 0$ ensures that $\frac{y+k}{a}$ evaluates to an integer.
- $[\cdot / / \cdot]$ is our constrained virtual substitution.

Example of Constrained Virtual Substitution

Problem: How do we define $\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]$?

Example of Constrained Virtual Substitution

Problem: How do we define $\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]$?

- Naive formal substitution yields $(y+k)^{2}+a(y+k)+a^{3}>0$.

Example of Constrained Virtual Substitution

Problem: How do we define $\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]$?

- Naive formal substitution yields $(y+k)^{2}+a(y+k)+a^{3}>0$. This is neither linear nor superlinear univariate wrt. y and k.

Example of Constrained Virtual Substitution

Problem: How do we define $\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]$?

- Naive formal substitution yields $(y+k)^{2}+a(y+k)+a^{3}>0$. This is neither linear nor superlinear univariate wrt. y and k.
- We define the (constrained virtual) substitution as follows:

$$
\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]:=|a y+a k|>|a|^{3}+2 a^{2}
$$

Example of Constrained Virtual Substitution

Problem: How do we define $\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]$?

- Naive formal substitution yields $(y+k)^{2}+a(y+k)+a^{3}>0$. This is neither linear nor superlinear univariate wrt. y and k.
- We define the (constrained virtual) substitution as follows:

$$
\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]:=|a y+a k|>|a|^{3}+2 a^{2}
$$

- Division of $|a y+a k|>|a|^{3}+2 a^{2}$ by a^{2} yields $\left|\frac{y+k}{a}\right|>|a|+2$

Example of Constrained Virtual Substitution

Problem: How do we define $\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]$?

- Naive formal substitution yields $(y+k)^{2}+a(y+k)+a^{3}>0$. This is neither linear nor superlinear univariate wrt. y and k.
- We define the (constrained virtual) substitution as follows:

$$
\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]:=|a y+a k|>|a|^{3}+2 a^{2}
$$

- Division of $|a y+a k|>|a|^{3}+2 a^{2}$ by a^{2} yields $\left|\frac{y+k}{a}\right|>|a|+2$
- $|a|+2$ is the Cauchy bound plus 1 of $x^{2}+x+a$.

Example of Constrained Virtual Substitution

Problem: How do we define $\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]$?

- Naive formal substitution yields $(y+k)^{2}+a(y+k)+a^{3}>0$. This is neither linear nor superlinear univariate wrt. y and k.
- We define the (constrained virtual) substitution as follows:

$$
\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]:=|a y+a k|>|a|^{3}+2 a^{2} .
$$

- Division of $|a y+a k|>|a|^{3}+2 a^{2}$ by a^{2} yields $\left|\frac{y+k}{a}\right|>|a|+2$
- $|a|+2$ is the Cauchy bound plus 1 of $x^{2}+x+a$.
- Intuitive idea: State that the test term $\frac{y+k}{a}$ lies outside the Cauchy-bounds of $x^{2}+x+a$ and thus satisfies $x^{2}+x+a>0$.

Example of Constrained Virtual Substitution

Problem: How do we define $\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]$?

- Naive formal substitution yields $(y+k)^{2}+a(y+k)+a^{3}>0$. This is neither linear nor superlinear univariate wrt. y and k.
- We define the (constrained virtual) substitution as follows:

$$
\left(x^{2}+x+a>0\right)\left[\frac{y+k}{a} / / x\right]:=|a y+a k|>|a|^{3}+2 a^{2} .
$$

- Division of $|a y+a k|>|a|^{3}+2 a^{2}$ by a^{2} yields $\left|\frac{y+k}{a}\right|>|a|+2$
- $|a|+2$ is the Cauchy bound plus 1 of $x^{2}+x+a$.
- Intuitive idea: State that the test term $\frac{y+k}{a}$ lies outside the Cauchy-bounds of $x^{2}+x+a$ and thus satisfies $x^{2}+x+a>0$.
- Warning: For the possible case that $\frac{y+k}{a}$ lies in fact within the Cauchy bounds but still satisfies $x^{2}+x+a>0$ there is something left to do.

