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Outline of this talk

� How to compute polynomial GCDs

� Sylvester matrix and Subresultant mapping

� Ruppert matrix and factoring polynomials

� Ruppert matrix for GCD of two polynomials

� Ruppert matrix for GCD of several polynomials

� Conclusion
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How to compute polynomial GCDs

� Euclidean Algorithm

Eculidean algorithm for polynomials f HxL and gHxL over reals.
function GCD(f(x), g(x))
  if  g(x) = 0  return  f(x)
  else  return  GCD( g(x),  remainder  of  f(x)  by  g(x) )

� QR factoring of Sylvester matrix

The usual subresultant mapping is important. See the next slide...

� Lots of other powerful approximate algorithms
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QR factoring of Sylvester matrix
Sylvester matrix of the following f HxL and gHxL : 
  f HxL = fn xn + fn-1 xn-1 + º + f1 x + f0, 
  gHxL = gm xm + gm-1 xm-1 + º + g1 x + g0.

SylH f , gL =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

fn fn-1 º f1 f0 0 º 0

0 fn fn-1 º f1 f0 ¸ »

» ¸ ¸ ¸ º ¸ ¸ 0

0 º 0 fn fn-1 º f1 f0

gm gm-1 º g1 g0 0 º 0

0 gm gm-1 º g1 g0 ¸ »

» ¸ ¸ ¸ º ¸ ¸ 0

0 º 0 gm gm-1 º g1 g0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

.

Well known relation between GCD and QR factoring of Sylvester 
matrix.
The last non-zero  row vector of R where SylH f , gL = Q R,
  is the coefficient vector of GCD of f HxL and gHxL.
    (See: Laidacker, M.A. , 1969  and  others)
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Subresultant mapping
Subresultant mapping Sr of f0HxL and f1HxL

Sr : :
Pn1-r-1 ´ Pn0-r-1 � Pn0+n1-r-1

Hu0, u1L S TQQ u1 f0 + u0 f1

where :
f0HxL = f0,n0

 xn0 + º + f0,1 x + f0,0

f1HxL = f1,n1
 xn1 + º + f1,1 x + f1,0

� Sylvester subresultant matrix Sr If0, f1M

SrH f0, f1L = H Cn0-rH f1L Cn1-rH f0L L

where CkHpL is a k-th  convolution matrix of pHxL
   and  S0H f0, f1L is the transpose of Sylvester matrix of f0HxL and f1HxL.
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Convolution matrix
k-th  convolution matrix of polynomial pHxL.

CkHpL =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

pn 0 º 0 0

pn-1 pn ¸ » »

» pn-1 ¸ 0 »

p0 » ¸ pn 0

0 p0 ¸ pn-1 pn

» 0 ¸ » pn-1

» » ¸ p0 »

0 0 º 0 p0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

     where  pHxL = pn xn + º + p1 x + p0.

� Subresultant mapping and Sylvester matrix

Sr : :
Pn1-r-1 ´ Pn0-r-1 � Pn0+n1-r-1

Iu0, u1M S TQQ u1 f0 + u0 f1

SrI f0, f1M = I Cn0-rH f1L Cn1-rI f0M M,   S0I f0, f1M = tSyl I f0, f1M
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Subresultant mapping and GCD
Well known fact (see Rupprecht, D. (1999) and so 
on)
(1)  If  r  is the largest integer that
                the subresultant mapping  Sr  is not 
injective, 
       we can compute the GCD of  f0HxL  and   f1HxL  
from
                the right null vector of  SrH f0, f1L.
(2)  The dimension of the null space is 
                the degree of the polynomial GCD.
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Ruppert criterion

� Reducibility of bivariate polynomials (Ruppert, W.M., 1999)

f Hx, yL is absolutely irreducible
 �  the following differential equation 
           does not have any non-trivial  solutions gHx, yL and hHx, yL.

f � ��

¶g

¶ y

- g � ��

¶ f

¶ y

+ h � ��

¶ f

¶ x

- f � ��

¶h

¶ x

= 0,  g, h Î C@x, yD

with degree constraints: 
degx g £ degx f - 1, degy g £ degy f ,

degx h £ degx f , degy h £ degy f - 2

� Newton polytope ver. by Gao, S. and Rodrigues, V.M. (2003)

� Multivariate version by May, J.P. (2005)
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Ruppert matrix RHf L

� The differential equation w.r.t. gIx , yM and hIx , yM
� a linear equation w.r.t. unknown coefficients.

f � ��

¶g

¶ y

- g � ��

¶ f

¶ y

+ h � ��

¶ f

¶ x

- f � ��

¶h

¶ x

= 0, g, h Î C@x, yD, 

degx g £ degx f - 1, degy g £ degy f ,

degx h £ degx f , degy h £ degy f - 2

RH f L tH coefficient vectors of g, hL = 0

� SVD of Ruppert matrix: irreducibility radius.

