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Introduction

• We obtain new inequalities on the real roots of a univariate
polynomial with real coefficients.

• We derive estimates for the largest positive root, a key step for real
root isolation. We discuss the case of classic orthogonal polynomials.

• We compute upper bounds for the roots of orthogonal polynomials
using new inequalities derived from the differential equations
satisfied by these polynomials.

• We compare our results with those obtained by other methods.
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Bounds for Real Polynomial Roots

The computation of the real roots of univariate polynomials with real
coefficients is based on their isolation. To isolate the real positive roots, it
is sufficient to estimate the smallest positive root (cf. [2] and [21]). This
can be achieved if we are able to compute accurate estimates for the
largest positive root.
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Computation of the Largest Positive Root

Several bounds exist for the absolute values of the roots of a univariate
polynomial with complex coefficients (see, for example, [15]). These
bounds are expressed as functions of the degree and of the coefficients,
and naturally they can be used also for the roots (real or complex) of
polynomials with real coefficients. However, for the real roots of
polynomials with real coefficients there also exist some specific bounds.
In particular, some bounds for the positive roots are known, the first of
which were obtained by Lagrange [11] and Cauchy [5]. We briefly survey
here the most often used bounds for positive roots and discuss their
efficiency in particular cases, emphasizing the classes of orthogonal
polynomials. We then obtain extensions of a bound of Lagrange, and
derive a result also valid for positive roots smaller than 1.
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A bound of Lagrange

Theorem 1 (Lagrange) Let
P (X) = a0X

d + · · ·+ amXd−m − am+1X
d−m−1 ± · · · ± ad ∈ R[X] ,

with all ai ≥ 0, a0, am+1 > 0 . Let

A = max
{
ai ; coeff (Xd−i) < 0

}
.

The number

1 +
(

A

a0

)1/(m+1)

is an upper bound for the positive roots of P .

The bound from Theorem 1 is one of the most popular (cf. H. Hong [8]),
however it gives only bounds larger than one. For polynomials with
subunitary real roots, it is recommended to use the bounds of Kioustelidis
[9] or Ştefănescu [18]. A discussion on the efficiency of these results can
be found in Akritas–Strzeboñski–Vigklas [2] and Akritas–Vigklas [3].
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Extensions of the bound of Lagrange

We give a result that extends the bound L1(P ) of Lagrange.

Theorem 2 Let
P (X) = a0X

d + · · ·+ amXd−m − am+1X
d−m−1 ± · · · ± ad ∈ R[X] ,

with all ai ≥ 0, a0, am+1 > 0 . Let

A = max
{
ai ; coeff (Xd−i) < 0

}
.
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The number

1 + max

{(
pA

a0 + · · ·+ as

)1/(m−s+1)

,

(
qA

sa0 + · · ·+ 2as−2 + as−1

)1/(m−s+2)

,

(
2rA

s(s− 1)a0 + (s− 1)(s− 2)a1 + · · ·+ 2as−2

)1/(m−s+3)

(1)
is an upper bound for the positive roots of P for any s ∈ {2, 3, . . . ,m}
and p ≥ 0 , q ≥ 0 , r ≥ 0 such that p + q + r = 1 .

The proof of Theorem 2 is similar to that of our Theorem 1 in [19].
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Particular cases of Theorem 2

1. For p = 1, q = r = 0, we obtain the bound

1 +
(

A

a0 + · · ·+ as

)1/(m−s+1)

.

This bound is also valid for s = 0 and s = 1. For s = 0, it reduces to the
bound L1(P ) of Lagrange.

2. For p = q = r = 1/3 , we obtain Theorem 1 from [19].
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Particular cases of Theorem 2 (contd.)

3. For p = q = 1/4, r = 1/2, we obtain

1 + max

{(
A

4(a0 + · · ·+ as)

)1/(m−s+1)

,

(
A

4(sa0 + · · ·+ 2as−2 + as−1)

)1/(m−s+2)

,

(
A

s(s− 1)a0 + (s− 1)(s− 2)a1 + · · ·+ 2as−2

)1/(m−s+3)

.
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Particular cases of Theorem 2 (contd.)

4. For p = q =
1
2

, r = 0, we obtain

1 + max

{(
A

2(a0 + · · ·+ as)

)1/(m−s+1)

,

(
A

2(sa0 + · · ·+ 2as−2 + as−1)

)1/(m−s+2)
}

,

which is Theorem 3 from [18]. This bound is also valid for s = 0.
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Example

Let

P1(X) = X17 + X13 + X12 + X9 + 3X8 + 2X7 + X6 − 5X4

+X3 − 4X2 − 6,

P2(X) = X13 + X12 + X9 + 3X8 + 2X7 + X6 − 6X4 + X3

−4X2 − 7 .