Example

Consider once more $\exists x \varphi$ with $\varphi=a x-y<0 \wedge x^{2}+x+a>0$

$$
\begin{aligned}
E=\{(a \neq 0 \wedge y+k \equiv a 0, & \left.\frac{y+k}{a},[\cdot / / \cdot],((k,|k| \leq|a|))\right) \\
& \quad \text { (true, } k,[\cdot / \cdot],((k,|k| \leq|a|+2)))\} .
\end{aligned}
$$

Example

Consider once more $\exists x \varphi$ with $\varphi=a x-y<0 \wedge x^{2}+x+a>0$

$$
\begin{aligned}
E=\left\{\left(a \neq 0 \wedge y+k \equiv_{a} 0,\right.\right. & \left.\frac{y+k}{a},[\cdot / / \cdot],((k,|k| \leq|a|))\right) \\
& \quad(\text { true }, k,[\cdot / \cdot],((k,|k| \leq|a|+2)))\} .
\end{aligned}
$$

Consider the second entry of E :

- k represents each value inside the Cauchy bound of $x^{2}+x+a$.

Example

Consider once more $\exists x \varphi$ with $\varphi=a x-y<0 \wedge x^{2}+x+a>0$

$$
\begin{aligned}
& E=\left\{\left(a \neq 0 \wedge y+k \equiv_{a} 0, \frac{y+k}{a},[\cdot / / \cdot],((k,|k| \leq|a|))\right)\right. \\
&\quad(\text { true }, k,[\cdot / \cdot],((k,|k| \leq|a|+2)))\} .
\end{aligned}
$$

Consider the second entry of E :

- k represents each value inside the Cauchy bound of $x^{2}+x+a$.
- $|k| \leq|a|+2$ is the range of a bounded quantifier that substituting k within its scope exactly covers every single point within the Cauchy bounds of $x^{2}+x+a$.

Example

Consider once more $\exists x \varphi$ with $\varphi=a x-y<0 \wedge x^{2}+x+a>0$

$$
\begin{aligned}
& E=\left\{\left(a \neq 0 \wedge y+k \equiv_{a} 0, \frac{y+k}{a},[\cdot / / \cdot],((k,|k| \leq|a|))\right)\right. \\
&\quad(\text { true }, k,[\cdot / \cdot],((k,|k| \leq|a|+2)))\} .
\end{aligned}
$$

Consider the second entry of E :

- k represents each value inside the Cauchy bound of $x^{2}+x+a$.
- $|k| \leq|a|+2$ is the range of a bounded quantifier that substituting k within its scope exactly covers every single point within the Cauchy bounds of $x^{2}+x+a$.
- The substitution $[\% \cdot]$ is the regular substitution of terms for variables.

Towards Higher Degrees

Example

Input: Eliminate $\exists x$ from

$$
\varphi=\exists x\left(a x-y<0 \wedge x^{2}+x+a>0\right)
$$

Elimination set:

Output: φ is equivalent to

Towards Higher Degrees

Example

Input: Eliminate $\exists x$ from

$$
\varphi=\exists x\left(a x-y<0 \wedge x^{2}+x+a>0\right)
$$

Elimination set:

$$
\begin{aligned}
& E=\left\{\left(a \neq 0 \wedge y+k \equiv_{a} 0, \frac{y+k}{a},[\cdot / / / \cdot],((k,|k| \leq|a|))\right),\right. \\
& \quad(\text { true }, k,[\cdot / \cdot],((k,|k| \leq|a|+2)))\}
\end{aligned}
$$

Output: φ is equivalent to

$$
\begin{aligned}
\bigsqcup_{k:|k| \leq|a|}\left(a \neq 0 \wedge y+k \equiv_{a} 0 \wedge k<0 \wedge|a y+a k|>|a|^{3}+2 a^{2}\right) \vee \\
\bigsqcup_{k:|k| \leq|a|+2}\left(a k-y<0 \wedge k^{2}+k+a>0\right) .
\end{aligned}
$$

The Main Result of This Talk

Theorem (Elimination Theorem)

The ordered ring of the integers with congruences admits weak quantifier elimination for univariately nonlinear formulas.