� Ruppert matrix depends term orders: lexicographic in this talk.
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Factoring with Ruppert and Gao’s matrix

� Known Algorithms using Corollary 1

Corollary 1
For a given f Hx, yL Î C@x, yD that is square-free  over CHyL, 
the dimension (over C) of the null space of RH f L is equal to 
"(the number of absolutely irreducible factors of f Hx, yL over 
C) -1".

and others by Kaltofen, Gao and so on.

� Correction: Corollary 1 from John    May’s      thesis.

Kaltofen, E., May, J., Yang, Z., and Zhi, L. 
Approximate factorization of multivariate polynomials using singular value decomposi-
tion. Manuscript, 22 pages. Submitted, Jan. 2006.
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Purpose of this talk

� GCD and Factorization

Primitive operations in Symbolic (and Numeric) computations.

� Common Properties

Can be computed by some matrix decompositions.

� Sylvester and Ruppert matices

Is there any relation between them?
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How to link them
f Hx, yL = f0HxL + f1HxL y
à f Hx, yL  is reducible if  f0HxL  and  f1HxL  have a non-trivial  GCD.
à f Hx, yL  is irreducible if  they don’t have any non-trivial  GCD.

Coprimeness of  f0HxL  and  f1HxL  can be tested
                                      by a rank deficiency of their Sylvester matrix.
Irreducibility of  f Hx, yL = f0HxL + f1HxL y  can be tested
                                      by a rank deficiency of its Ruppert matrix.
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Simple Result
Lemma 1
For any polynomials f0HxL and f1HxL, 
              the Sylvester matrix of f0HxL and f1HxL 
    and    the Ruppert matrix of f Hx, yL = f0HxL + f1HxL y 
have the same information for computing their GCD, 
     with the Ruppert’s original differential equation and  degree 
constraints.

The proof is in the proceedings.
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Simple Result (Sylvester and Ruppert)
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

fa5 fa4 fa3 fa2 fa1 fa0 0 0 0 0

0 fa5 fa4 fa3 fa2 fa1 fa0 0 0 0

0 0 fa5 fa4 fa3 fa2 fa1 fa0 0 0

0 0 0 fa5 fa4 fa3 fa2 fa1 fa0 0

0 0 0 0 fa5 fa4 fa3 fa2 fa1 fa0

fb5 fb4 fb3 fb2 fb1 fb0 0 0 0 0

0 fb5 fb4 fb3 fb2 fb1 fb0 0 0 0

0 0 fb5 fb4 fb3 fb2 fb1 fb0 0 0

0 0 0 fb5 fb4 fb3 fb2 fb1 fb0 0

0 0 0 0 fb5 fb4 fb3 fb2 fb1 fb0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 fa5 0 fa4 0 fa3 0 fa2 0 fa1 0 fa0 0 0 0 0 0 0 0 0