We denote:

B(P ) = B(m, s, p, q, r), the bound given by Theorem 1

L1(P ) = the bound of Lagrange (Theorem 1)

LPR = the largest positive root

For P1 we have A = 6 and m = 11, and for P2 we have A = 7 and
m = 6.
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Example (contd.)

P s p q r B(P ) L1(P ) LPR

P1 8 0.5 0.5 0 13.89 2.161 1.53

P1 2 0.5 0.5 0 3.15 2.161 1.53

P1 1 0.5 0.5 0 2.00 2.161 1.53

P1 8 0.4 0.3 0.3 64.78 2.161 1.53

P1 2 0.2 0.6 0.2 3.25 2.161 1.53

P2 7 0.5 0.5 0 8.25 2.232 1.075

P2 3 0.4 0.6 0 7.18 2.232 1.075

P2 3 0.5 0.5 0 6.85 2.232 1.075

P2 1 0.4 0.6 0 3.07 2.232 1.075

P2 5 0.4 0.3 0.3 26.2 2.232 1.075

P2 2 0.4 0.3 0.3 4.02 2.232 1.075

P2 2 0.6 0.2 0.2 3.84 2.232 1.075
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Comparison with the bound of Lagrange

We compare the bound given by Theorem 2 with that of Lagrange

L1(P ) = 1 +
(

A

a0

)1/(m+1)

.

We consider p = q = 0.25 , r = 0.5 and s = 2 in Theorem 2. Then

B(P ) = 1 + max
{(

A
4(a0+a1+a2)

)1/(m−1)

,(
A

4(2a0+a1)

)1/m

,
(

A
2a0

)1/(m+1)
}

.

We can see which of the bounds B(P ) and L1(P ) is better by looking to
the size of A with respect to a0, a1, a2 and m.
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Comparison with the bound of Lagrange (contd.)

We obtain:

• B(P ) < L1(P ) if

A < min


(
4(a0 + a1 + a2)

)(m+1)/2

a
(m−1)/2
0

,
4m+1(2a0 + a1)m+1

am
0


• B(P ) > L1(P ) if

A > max


(
4(a0 + a1 + a2)

)(m+1)/2

a
(m−1)/2
0

,
4m+1(2a0 + a1)m+1

am
0

 .
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Example

Let

P (X) = Xd + 3Xd−1 + Xd−2 + 0.001 Xd−3 + 0.0003 Xd−4

−AX4 −AX3 −AX −A + 1,

with A > 0 . Then we have:

d A L1(P ) B(P ) LPR

10 3 2.201 2.069 1.146

11 3 2.201 2.069 1.126

8 4 2.256 2.122 1.287

9 4 2.256 2.122 1.230

10 4 2.256 2.122 1.193

10 206 20.999 43.294 19.687
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Other Bounds for Positive Roots

Note that the bound L1(P ) of Lagrange and its extensions give only
numbers greater than one, so they cannot be used for some classes of
polynomials. For example, the roots of Legendre orthogonal polynomials
are subunitary.
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Kioustelidis, 1986

J. B. Kioustelidis [9] gives the following upper bound for the positive real
roots:

Theorem 3 (Kioustelidis) Let
P (X) = Xd − b1X

d−m1 − · · · − bkXd−mk + g(X), with g(X) having
positive coefficients and b1 > 0, . . . , bk > 0 . The number

K(P ) = 2 ·max{b1/m1
1 , . . . , b

1/mk

k }

is an upper bound for the positive roots of P .

D. Ştefănescu Bounds for Real Roots and Applications to OP 18



Ştefănescu, 2005

For polynomials with an even number of variations of sign, we proposed
in [18] another bound. Our method can be applied also to polynomials
having at least one sign variation.

Theorem 4 Let P (X) ∈ R[X] and suppose that P has at least one sign
variation. If

P (X) = c1X
d1−b1X

m1+c2X
d2−b2X

m2+· · ·+ckXdk−bkXmk+g(X) ,

with g(X) ∈ R+[X], ci > 0, bi > 0, di > mi for all i, the number

S(P ) = max

{(
b1

c1

)1/(d1−m1)

, . . . ,

(
bk

ck

)1/(dk−mk)
}

is an upper bound for the positive roots of P .
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Remarks

We obtained in [18], Theorem 2, another version of Theorem 4, under the
additional assumption that the polynomial has an even number of sign
variations and that di > mi > di+1 for all i. But any polynomial having
at least one sign variation can be represented (not uniquely!) as

P (X) = c1X
d1−b1X

m1+c2X
d2−b2X

m2+· · ·+ckXdk−bkXmk+g(X) ,

with g(X) ∈ R+[X], ci > 0, bi > 0, di > mi for all i .

