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Statement of the problem in cylindrical coordinates

In cylindrical coordinates (ρ, z, ϕ) the wave function

Ψ̂(ρ, z, ϕ) = Ψ(ρ, z)
exp(ımϕ)√

2π
(1)

of a hydrogen atom in an axially symmetric magnetic field �B = (0, 0, B) satisfies the
2D Schrödinger equation

− ∂2

∂z2
Ψ(ρ, z) +

(
Âc − 2Z√

ρ2 + z2

)
Ψ(ρ, z) = εΨ(ρ, z), (2)

Âc = −1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

m2

ρ2
+ mγ +

γ2ρ2

4
, (3)

in the region Ωc: 0 < ρ < ∞ and −∞ < z < ∞.
Here m = 0,±1, . . . is the magnetic quantum number, γ = B/B0, B0

∼= 2.35 × 105 T
is a dimensionless parameter which determines the field strength B.
We use the atomic units (a.u.) � = me = e = 1 and assume the mass of the nucleus
to be infinite.
In these expressions ε = 2E, E is the energy (expressed in Rydbergs,
1 Ry = (1/2) a.u.) of the bound state |mσ〉 with fixed values of m and z-parity
σ = ±1, and Ψ(ρ, z) ≡ Ψmσ(ρ, z) = σΨmσ(ρ,−z) is the corresponding wave
function.



The boundary conditions in each mσ subspace of the full Hilbert space have the form

lim
ρ→0

ρ
∂Ψ(ρ, z)

∂ρ
= 0, for m = 0, (4)

Ψ(0, z) = 0, for m �= 0, (5)

lim
ρ→∞ Ψ(ρ, z) = 0. (6)

The wave function of the discrete spectrum obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the first type at
large, but finite |z| = zmax � 1, namely,

lim
z→±∞ Ψ(ρ, z) = 0 → Ψ(ρ,±zmax) = 0. (7)

These functions satisfy the additional normalization condition

zmax∫
−zmax

∞∫
0

|Ψ(ρ, z)|2ρdρdz = 1. (8)

The asymptotic boundary condition for the continuum wave function will be
considered below.



Kantorovich expansion

Consider a formal expansion of the partial solution ΨEmσ
i (ρ, z) of Eqs. (2)–(6),

corresponding to the eigenstate |mσi〉, expanded in the finite set of one-dimensional
basis functions {Φ̂m

j (ρ; z)}jmax
j=1

ΨEmσ
i (ρ, z) =

jmax∑
j=1

Φ̂m
j (ρ; z)χ̂

(mσi)
j (E, z). (9)

In Eq. (9) the functions χ̂(i)(z)≡ χ̂(mσi)(E, z), (χ̂(i)(z))T =(χ̂
(i)
1 (z),. . . ,χ̂

(i)
jmax

(z))

are unknown, and the surface functions Φ̂(ρ; z) ≡ Φ̂
m

(ρ; z) = Φ̂
m

(ρ;−z),
(Φ̂(ρ; z))T = (Φ̂1(ρ; z), . . . , Φ̂jmax (ρ; z)) form an orthonormal basis for each value of
the variable z which is treated as a parameter.



In the KM the wave functions Φ̂j(ρ; z) and the potential curves Êj(z) (in Ry) are
determined as the solutions of the following eigenvalue problem

ÂcΦ̂j(ρ; z) = Êj(z)Φ̂j(ρ; z), (10)

with the boundary conditions

lim
ρ→0

ρ
∂Φ̂j(ρ; z)

∂ρ
= 0, for m = 0, and Φ̂j(0; z) = 0, for m �= 0,(11)

lim
ρ→∞ Φ̂j(ρ; z) = 0. (12)

Since the operator in the left-hand side of Eq. (10) is self-adjoint, its eigenfunctions
are orthonormal〈

Φ̂i(ρ; z)

∣∣∣∣Φ̂j(ρ; z)

〉
ρ

=

∫ ∞

0
Φ̂i(ρ; z)Φ̂j(ρ; z)ρdρ = δij , (13)

where δij is the Kronecker symbol.



Therefore we transform the solution of the above problem into the solution of an
eigenvalue problem for a set of jmax ordinary second-order differential equations that
determines the energy ε and the coefficients χ̂(i)(z) of the expansion (9)(

−I
d2

dz2
+ Û(z) + Q̂(z)

d

dz
+

dQ̂(z)

dz

)
χ̂(i)(z) = εi Iχ̂

(i)(z). (14)

Here I, Û(z) = Û(−z) and Q̂(z) = −Q̂(−z) are the jmax × jmax matrices whose
elements are expressed as

Ûij(z) =

(
Êi(z) + Êj(z)

2

)
δij + Ĥij(z), Iij = δij ,

Ĥij(z) = Ĥji(z) =

∫ ∞

0

∂Φ̂i(ρ; z)

∂z

∂Φ̂j(ρ; z)

∂z
ρdρ, (15)

Q̂ij(z) = −Q̂ji(z) = −
∫ ∞

0
Φ̂i(ρ; z)

∂Φ̂j(ρ; z)

∂z
ρdρ.