0 -fb5 0 -fb4 0 -fb3 0 -fb2 0 -fb1 0 -fb0 0 0 0 0 0 0 0 0

0 0 0 fa5 0 fa4 0 fa3 0 fa2 0 fa1 0 fa0 0 0 0 0 0 0

0 0 0 -fb5 0 -fb4 0 -fb3 0 -fb2 0 -fb1 0 -fb0 0 0 0 0 0 0

0 0 0 0 0 fa5 0 fa4 0 fa3 0 fa2 0 fa1 0 fa0 0 0 0 0

0 0 0 0 0 -fb5 0 -fb4 0 -fb3 0 -fb2 0 -fb1 0 -fb0 0 0 0 0

0 0 0 0 0 0 0 fa5 0 fa4 0 fa3 0 fa2 0 fa1 0 fa0 0 0

0 0 0 0 0 0 0 -fb5 0 -fb4 0 -fb3 0 -fb2 0 -fb1 0 -fb0 0 0

0 0 0 0 0 0 0 0 0 fa5 0 fa4 0 fa3 0 fa2 0 fa1 0 fa0

0 0 0 0 0 0 0 0 0 -fb5 0 -fb4 0 -fb3 0 -fb2 0 -fb1 0 -fb0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
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Alternative Result 1
Theorem 1
The polynomial GCD of f0HxL and f1HxL can be computed by Singular 
Value Decomposition (SVD) of Ruppert matrix of 
f Hx, yL = f0HxL + f1HxL y with the J.P.May’s differential equation and 
degree constraints, if f Hx, yL is square-free  over CHyL.

The proof is in the proceedings.

� Difference between Ruppert and May’s

f � � ��

¶g

¶y

- g � � ��

¶f

¶y

+ h � � �

¶f

¶x

- f � � �

¶h

¶x

= 0,

degx g £ degx f - 1, degy  g £ degy  f,

degx h £ degx f, degy  h £ degy  f - 2
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Alternative Result 1(Ruppert with May)
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0 0 0 0 0 0 0 0

-fb4 fb5 0 0 0 0 0 0 0 0 0 0 0 0

-2 fb3 0 2 fb5 0 0 0 0 0 0 0 0 0 0 0

-3 fb2 -fb3 fb4 3 fb5 0 0 0 0 0 0 0 0 0 0

-4 fb1 -2 fb2 0 2 fb4 4 fb5 0 0 0 0 0 0 0 0 0

-5 fb0 -3 fb1 -fb2 fb3 3 fb4 5 fb5 0 0 0 0 0 0 0 0

0 -4 fb0 -2 fb1 0 2 fb3 4 fb4 0 0 0 0 0 0 0 0

0 0 -3 fb0 -fb1 fb2 3 fb3 0 0 0 0 0 0 0 0

0 0 0 -2 fb0 0 2 fb2 0 0 0 0 0 0 0 0

0 0 0 0 -fb0 fb1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

-fa4 fa5 0 0 0 0 -fa5 0 0 0 fb5 0 0 0

-2 fa3 0 2 fa5 0 0 0 -fa4 -fa5 0 0 fb4 fb5 0 0

-3 fa2 -fa3 fa4 3 fa5 0 0 -fa3 -fa4 -fa5 0 fb3 fb4 fb5 0

-4 fa1 -2 fa2 0 2 fa4 4 fa5 0 -fa2 -fa3 -fa4 -fa5 fb2 fb3 fb4 fb5

-5 fa0 -3 fa1 -fa2 fa3 3 fa4 5 fa5 -fa1 -fa2 -fa3 -fa4 fb1 fb2 fb3 fb4

0 -4 fa0 -2 fa1 0 2 fa3 4 fa4 -fa0 -fa1 -fa2 -fa3 fb0 fb1 fb2 fb3

0 0 -3 fa0 -fa1 fa2 3 fa3 0 -fa0 -fa1 -fa2 0 fb0 fb1 fb2

0 0 0 -2 fa0 0 2 fa2 0 0 -fa0 -fa1 0 0 fb0 fb1

0 0 0 0 -fa0 fa1 0 0 0 -fa0 0 0 0 fb0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
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Alternative Result 2
Theorem 2
The polynomial GCD of f0HxL and f1HxL can be computed by QR 
factoring of the transpose of the last 3 n0 rows of their Ruppert matrix 
RH f L = RH f0HxL + f1HxL yL with J.P.May’s equation. 

The last non-zero  row vector of the triangular matrix is the coefficient 
vector of their polynomial GCD.

The proof is in the proceedings.
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Alternative Result 2(Last 3n0 rows)
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0 0 0 0 0 0 0 0