In the ordered ring of the integers with congruences univariately nonlinear sentences are decidable.

Notice: For regular first-order decision framework no bounded quantifiers come to existence!

The Main Result of This Talk

Theorem (Elimination Theorem)

The ordered ring of the integers with congruences admits weak quantifier elimination for univariately nonlinear formulas.

Corollary (Decidability of Sentences)

In the ordered ring of the integers with congruences univariately nonlinear sentences are decidable.

The Main Result of This Talk

Theorem (Elimination Theorem)

The ordered ring of the integers with congruences admits weak quantifier elimination for univariately nonlinear formulas.

Corollary (Decidability of Sentences)

In the ordered ring of the integers with congruences univariately nonlinear sentences are decidable.

Notice: For regular first-order decision framework no bounded quantifiers come to existence!

What is REDLOG

Implementation: Our methods are implemented in REDLOG and are publicly available!

What is REDLOG

Implementation: Our methods are implemented in REDLOG and are publicly available!

- REDUCE logic system
- Component of the computer algebra system REDUCE

What is REDLOG

Implementation: Our methods are implemented in REDLOG and are publicly available!

- REDUCE logic system
- Component of the computer algebra system REDUCE
- REDLOG 3.0 is part of REDUCE 3.8

What is REDLOG

Implementation: Our methods are implemented in REDLOG and are publicly available!

- REDUCE logic system
- Component of the computer algebra system REDUCE
- Continuous development since 1992
- Current version is freely distributed on the web (e.g. 3.070127)

What is REDLOG

Implementation: Our methods are implemented in REDLOG and are publicly available!

- REDUCE logic system
- Component of the computer algebra system REDUCE
- Continuous development since 1992
- REDLOG 3.0 is part of REDUCE 3.8
- Current version is freely distributed on the web (e.g. 3.070127)
- Currently 30 kloc (LISP)

What is REDLOG

Implementation: Our methods are implemented in REDLOG and are publicly available!

- REDUCE logic system
- Component of the computer algebra system REDUCE
- Continuous development since 1992
- REDLOG 3.0 is part of REDUCE 3.8
- Current version is freely distributed on the web (e.g. 3.070127)

What is REDLOG

Implementation: Our methods are implemented in REDLOG and are publicly available!

- REDUCE logic system
- Component of the computer algebra system REDUCE
- Continuous development since 1992
- REDLOG 3.0 is part of REDUCE 3.8
- Current version is freely distributed on the web (e.g. 3.070127)
- Currently 30 kloc (LISP)

What is REDLOG

Implementation: Our methods are implemented in REDLOG and are publicly available!

- REDUCE logic system
- Component of the computer algebra system REDUCE
- Continuous development since 1992
- REDLOG 3.0 is part of REDUCE 3.8
- Current version is freely distributed on the web (e.g. 3.070127)
- Currently 30 kloc (LISP)

REDLOG homepage

www.redlog.eu

REDLOG Domains

bOOLEAN Quantified propositional calculus [CASC 2003]

numbers over the language of rings)

REDLOG Domains

BOOLEAN Quantified propositional calculus [CASC 2003]
COMPLEX The class of algebraically closed fields (e.g. complex numbers over the language of rings)

REDLOG Domains

bOOLEAN Quantified propositional calculus [CASC 2003]
COMPLEX The class of algebraically closed fields (e.g. complex numbers over the language of rings)
DIFFERENTIAL Differentially closed fields [CASC 2004]

REDLOG Domains

bOOLEAN Quantified propositional calculus [CASC 2003]
COMPLEX The class of algebraically closed fields (e.g. complex numbers over the language of rings)
DIFFERENTIAL Differentially closed fields [CASC 2004] PADICS Discretely valued fields (e.g. p-adic numbers)

REDLOG Domains

bOOLEAN Quantified propositional calculus [CASC 2003]
COMPLEX The class of algebraically closed fields (e.g. complex numbers over the language of rings)
DIFFERENTIAL Differentially closed fields [CASC 2004]
PADICS Discretely valued fields (e.g. p-adic numbers)
QUEUES Two-sided queues with elements of some basic type

