On the weight spectra of Conway matrices related to the non-transitive head-or-tail game

N. Gogin, A. Mylläri

 University of Turku, FinlandWe consider non-transitive head-or-tail game:
Two players agree on some integer n. Then both of them select a binary n-word ("head" $=0$, "tail" $=1$) and begin flipping a coin. The winner is the player whose word appears first as a block of n consecutive outcomes.
e.g. $\mathrm{n}=5$, $\mathrm{w} 1=00000, \mathrm{w} 2=10000$

For example:

Given w_{1} and w_{2}, who has better chances to win?

Given w_{1}, how to choose w_{2} ?

The solution of the problem that was suggested by Conway requires construction of a special matrix.

Martin Gardner. Time Travel and Other Mathematical Bewilderements. NY, 1988)
Guibas L.J., Odlyzko. String Overlaps, Pattern Matching, and Nontransitive Games. Journal of Combinatorial Theory, March 1981, 30, 183-208.

Conway $2^{n} \times 2^{n}$ matrix $C_{n}=\left(c_{i j}\right) \quad 0 \leq i, j \leq 2^{n}-1$ $i, j \rightarrow$ HTTHT $\Leftrightarrow 01101 \Leftrightarrow 13$

The probability that the word i will win over the word j

$$
\begin{aligned}
P_{i j} & =\frac{c_{i j}-c_{j i}}{\left(c_{i i}+c_{i j}\right)-\left(c_{i j}+c_{j i}\right)} \\
P_{i i} & =0
\end{aligned}
$$

Notations

$E_{r} \quad$ - identity matrix
$O_{r \times s} \quad$ - zero matrix
$u \cap V$ - componentwise product (intersection) of binary vectors u and v
$|u| \quad$ - Hamming weight (number of components equal to 1)
$e_{00} \quad-$ matrix unit (matrix with upper-left element 1, other elements are 0s)

Definition 1

Let V_{n} be the space of the binary n-words, i.e. the n-dimensional vector space over the field $Z_{2}=\{0,1\}$ and k is an integer, $0 \leq k \leq n$. We say that binary vector $u=\left(\varepsilon_{0}, \varepsilon_{1} \ldots \varepsilon_{n-1}\right) k$ overlaps vector $v=\left(\eta_{0}, \eta_{1} \ldots \eta_{n-1}\right)$ if $\left(\varepsilon_{k}, \varepsilon_{k+1} \ldots \varepsilon_{n-1}\right)=$ $=\left(\eta_{0}, \eta_{1} \cdots \eta_{n-k-1}\right)$ and write this as $u=_{k}=v$.

Definition 2

The Conway number of the pair (u, v) is $c(u, v)=\sum_{k=0}^{n-1} 2^{n-1-k}\|u=k=v\|$, where $\left\|u==_{k}=v\right\|$ equals to 1
(resp. 0) if $u=_{k}=v$ is "true" (resp. "false").

$$
\boldsymbol{n}=\mathbf{3} C_{3}=\left(\begin{array}{llllllll}
7 & 3 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 4 & 2 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 5 & 1 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 4 & 1 & 1 & 3 & 3 \\
3 & 3 & 1 & 1 & 4 & 0 & 0 & 0 \\
0 & 0 & 2 & 2 & 1 & 5 & 1 & 1 \\
1 & 1 & 1 & 1 & 2 & 2 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 3 & 7
\end{array}\right)
$$

$$
P_{i j}=\frac{C_{i j}-C_{j i}}{\left(c_{i i}+C_{j j}\right)-\left(c_{i j}+c_{j i}\right)}
$$

For example, the probability that the word $i=100=4$ will win over the word $j=000=0$ is $\mathrm{P}_{40}=7 / 8$.

	000	001	010	011	100	101	110	111
000	0	$1 / 2$	$2 / 5$	$2 / 5$	$1 / 8$	$5 / 12$	$3 / 10$	$1 / 2$
001	$1 / 2$	0	$2 / 3$	$2 / 3$	$1 / 4$	$5 / 8$	$1 / 2$	$7 / 10$
010	$3 / 5$	$1 / 3$	0	$1 / 2$	$1 / 2$	$1 / 2$	$3 / 8$	$7 / 12$
011	$3 / 5$	$1 / 3$	$1 / 2$	0	$1 / 2$	$1 / 2$	$3 / 4$	$7 / 8$
100	$7 / 8$	$3 / 4$	$1 / 2$	$1 / 2$	0	$1 / 2$	$1 / 3$	$3 / 5$
101	$7 / 12$	$3 / 8$	$1 / 2$	$1 / 2$	$1 / 2$	0	$1 / 3$	$3 / 5$
110	$7 / 10$	$1 / 2$	$5 / 8$	$1 / 4$	$2 / 3$	$2 / 3$	0	$1 / 2$
111	$1 / 2$	$3 / 10$	$5 / 12$	$1 / 8$	$2 / 5$	$2 / 5$	$1 / 2$	0