-fb4 fb5 0 0 0 0 0 0 0 0 0 0 0 0

-2 fb3 0 2 fb5 0 0 0 0 0 0 0 0 0 0 0

-3 fb2 -fb3 fb4 3 fb5 0 0 0 0 0 0 0 0 0 0

-4 fb1 -2 fb2 0 2 fb4 4 fb5 0 0 0 0 0 0 0 0 0

-5 fb0 -3 fb1 -fb2 fb3 3 fb4 5 fb5 0 0 0 0 0 0 0 0

0 -4 fb0 -2 fb1 0 2 fb3 4 fb4 0 0 0 0 0 0 0 0

0 0 -3 fb0 -fb1 fb2 3 fb3 0 0 0 0 0 0 0 0

0 0 0 -2 fb0 0 2 fb2 0 0 0 0 0 0 0 0

0 0 0 0 -fb0 fb1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

-fa4 fa5 0 0 0 0 -fa5 0 0 0 fb5 0 0 0

-2 fa3 0 2 fa5 0 0 0 -fa4 -fa5 0 0 fb4 fb5 0 0

-3 fa2 -fa3 fa4 3 fa5 0 0 -fa3 -fa4 -fa5 0 fb3 fb4 fb5 0

-4 fa1 -2 fa2 0 2 fa4 4 fa5 0 -fa2 -fa3 -fa4 -fa5 fb2 fb3 fb4 fb5

-5 fa0 -3 fa1 -fa2 fa3 3 fa4 5 fa5 -fa1 -fa2 -fa3 -fa4 fb1 fb2 fb3 fb4

0 -4 fa0 -2 fa1 0 2 fa3 4 fa4 -fa0 -fa1 -fa2 -fa3 fb0 fb1 fb2 fb3

0 0 -3 fa0 -fa1 fa2 3 fa3 0 -fa0 -fa1 -fa2 0 fb0 fb1 fb2

0 0 0 -2 fa0 0 2 fa2 0 0 -fa0 -fa1 0 0 fb0 fb1

0 0 0 0 -fa0 fa1 0 0 0 -fa0 0 0 0 fb0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
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Generalized Sylvester matrix
Generalized Subresultant mapping Sr of f0HxL, ¼, fkHxL.

Sr :

looooooooo
m

n

ooooooooo

Û
i=0

k

Pni-r-1 � Û
i=1

k

Pn0+ni-r-1

i

k

jjjjjjjj

u0

»

uk

y

{

zzzzzzzz
S TQQ

i

k

jjjjjjjj

u1 f0 + u0 f1

»

uk f0 + u0 fk

y

{

zzzzzzzz

, ni = degx fiHxL

Generalized Sylvester matrix SrI f0, ¼, fkM.

SrI f0, ¼, fkM =

i

k

jjjjjjjjjjjjjjj

Cn0-rH f1L Cn1-rH f0L 0 º 0

Cn0-rH f2L 0 Cn2-rH f0L ¸ »

» ¸ ¸ 0

Cn0-rH fkL 0 º 0 Cnk-rH f0L

y

{

zzzzzzzzzzzzzzz

(see Rupprecht, D. (1999) and so on)

If  r  is the largest integer that the subresultant mapping  Sr  is not injective, we can 

compute the GCD of  f0HxL, ¼, fkHxL  from the right null vector of  SrI f0, ¼, fkM.
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How to link them
f Ix, yM = f0HxL + f1HxL y1 + º + fkHxL yk

à f Ix, yM  is reducible if  f0HxL, ¼, fkHxL  have a non-trivial  GCD.

à f Ix, yM  is irreducible if  they don’t have any non-trivial  GCD.

Coprimeness of  f0HxL, ¼, fkHxL can be tested
  by a rank deficiency of their Sylvester matrix.

Irreducibility of  f Ix, yM = f0HxL + Ú
i=1

k

fiHxL yi  can be tested

  by a rank deficiency of its Ruppert matrix.
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Relation for several polynomials

� Postponed as a future work: 

J.P.May’s differential equation becomes
loooooooo
m

n

oooooooo

f0 gi - g0 fi + ΛiI fi f0
’ - f0 fi

’M = 0

f1 gi - g1 fi + ΛiI fi f1
’ - f1 fi

’M = 0

»

fk gi - gk fi + ΛiI fi fk
’ - fk fi

’M = 0

   Ii = 1, ¼, kM

This means that
loo
m
n
o

u0HxL = g0HxL - Λi f0
’

uiHxL = -giHxL + Λi fi
’
   Ii = 1, ¼, kM

� will be a part of proof of several polynomial version of theorem.
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Conclusion

� Sylvester and Ruppert matrices
have some relations for computing GCDs.

� Their relations lead to
no algorithm which computes GCDs efficiently.

� The author hopes that
the relations in this talk will make some progress.
                                                                       

Thank you!!
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