REDLOG Domains

bOOLEAN Quantified propositional calculus [CASC 2003]
COMPLEX The class of algebraically closed fields (e.g. complex numbers over the language of rings)
DIFFERENTIAL Differentially closed fields [CASC 2004]
PADICS Discretely valued fields (e.g. p-adic numbers)
QUEUES Two-sided queues with elements of some basic type
REALS The class of real closed fields (e.g. the real numbers with ordering)
Free Malcev-type term algebras [CASC 2002]

REDLOG Domains

BOOLEAN Quantified propositional calculus [CASC 2003]
COMPLEX The class of algebraically closed fields (e.g. complex numbers over the language of rings)
DIFFERENTIAL Differentially closed fields [CASC 2004]
PADICS Discretely valued fields (e.g. p-adic numbers)
QUEUES Two-sided queues with elements of some basic type
REALS The class of real closed fields (e.g. the real numbers with ordering)
TERMS Free Malcev-type term algebras [CASC 2002]
Work discussed here:

REDLOG Domains

BOOLEAN Quantified propositional calculus [CASC 2003]
COMPLEX The class of algebraically closed fields (e.g. complex numbers over the language of rings)
DIFFERENTIAL Differentially closed fields [CASC 2004]
PADICS Discretely valued fields (e.g. p-adic numbers)
QUEUES Two-sided queues with elements of some basic type
REALS The class of real closed fields (e.g. the real numbers with ordering)
TERMS Free Malcev-type term algebras [CASC 2002]

Work discussed here:

INTEGERS Originally introduced for the full linear theory of the integers [Weispfenning 1990], [L. and S. 2007]

REDLOG Domains

BOOLEAN Quantified propositional calculus [CASC 2003]
COMPLEX The class of algebraically closed fields (e.g. complex numbers over the language of rings)
DIFFERENTIAL Differentially closed fields [CASC 2004]
PADICS Discretely valued fields (e.g. p-adic numbers)
QUEUES Two-sided queues with elements of some basic type
REALS The class of real closed fields (e.g. the real numbers with ordering)
TERMS Free Malcev-type term algebras [CASC 2002]

Work discussed here:

INTEGERS Originally introduced for the full linear theory of the integers [Weispfenning 1990], [L. and S. 2007]
Natural extension to univariately nonlinear formulas without loosing any of its previous features

Computation Examples

Application domains include the following:

- Nonlinear discrete optimization problems
- Integer linear optimization with superlinear univariate constraints

Computation Examples

Application domains include the following:

- Nonlinear discrete optimization problems
- Integer linear optimization with superlinear univariate constraints

Computation Examples

Application domains include the following:

- Nonlinear discrete optimization problems
- Integer linear optimization with superlinear univariate constraints
- Software security

Automatic code verification of programs with superlinear
univariate expressions

Computation Examples

Application domains include the following:

- Nonlinear discrete optimization problems
- Integer linear optimization with superlinear univariate constraints
- Software security
- Automatic code verification of programs with superlinear univariate expressions

Computation Examples

Application domains include the following:

- Nonlinear discrete optimization problems
- Integer linear optimization with superlinear univariate constraints
- Software security
- Automatic code verification of programs with superlinear univariate expressions
- Automatic loop parallelization

Computation Examples

Application domains include the following:

- Nonlinear discrete optimization problems
- Integer linear optimization with superlinear univariate constraints
- Software security
- Automatic code verification of programs with superlinear univariate expressions
- Automatic loop parallelization
- Scheduling problems

and 128 MB RAM.

Computation Examples

Application domains include the following:

- Nonlinear discrete optimization problems
- Integer linear optimization with superlinear univariate constraints
- Software security
- Automatic code verification of programs with superlinear univariate expressions
- Automatic loop parallelization
- Scheduling problems

All our computations discussed in the following have been performed on a 1.66 GHz Intel Core 2 Duo processor T5500 using only one core and 128 MB RAM.