We developed a recursive algorithm for the fast construction of the Conway matrix. Results are visualized as a square, where numbers of rows and columns code binary words in a usual way; color depends on the probability of the event "row wins".

$$
\begin{array}{rlr}
C_{n}= & \left(\begin{array}{cc}
C_{n-1} & O \\
O & C_{n-1}
\end{array}\right)\left(\begin{array}{cc}
E+2^{-1} U_{n-1} & E-2^{-1} U_{n-1} \\
E+2^{-1} U_{n-1} & E-2^{-1} U_{n-1}
\end{array}\right) \\
& +2^{n-2}\left(\begin{array}{cc}
E & -E \\
-E & E
\end{array}\right)+2^{-1} J_{n} & C_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

where J_{n} is $2^{n} \times 2^{n}$ matrix consisting of 1 's,

$$
U_{n}=\binom{1}{-1} \otimes E_{2^{n-1}} \otimes\left(\begin{array}{ll}
1 & 1
\end{array}\right)
$$

CONWAY[6,0] - recursive construction of the probabilities matrix P for $n=6$.

$P \geq 0.6$, i.e. the probability that "raw wins the column" is not less than 60% (blue background - probabilities less than 60%). As can be seen, whatever word selected by the "column", the "raw" always has an adequate answer (with probability $p \geq 0.6$), but the set of these answers is "or measure zero".

CONWAY[5, 0]

CONWAY[5, 0.6]

CONWAY[7, 0]

CONWAY[7, 0.55]

CONWAY[10, 0.]

CONWAY[10, 0.55]

Conway matrix is a map

$$
\begin{aligned}
& C_{n}: W \rightarrow\left\{0,1 \ldots, 2^{n}-1\right\} \\
& W=V \oplus V \\
& C_{n}(w)=C_{n}(u, v)=C_{u v}
\end{aligned}
$$

In other words, we have an integer-valued function on the Abelian group. Our aim is to find the weight-spectrum of this function, i.e. the $(n+1) \times(n+1)$ integer matrix $S\left(C_{n}\right)$

$$
S_{p, q}=\sum_{w t(u)=p, w t(v)=q} c(u, v)
$$

$$
\begin{aligned}
& W=V \oplus V \quad C_{n}: W \rightarrow\left\{0,1 \ldots, 2^{n}-1\right\} \\
& C_{n}(w)=C_{n}(u, v)=C_{u v}
\end{aligned}
$$

To find the weight-spectrum let us first consider the Fourier transform.

Since W is a direct sum of two Abelian (commutative) groups, it is an Abelian (commutative) group, and we can apply the Fourier transform. In this case it is usually called the Hadamard transform. Since we prefer to deal with integers, we will consider non-normalized transform.

$$
\hat{C}_{n}=H_{n} C_{n} H_{n}
$$

$$
\hat{C}_{n}=H_{n} C_{n} H_{n}
$$

where H_{n} is the $2^{n} \times 2^{n}$ Hadamard matrix defined by the well-known recurrent formula

$$
H_{n}=\left(\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right) \quad n \geq 2, \quad H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

The reason for this move from C_{n} to its Hadamard transform \hat{C}_{n} is that it has been shown by us that the latter has the very simple matrix structure:

$$
\left(\widehat{C}_{n}\right)_{i j}=2^{2 n-1} \begin{cases}n, & \text { if } i=j=0 \\ 1, & \text { if } j=2^{k} i, \text { for some } k, 0 \leq k \leq n-1\end{cases}
$$

$$
0 \leq i, j \leq 2^{n}-1
$$

For example:

$$
C_{3}=\left(\begin{array}{llllllll}
7 & 3 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 4 & 2 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 5 & 1 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 4 & 1 & 1 & 3 & 3 \\
3 & 3 & 1 & 1 & 4 & 0 & 0 & 0 \\
0 & 0 & 2 & 2 & 1 & 5 & 1 & 1 \\
1 & 1 & 1 & 1 & 2 & 2 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 3 & 7
\end{array}\right)\left(\begin{array}{llllllll}
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Given the spectrum $S\left(\hat{C}_{n}\right)$, we can easily find the spectrum $S\left(C_{n}\right)$ by the MacWilliams formula for the dual spectrums