In 2006, Akritas et al. presented in [2] a result based on Theorem 2 from
[18]. Their approach to adapt our theorem to any polynomial with sign
variations uses a representation (also not unique!)

P (X) =
m∑

i=1

(q2i−1(X)− q2i(X)) + g(X),

where all qj and g have positive coefficients, and some inequalities among
the degrees of the monomials of q2i−1 and q2i are satisfied.
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Remarks (contd.)

Our Theorem 2 from [18] and the extensions of Akritas et al. were
implemented in [2] and [3].

If a polynomial P ∈ R[X] has all real positive roots in the interval (0, 1),
using the transformation x → 1/x we obtain a polynomial — called the
reciprocal polynomial — with positive roots greater than one. If we
compute a bound ub for the positive roots of the reciprocal polynomial,
the number lb = 1/ub will be a lower bound for the positive roots of the
initial polynomial P . This process can be applied to any real polynomial
with positive roots, and is a key step in the Continued Fraction real root
isolation algorithm (see [2] and [21]).
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Lagrange, 1769

In some special cases the following other bound of Lagrange is useful:

Theorem 5 Let F be a nonconstant monic polynomial of degree n over R
and let {aj ; j ∈ J} be the set of its negative coefficients. Then an upper
bound for the positive real roots of F is given by the sum of the largest
and the second largest numbers in the set{

j

√
|aj | ; j ∈ J

}
.

Theorem 5 can be extended to absolute values of polynomials with
complex coefficients (see M. Mignotte–D. Ştefănescu [14]).
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Notation

• The bounds of Lagrange from Theorems 1 and 5 will be denoted by
L1(P ), respectively L2(P ) .

• The bound of Kioustelidis from Theorem 3 is denoted by K(P ) .
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Example

Let P (X) = 2X7 − 3X4 −X3 − 2X + 1 ∈ R[X] . The polynomial P

does not fulfill the assumption di > mi > di+1 for all i from Theorem 2
in [18]. However, after the decomposition of the leading coefficient in a
sum of positive numbers, Theorem 4 can be applied.

We use the following two representations:

P (X) = P1(X)

= (X7 − 3X4) + (0.5 X7 −X3) + (0.5 X7 − 2X) + 1,

P (X) = P2(X)

= (1.1 X7 − 3X4) + (0.4 X7 −X3) + (0.5 X7 − 2X) + 1.
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Example (contd.)

We denote Sj(P ) = S(Pj) for j = 1, 2 , and obtain the bounds

S1(P ) = 1.442 , S2(P ) = 1.397 .

The largest positive root of P is 1.295.

Other bounds give

K(P ) = 2.289 , L1(P ) = 2.404 , L2(P ) = 2.214 .

Both S1(P ) and S2(P ) are smaller than L1(P ), L2(P ) and K(P ).
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Bounds for Roots of Orthogonal Polynomials

Classical orthogonal polynomials have real coefficients and all their zeros
are real, distinct, simple and located in the interval of orthogonality.

We first evaluate the largest positive roots of classical orthogonal
polynomials using our previous results and a bound considered by van der
Sluis in [17]. We also obtain new bounds using properties of of the
differential equations which they satisfy. These new bounds will be
compared with known bounds.
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The polynomials Pn, Ln, Tn and Un

The orthogonal polynomials of Legendre, Laguerre and Chebyshev of
first and second kind:

Pn(X) =
bn/2c∑
k=0

(−1)k (2n− 2k)!
k!(n− k)!(n− 2k)!

Xn−2k,

Ln(X) =
n∑

k=0

(
n

n− k

)
(−1)k

k!
Xk,

Tn(X) =
n

2

bn/2c∑
k=0

(−1)k 2n−2k

n− k

(
n− k

k

)
Xn−2k,

Un(X) =
bn/2c∑
k=0

(−1)k 2n−2k

(
n− k

k

)
Xn−2k.
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Bounds for Pn, Ln, Tn and Un

Proposition 6 Let Pn, Ln, Tn and Un be the orthogonal polynomials of
degree n of Legendre, respectively Laguerre and Chebyshev of first and
second kind. We have

i. The number S(Pn) =

√
n(n− 1)
2(2n− 1)

is an upper bound for the roots of

Pn .

ii. The number S(Ln) = n2 is an upper bound for the roots of Ln .

iii. The number S(Tn) =
√

n

2
is an upper bound for the roots of Tn .

iv. The number S(Un) =
√

n− 1
2

is an upper bound for the roots of Un .