Optimization

A parametric linear optimization problem with univariately nonlinear constraints: Minimize a cost function $\gamma_{1} x_{1}+\cdots+\gamma_{n} x_{n}$ subject to

$$
A \mathbf{x} \geq \mathbf{b}
$$

Optimization

A parametric linear optimization problem with univariately nonlinear constraints: Minimize a cost function $\gamma_{1} x_{1}+\cdots+\gamma_{n} x_{n}$ subject to

$$
A \mathbf{x} \geq \mathbf{b}, \quad p_{1} \varrho_{1} 0, \quad \ldots, \quad p_{r} \varrho_{r} 0
$$

Optimization

A parametric linear optimization problem with univariately nonlinear constraints: Minimize a cost function $\gamma_{1} x_{1}+\cdots+\gamma_{n} x_{n}$ subject to

$$
A \mathbf{x} \geq \mathbf{b}, \quad p_{1} \varrho_{1} 0, \quad \ldots, \quad p_{r} \varrho_{r} 0
$$

- $\boldsymbol{A}=\left(\alpha_{i j}\right)$ is an $m \times n$-matrix, and $\mathbf{b}=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is an m-vector.

Optimization

A parametric linear optimization problem with univariately nonlinear constraints: Minimize a cost function $\gamma_{1} x_{1}+\cdots+\gamma_{n} x_{n}$ subject to

$$
A \mathbf{x} \geq \mathbf{b}, \quad p_{1} \varrho_{1} 0, \quad \ldots, \quad p_{r} \varrho_{r} 0
$$

- $\boldsymbol{A}=\left(\alpha_{i j}\right)$ is an $m \times n$-matrix, and $\mathbf{b}=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is an m-vector.
- All these coefficients $\alpha_{i j}, \beta_{i}$, and γ_{j} are possibly parametric.

Optimization

A parametric linear optimization problem with univariately nonlinear constraints: Minimize a cost function $\gamma_{1} x_{1}+\cdots+\gamma_{n} x_{n}$ subject to

$$
A \mathbf{x} \geq \mathbf{b}, \quad p_{1} \varrho_{1} 0, \quad \ldots, \quad p_{r} \varrho_{r} 0
$$

- $\boldsymbol{A}=\left(\alpha_{i j}\right)$ is an $m \times n$-matrix, and $\mathbf{b}=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is an m-vector.
- All these coefficients $\alpha_{i j}, \beta_{i}$, and γ_{j} are possibly parametric.
- The p_{1}, \ldots, p_{r} are parametric univariate polynomials.

Optimization

A parametric linear optimization problem with univariately nonlinear constraints: Minimize a cost function $\gamma_{1} x_{1}+\cdots+\gamma_{n} x_{n}$ subject to

$$
A \mathbf{x} \geq \mathbf{b}, \quad p_{1} \varrho_{1} 0, \quad \ldots, \quad p_{r} \varrho_{r} 0
$$

- $\boldsymbol{A}=\left(\alpha_{i j}\right)$ is an $m \times n$-matrix, and $\mathbf{b}=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is an m-vector.
- All these coefficients $\alpha_{i j}, \beta_{i}$, and γ_{j} are possibly parametric.
- The p_{1}, \ldots, p_{r} are parametric univariate polynomials.
- Each corresponding ϱ_{s} is one of $=, \neq, \leq,>, \geq$, or $<$.

Optimization

A parametric linear optimization problem with univariately nonlinear constraints: Minimize a cost function $\gamma_{1} x_{1}+\cdots+\gamma_{n} x_{n}$ subject to

$$
A \mathbf{x} \geq \mathbf{b}, \quad p_{1} \varrho_{1} 0, \quad \ldots, \quad p_{r} \varrho_{r} 0
$$

- $\boldsymbol{A}=\left(\alpha_{i j}\right)$ is an $m \times n$-matrix, and $\mathbf{b}=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is an m-vector.
- All these coefficients $\alpha_{i j}, \beta_{i}$, and γ_{j} are possibly parametric.
- The p_{1}, \ldots, p_{r} are parametric univariate polynomials.
- Each corresponding ϱ_{s} is one of $=, \neq, \leq,>, \geq$, or $<$.