$$
2^{2 n} S_{k_{1}, k_{2}}\left(C_{n}\right)=\sum_{m_{1}, m_{2}=0}^{n} S_{m_{1}, m_{2}}\left(\widehat{C}_{n}\right) P_{k_{1}}\left(m_{1}\right) P_{k_{2}}\left(m_{2}\right)
$$

$$
0 \leq k_{1}, k_{2} \leq n
$$

where $P_{k}(m)$ are the Krawtchouk polynomials (of order n) defined by the generating function

$$
\begin{aligned}
& (1+t)^{n-m}(1-t)^{m}=\sum_{k=0}^{n} P_{k}(m) t^{k} \\
& P_{k}(m)=\sum_{l=0}^{k}(-1)^{l}\binom{n-m}{k-l}\binom{m}{l}
\end{aligned}
$$

After some calculations we find:

$$
S_{m_{1}, m_{2}}\left(\hat{C}_{n}\right)=2^{2 n-1} \cdot\left\{\begin{array}{c}
n, \quad m_{1}=m_{2}=0 \\
\binom{n+1}{m+1} \cdot \delta_{m_{1}, m_{2}} \quad m_{1}=m_{2}=m(\neq 0)
\end{array}\right.
$$

And, applying the MacWilliams formula we find after some transformations

$$
S_{k_{1}, k_{2}}\left(C_{n}\right)=\frac{1}{2}\left(\left(\sum_{p \leq \min \left(k_{1}, k_{2}\right)}\binom{n+1}{p}\right) \cdot\left(\sum_{p>\max \left(k_{1}, k_{2}\right)}\binom{n+1}{p}\right)-\binom{n}{k_{1}}\binom{n}{k_{2}}\right)
$$

$$
S_{k_{1}, k_{2}}\left(C_{n}\right)=\frac{1}{2}\left(\left(\sum_{p \leq \min \left(k_{1}, k_{2}\right)}\binom{n+1}{p}\right) \cdot\left(\sum_{p>\max \left(k_{1}, k_{2}\right)}\binom{n+1}{p}\right)-\binom{n}{k_{1}}\binom{n}{k_{2}}\right)
$$

Let

$$
S\left(C_{n}\right)=\frac{1}{2}\left(\mathrm{~B}_{n}-Y_{n} \otimes Y_{n}^{\mathrm{T}}\right)
$$

where

$$
\begin{aligned}
\mathrm{B}_{n} & =\left(\beta_{k_{1}, k_{2}}\right)_{0 \leq k_{1}, k_{2} \leq n} \\
Y_{n} & =\left(\binom{n}{s}\right)_{0 \leq s \leq n}
\end{aligned}
$$

$$
S\left(C_{n}\right)=\frac{1}{2}\left(\mathrm{~B}_{n}-Y_{n} \otimes Y_{n}^{\mathrm{T}}\right)
$$

Since Y_{n} is a row of the binomial coefficients, everywhere in what follows, we shall refer to the Kronecker product $Y_{n} \otimes Y_{n}{ }^{\mathrm{T}}$ as a "trivial term" of the matrix $S\left(C_{n}\right)$ and our attention will be mainly devoted to the matrix B_{n} (ignoring the multiplier $1 / 2$) as a nontrivial number-theoretical, combinatorial and computational object.

For example:

$$
\begin{gathered}
S\left(C_{3}\right)=\left(\begin{array}{cccc}
7 & 4 & 1 & 0 \\
4 & 23 & 8 & 1 \\
1 & 8 & 23 & 4 \\
0 & 1 & 4 & 7
\end{array}\right) \\
\mathrm{B}_{3}=\left(\begin{array}{cccc}
15 & 11 & 5 & 1 \\
11 & 55 & 25 & 5 \\
5 & 25 & 55 & 11 \\
1 & 5 & 11 & 15
\end{array}\right) \quad Y_{3} \otimes Y_{3}^{\mathrm{T}}=\left(\begin{array}{cccc}
1 & 3 & 3 & 1 \\
3 & 9 & 9 & 3 \\
3 & 9 & 9 & 3 \\
1 & 3 & 3 & 1
\end{array}\right)
\end{gathered}
$$

The recurrent formula and fast computational algorithm for matrices B_{n}

Let Δ_{n+1} be the diagonal matrix: $\Delta_{n+1}=2^{n} \cdot \operatorname{diag}\left(\binom{n}{r}\right)_{0 \leq r \leq n}$
Furthermore, for any matrix A let $\mid \bar{A}$ stands for the zeropadding of A from its left and upper sides and the notations $\quad \bar{A}|,| \underline{A}$ and $\underline{A} \mid$ have the analogous meaning.