D. Ştefănescu Bounds for Real Roots and Applications to OP 28



The Bound of Newton

Since orthogonal polynomials are hyperbolic polynomials (i.e., all their
roots are real numbers), for the estimation of their largest positive root we
can also use the bounds given by van der Sluis [17]. He considers monic
univariate polynomials

P (X) = Xn + a1X
n−1 + a2X

n−2 + · · ·+ an ∈ R[X]

and mentions the following upper bound for the roots in the hyperbolic
case:

Nw(P ) =
√

a2
1 − 2a2 .

For orthogonal polynomials Newton’s bound gives
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The Bound of Newton (contd.)

Proposition 7 Let Pn, Ln, Tn and Un be the orthogonal polynomials of
degree n of Legendre, respectively Laguerre and Chebyshev of first and
second kind. We have

i. The number Nw(Pn) =

√
2(2n− 2)!

(n− 1)!(n− 2)!
is an upper bound for the

roots of Pn .

ii. The number Nw(Ln) =
√

n4 − n2(n− 1)2 is an upper bound for the
roots of Ln .

iii. The number Nw(Tn) = 2(n−1)/2 is an upper bound for the roots of
Tn .

iv. The number Nw(Un) =
√

(n− 1)2n−1 is an upper bound for the
roots of Un .
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Comparisons on Orthogonal Polynomials

In the following tables we denote by L1 the bound of Lagrange from
Theorem 1, by K the bound of Kioustelidis, by S our bound from [18],
by Nw the bound of Newton, and by LPR the largest positive root of the
polynomial P .

We used the gp-pari package for computing the entries in the tables.
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I. Bounds for Zeros of Legendre Polynomials

n L1(P ) K(P) S(P) Nw LPR

5 2.05 2.10 1.054 141.98 0.901

8 2.367 2.73 1.366 157822.9 0.960

15 2.95 3.80 1.902 2.08× 1014 0.987

50 47.043 7.035 3.517 1.96× 1076 0.9988

120 26868.98 10.931.97 5.465 1.091× 10231 0.9998
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II. Bounds for Zeros of Laguerre Polynomials

n L1(P ) K(P) S(P) Nw(P) LPR

5 600 25 25 15.0 12.61

8 376321.0 64 25 30.983 22.86

15 7.44× 1013 225 225 80.777 48.026

50 6.027× 1068 2500 2500 497.49 180.698

120 1.94× 10206 14400 14400 1855.15 487.696
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II. Bounds for Zeros of Chebyshev Polynomials of First Kind

n L1(P ) K(P) S(P) Nw LPR

5 2.118 2.236 1.118 4.0 0.951

8 2.41 2.83 1.41 11.313 0.994

15 3.072 3.872 1.936 128.0 0.994

50 48.822 7.416 3.708 2.37× 107 0.9995

120 27917.33 10.00 5.00 8.1517 0.99991
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IV. Bounds for Zeros of Chebyshev Polynomials of Second Kind

n L1(P ) K(P) S(P) Nw(P) LPR

5 2.00 2.00 1.00 8.0 0.87

8 2.322 2.83 1.41 29.933 0.994

15 2.87 3.74 1.87 478.932 0.98

50 45.348 9.96 4.98 1.66× 108 0.9981

120 25864.44 9.96 4.98 8.89× 1018 0.9996

Note that for Legendre and Chebyshev polynomials we have
K(P ) = 2 S(P ).
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Remarks

Other comparisons on roots of orthogonal polynomials were obtained by
Akritas et al. in [3]. They consider the bounds of Cauchy and Lagrange,
and also cite their result derived from our result in [18]. Obviously, in the
case of classical orthogonal polynomials there exist an even number of
sign variations, and thus Akritas et al. apply, in fact, our theorem.

We note that Newton bound gives the best results for Laguerre
polynomials. Better estimates can be derived using the Hessian of
Laguerre.
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Bounds derived through the Hessian of Laguerre

Another approach for estimating the largest positive root of an orthogonal
polynomial is the study of inequalities derived from the positivity of the
Hessian associated to an orthogonal polynomial. They will allow us to
obtain better bounds than known estimations.

If we consider

f(X) =
n∑

j=1

aj Xj ,

a univariate polynomial with real coefficients, its Hessian is

H (f) = (n− 1)2 f ′2 − n(n− 1) ff ′ ≥ 0 .