Formulation within our framework

Let z be a new variable.

$$
\exists x_{1} \ldots \exists x_{n}\left(\sum_{j=1}^{n} \gamma_{j} x_{j} \leq z \wedge \bigwedge_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i j} x_{j} \geq \beta_{i} \wedge \bigwedge_{s=1}^{r} p_{s} \varrho_{s} 0\right)
$$

Optimization Example

Minimize $x+y$ subject to the following constraints:

$$
x \geq 0, \quad y \geq 0, \quad x-y \geq 0, \quad \text { and } \quad x^{2}-a<0
$$

Results:

Within 20 ms a weakly quantifier-free equivalent containing 26 atomic formulas

Optimization Example

Minimize $x+y$ subject to the following constraints:

$$
x \geq 0, \quad y \geq 0, \quad x-y \geq 0, \quad \text { and } \quad x^{2}-a<0
$$

Formulation as a quantifier elimination problem:

$$
\exists x \exists y\left(x+y \leq z \wedge x \geq 0 \wedge y \geq 0 \wedge x-y \geq 0 \wedge x^{2}-a<0\right)
$$

Results:

Optimization Example

Minimize $x+y$ subject to the following constraints:

$$
x \geq 0, \quad y \geq 0, \quad x-y \geq 0, \quad \text { and } \quad x^{2}-a<0
$$

Formulation as a quantifier elimination problem:

$$
\exists x \exists y\left(x+y \leq z \wedge x \geq 0 \wedge y \geq 0 \wedge x-y \geq 0 \wedge x^{2}-a<0\right)
$$

Results:

- Within 20 ms a weakly quantifier-free equivalent containing 26 atomic formulas

Optimization Example

Minimize $x+y$ subject to the following constraints:

$$
x \geq 0, \quad y \geq 0, \quad x-y \geq 0, \quad \text { and } \quad x^{2}-a<0
$$

Formulation as a quantifier elimination problem:

$$
\exists x \exists y\left(x+y \leq z \wedge x \geq 0 \wedge y \geq 0 \wedge x-y \geq 0 \wedge x^{2}-a<0\right)
$$

Results:

- Within 20 ms a weakly quantifier-free equivalent containing 26 atomic formulas
- Setting $a=10$ and automatically simplifying yields within 2980 ms the result $z>8$, i.e., the minimum for $x+y$ is 4 .

Optimization Example

Minimize $x+y$ subject to the following constraints:

$$
x \geq 0, \quad y \geq 0, \quad x-y \geq 0, \quad \text { and } \quad x^{2}-a<0
$$

Formulation as a quantifier elimination problem:

$$
\exists x \exists y\left(x+y \leq z \wedge x \geq 0 \wedge y \geq 0 \wedge x-y \geq 0 \wedge x^{2}-a<0\right)
$$

Results:

- Within 20 ms a weakly quantifier-free equivalent containing 26 atomic formulas
- Setting $a=10$ and automatically simplifying yields within 2980 ms the result $z>8$, i.e., the minimum for $x+y$ is 4 .
- If we plug in $a=10$ before the elimination, then we directly obtain $z>3$ in only 780 ms .

Software Security—Data and Control Flow

Example code

```
if \((a<b)\) then
    if \((a+b \bmod 2=0)\) then
        \(\mathrm{n}:=(\mathrm{a}+\mathrm{b}) / 2\)
        else
            \(n:=(a+b+1) / 2\)
        fi
        \(\mathrm{A}[\mathrm{n} * \mathrm{n}]\) := get_sensitive_data(x)
        send_sensitive_data(trusted_receiver, \(A[n * n])\)
    fi
    \(\mathrm{y}:=\mathrm{A}[\mathrm{abs}(\mathrm{b}-\mathrm{a})]\)
```


Software Security—Data and Control Flow

Example code

```
if ( \(\mathrm{a}<\mathrm{b}\) ) then
    if \((a+b \bmod 2=0)\) then
        \(\mathrm{n}:=(\mathrm{a}+\mathrm{b}) / 2\)
        else
            \(\mathrm{n}:=(\mathrm{a}+\mathrm{b}+1) / 2\)
        fi
        \(\mathrm{A}[\mathrm{n} * \mathrm{n}]\) := get_sensitive_data(x)
        send_sensitive_data(trusted_receiver, \(A[n * n])\)
    fi
    \(\mathrm{y}:=\mathrm{A}[\mathrm{abs}(\mathrm{b}-\mathrm{a})]\)
```

Security risk: There exist choices for a and b such that y is assigned the value of $A[n * n]$.