Then it can be demonstrated that

$$
\begin{aligned}
& \mathrm{B}_{n+1}=\left|\overline{\mathrm{B}}_{n}+\overline{\mathrm{B}}_{n}\right|+\left|\underline{\mathrm{B}_{n}}+\underline{\mathrm{B}_{n}}\right|+\Delta_{n+1} \\
& \Delta_{n+1}=2 \cdot\left(\left|\overline{\Delta_{n}}+\underline{\Delta_{n}}\right|\right) n \geq 1 \\
& \mathrm{~B}_{0}=\Delta_{0}=(1)
\end{aligned}
$$

These formulas provide us the recursive construction of matrices B_{n} "without multiplications" (ignoring the multiplication by 2), so we refer to them as a "fast algorithm" for B_{n}

For example:

$$
\begin{aligned}
\mathrm{B}_{1} & =\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+2\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right) \\
& =\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) \\
\mathrm{B}_{2} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 1 \\
0 & 1 & 3
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
3 & 1 & 0 \\
1 & 3 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 3 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right) \\
& +\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right)+2\left(\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)+\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{lll}
7 & 4 & 1 \\
4 & 16 & 4 \\
1 & 4 & 7
\end{array}\right)
\end{aligned}
$$

$$
\mathrm{B}_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 7 & 4 & 1 \\
0 & 4 & 16 & 4 \\
0 & 1 & 4 & 7
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
7 & 4 & 1 & 0 \\
4 & 16 & 4 & 0 \\
1 & 4 & 7 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 7 & 4 & 1 \\
0 & 4 & 16 & 4 \\
0 & 1 & 4 & 7 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
7 & 4 & 1 & 0 \\
4 & 16 & 4 & 0 \\
1 & 4 & 7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
+2\left(\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 8 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)+\left(\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
15 & 11 & 5 & 1 \\
11 & 55 & 25 & 5 \\
5 & 25 & 55 & 11 \\
1 & 5 & 11 & 15
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{B}_{n+1}=\left|\overline{\mathrm{B}}_{n}+\overline{\mathrm{B}}_{n}\right|+\left|\underline{\mathrm{B}_{n}}+\underline{\mathrm{B}_{n}}\right|+\Delta_{n+1} \\
& \Delta_{n+1}=2 \cdot\left(\left|\overline{\Delta_{n}}+\underline{\Delta_{n}}\right|\right)
\end{aligned}
$$

These recursive formulae show that in fact B_{n} is the sum of the results of the n-th steps of two cellular automata, where B_{n} is 2D cellular automata and its diagonal Δ_{n} is onedimensional.

We found most interesting the behavior of B_{n} modulo some integer m that we observed with the help of WSCONW.nb, a MATHEMATICA program for visualizing formulae that was made by the authors of this paper. The structure of the resulting images reflects the difficulties related to studying these partial binomial sums, difficulties which have been mentioned by many authors.

Some examples are given below. Notice the effect of the optical illusions of the "looking through the frosted glass" in the case $\mathrm{n}=361, \mathrm{~m}=121$ and askew deformations in the case $\mathrm{n}=196, \mathrm{~m}=49$.

WSCONW[18,3]

WSCONW[18,7]

WSCONW[227,23]

WSCONW[193,21]

WSCONW[361,121]

WSCONW[196,49]

Some References

1. Gardner M. Time Travel and Other Mathematical Bewilderments. NY, 1988
2. Guibas L.J., Odlyzko. String Overlaps, Pattern Matching, and Nontransitive Games. Journal of Combinatorial Theory, March 1981, 30, 183-208.
3. MacWilliams F.J., Sloane N.J.A.. The Theory of ErrorCorrecting Codes. North-Holland P.C., NY, Amsterdam, 1977
4. Graham, R. L., Knuth, D.E., Patashnik, O. Concrete Mathematics, Addison Wesley, 1989
5. Ollerton, R. L. Partial row-sums of Pascal's triangle , International Journal of Mathematical Education in Science and Technology Volume 38, Number 1/15, January 2007, pp. 124-127