The Hessian was introduced by Laguerre [12], who proved that
H (f) ≥ 0 .
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Laguerre’s Inequality

Let now f ∈ R[X] be a polynomial of degree n ≥ 2 that satisfies the
second–order differential equation

p(x) y′′ + q(x) y′ + r(x) y = 0 , (2)

with p, q and r univariate polynomials with real coefficients, p(x) 6= 0.
We recall the following

Theorem 8 (Laguerre) If all the roots of f are simple and real, we have

4(n−1)
(
p(α)r(α)+p(α)q′(α)−p′(α)q(α)

)
− (n+2)q(α)2 ≥ 0 (3)

for any root α of f .

The inequality (3) can be applied successfully for finding upper bounds
for the roots of orthogonal polynomials.
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Example

The Legendre polynomial Pn satisfies the differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0 .

From (2), La(n) = (n− 1)

√
n + 2

n(n2 + 2)
is a bound for the roots of Pn .

We have thus the following bounds for the largest zeros of Pn:

n La(P) LPR

5 0.91084 0.90617

8 0.96334 0.96028

11 0.98021 0.97822

15 0.98922 0.98799

55 0.99917 0.99906

100 0.99975 0.99971
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Example

The Hermite polynomial Hn satisfies the differential equation

y′′ − 2xy′ + 2ny = 0 .

From (2), He(n) = (n− 1)

√
2

n + 2
is a bound for the roots of Hn . We

have thus the following bounds for the largest zeros of Hn:

n He(P) LPR

3 1.264 1.224

8 3.130 2.930

12 4.156 3.889

20 5.728 5.387

50 9.609 9.182

D. Ştefănescu Bounds for Real Roots and Applications to OP 40



A Bound for Hermite Polynomials

Theorem 9 Let f ∈ R[X] be a polynomial of degree n ≥ 2 that satisfies
the second order differential equation

p(x) y′′ + q(x) y′ + r(x) y = 0 , (4)

with p, q and r univariate polynomials with real coefficients, p(x) 6= 0.

If all the roots of f are simple and real we have

8(n− 3)q2(α)2 + 9(n− 2)q(α)q3(α) ≥ 0 ,

where

q2 = q2 + p′q − pq′ − pr ,

q3 = (2p′ + q)
(
−q2 − p′q + pq′ − pr

)
− pq (p′′ + 2q′ + r)

−p2 (q′′ + 2r′) .

for any root α of f .
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New Upper Bounds for Zeros of Hermite Polynomials

Proposition 10 The number

√
2n2 + n + 6 +

√
(2n2 + n + 6 + 32(n + 6)(n3 − 5n2 + 7n− 3)

4(n + 6)

is an upper bound for the positive roots of Hn .
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Applications

We consider

He(Hn) = (n− 1)

r
2

n + 2
,

Se(Hn) =

s
2n2 + n + 6 +

p
(2n2 + n + 6 + 32(n + 6)(n3 − 5n2 + 7n− 3)

4(n + 6)

and obtain
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Applications (contd.)

n He(Hn) Se(Hn) LPR

3 1.264 1.224 1.224

8 3.130 2.995 2.930

12 4.156 4.005 3.889

16 4.999 4.844 4.688

20 5.728 5.574 5.387

25 6.531 6.382 6.164

50 9.609 9.484 9.182

60 10.596 10.478 10.159

100 13.862 13.765 13.406

120 15.236 15.146 14.776

150 17.091 17.009 16.629

200 19.801 19.729 19.339
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Comparisons with Other Bounds

Several known bounds for the largest positive roots of Hermite
polynomials:

Bott(Hn) =

√
2n− 2 3

√
n

3
O. Bottema [4]

V enn(Hn) =
√

2(n + 1)− 2(5/4)2/3(n + 1)1/3 S. C. Van Venn [22]

Kras(Hn) =
√

2n− 2 I. Krasikov [10]

FoKr(Hn) =

√
4n− 3n1/3 − 1

2
W. H. Foster–I. Krasikov [7]
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Comparisons with Other Bounds (contd.)

Comparing the previous bounds with our results we obtain

n Bott Venn Kras FoKr He Se LPR

4 2.408 2.455 2.449 2.262 1.732 1.659 1.650

16 5.339 5.294 5.477 5.265 4.999 4.844 4.688

24 6.633 6.573 6.782 6.570 6.379 6.228 6.015

64 11.065 10.984 11.224 11.022 10.966 10.851 10.526

100 13.912 13.827 14.071 13.875 13.862 13.765 13.406

120 15.269 15.182 15.422 15.234 15.236 15.146 14.776

The bound Se(Hn) gives the best estimates.
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