Software Security—Data and Control Flow

$$
\begin{aligned}
& \exists n\left(\left(a<b \wedge a+b=_{2} 0 \wedge 2 n=a+b \wedge\right.\right. \\
& \left.\quad\left(\left(a<b \wedge b-a=n^{2}\right) \vee\left(a \geq b \wedge a-b=n^{2}\right)\right)\right) \vee \\
& \quad(a<b \wedge a+b \neq 20 \wedge 2 n=a+b+1 \wedge \\
& \left.\left.\quad\left(\left(a<b \wedge b-a=n^{2}\right) \vee\left(a \geq b \wedge a-b=n^{2}\right)\right)\right)\right) .
\end{aligned}
$$

Software Security—Data and Control Flow

$$
\begin{aligned}
& \exists n\left(\left(a<b \wedge a+b \equiv_{2} 0 \wedge 2 n=a+b \wedge\right.\right. \\
& \left.\quad\left(\left(a<b \wedge b-a=n^{2}\right) \vee\left(a \geq b \wedge a-b=n^{2}\right)\right)\right) \vee \\
& \quad(a<b \wedge a+b \neq 20 \wedge 2 n=a+b+1 \wedge \\
& \left.\left.\quad\left(\left(a<b \wedge b-a=n^{2}\right) \vee\left(a \geq b \wedge a-b=n^{2}\right)\right)\right)\right) .
\end{aligned}
$$

Our implementation computes in less than 10 ms the following weakly quantifier-free description:

$$
\begin{aligned}
& \bigsqcup_{k:|k| \leq(a-b)^{2}+2}\left(a-b<0 \wedge a-b+k^{2}=0 \wedge a+b \not \equiv 20 \wedge a+b-2 k+1=0\right) \vee \\
& \bigsqcup_{k:|k| \leq(a-b)^{2}+2}\left(a-b<0 \wedge a-b+k^{2}=0 \wedge a+b \equiv_{2} 0 \wedge a+b-2 k=0\right)
\end{aligned}
$$

Conclusions

- Weak quantifier elimination procedure for the univariately nonlinear formulas
Price to pay: Bounded quantifiers

Conclusions

- Weak quantifier elimination procedure for the univariately nonlinear formulas
- Price to pay: Bounded quantifiers
parameters

Conclusions

- Weak quantifier elimination procedure for the univariately nonlinear formulas
- Price to pay: Bounded quantifiers
- Expansion into regular first-order formulas for fixed choices of parameters

Conclusions

- Weak quantifier elimination procedure for the univariately nonlinear formulas
- Price to pay: Bounded quantifiers
- Expansion into regular first-order formulas for fixed choices of parameters
- Decision procedure even for the regular first-order framework
- Demonstration of applicability of our new method and its implementation by means of various application examples

Conclusions

- Weak quantifier elimination procedure for the univariately nonlinear formulas
- Price to pay: Bounded quantifiers
- Expansion into regular first-order formulas for fixed choices of parameters
- Decision procedure even for the regular first-order framework
- Efficient publicly available implementation within the computer logic system REDLOG, which is part of REDUCE
implementation by means of various application examples

Conclusions

- Weak quantifier elimination procedure for the univariately nonlinear formulas
- Price to pay: Bounded quantifiers
- Expansion into regular first-order formulas for fixed choices of parameters
- Decision procedure even for the regular first-order framework
- Efficient publicly available implementation within the computer logic system REDLOG, which is part of REDUCE
- Demonstration of applicability of our new method and its implementation by means of various application examples