The discrete spectrum solutions obey the asymptotic boundary condition and the
orthonormality conditions

lim
z→0

(
d

dz
− Q̂(z)

)
χ̂(i)(z) = 0, σ = +1, χ̂(i)(0) = 0, σ = −1, (16)

lim
z→±∞ χ̂(i)(z) = 0 → χ̂(i)(±zmax) = 0, (17)∫ zmax

−zmax

(
χ̂(i)(z)

)T
χ̂(j)(z)dz = 2

∫ zmax

0

(
χ̂(i)(z)

)T
χ̂(j)(z)dz = δij . (18)

The asymptotic boundary condition for the continuum wave function will be
considered below.



Algorithm 1 of generation of parametric algebraic problems by the
Finite Element Method

To solve eigenvalue problem for equation (10) the boundary conditions (11), (12) and
the normalization condition (13) with respect to the space variable ρ on an infinite
interval are replaced with appropriate conditions (11), (13) and Φ̂(ρmax; z) = 0 on a
finite interval ρ ∈ [ρmin ≡ 0, ρmax].
We consider a discrete representation of solutions Φ̂(ρ; z) of the problem (10) by
means of the FEM on the grid, Ωp

h(ρ)
= (ρ0 =ρmin, ρj = ρj−1 + hj , ρn̄ =ρmax), in a

finite sum in each z = zk of the grid Ωp
h(z)

[zmin, zmax]:

Φ̂(ρ; z) =

n̄p∑
µ=0

Φh
µ(z)Np

µ(ρ) =
n̄∑

r=0

p∑
j=1

Φh
r+p(j−1)(z)Np

r+p(j−1)
(ρ), (19)

where Np
µ(ρ) are local functions and Φh

µ(z) are node values of Φ̂(ρµ; z). The local
functions Np

µ(ρ) are piece-wise polynomial of the given order p equals one only in the
node ρµ and equals zero in all other nodes ρν �= ρµ of the grid Ωp

h(ρ)
, i.e.,

Np
ν (ρµ) = δνµ, µ, ν = 0, 1, . . . , n̄p. The coefficients Φν(z) are formally connected

with solution Φ̂(ρp
j,r ; z) in a node ρν = ρp

j,r , r = 1, . . . , p, j = 0, . . . , n̄:

Φh
ν (z) = Φh

r+p(j−1)(z) ≈ Φ̂(ρp
j,r ; z), ρp

j,r = ρj−1 +
hj

p
r.



The theoretical estimate for the H0 norm between the exact and numerical solution
has the order of

|Êh
m(z) − Êm(z)| ≤ c1|Êm(z)| h2p,

∥∥∥Φh
m(z) − Φm(z)

∥∥∥
0
≤ c2|Êm(z)|hp+1,

where h = max1<j<n̄ hj is maximum step of grid. It has been shown that we have a
possibility to construct schemes with high order of accuracy comparable with the
computer one. Let us consider the reduction of differential equations (10) on the
interval ∆ : ρmin < ρ < ρmax with boundary conditions in points ρmin and ρmax

rewriting in the form

A(z)Φ̂(ρ; z) = Ê(z)B(z)Φ̂(ρ; z), (20)

where A and B are differential operators. Substituting expansion (19) to (20) and
integration with respect to ρ by parts in the interval ∆ = ∪n̄

j=1∆j , we arrive to a
system of the linear algebraic equations

ap
µνΦh

µ(z) = Ê(z)bp
µνΦh

µ(z), (21)

in framework of the briefly described FEM. Using p-order Lagrange elements, we
present below an algorithm 1 for construction of algebraic problem (21) by the FEM in
the form of conventional pseudocode. It MAPLE realization allow us show explicitly
recalculation of indices µ, ν and test of correspondent modules in FORTRAN code.



Algorithm 2 of evaluation the asymptotics of effective potentials at large |z|
in Kantorovich method

Step 1. In (10) apply the transformation to a scaled variable x

x =
γρ2

2
, ρ =

√
x√

γ/2
, (22)

and put λ = Êj(z)/(2γ) = λ(0) + m/2 − Z/(γ|z|) + δλ. Eigenvalue problem reads
− ∂

∂x
x

∂

∂x
+

m2

4x
+

x

4
+

m

2
− Z

γ
√

2x
γ

+ z2
− λ


 Φ̂j(x; z) = 0, (23)

with a normalization condition

1

γ

∫ ∞

0
Φ̂j(x; z)2dx = 1. (24)



At Z = 0 Eq. (23) takes the form

L(n)Φ
(0)
nm(x) = 0, L(n) = − ∂

∂x
x

∂

∂x
+

m2

4x
+

x

4
− λ(0), (25)

and has the regular and bounded solutions at

λ(0) = n + (|m| + 1)/2, (26)

where transverse quantum number n ≡ Nρ = j − 1 = 0, 1, . . . determines the number
of nodes of the solution Φ

(0)
nm(x) with respect to the variable x. Normalized solutions

of Eq. (25), take the form

Φ
(0)
nm(x) = Cn|m|e−

x
2 x

|m|
2 L

|m|
n (x), Cn|m| =

[
γ

n!

(n + |m|)!
] 1

2
, (27)

1

γ

∫ ∞

0
Φ

(0)
nm(x)Φ

(0)
n′m(x)dx = δnn′ , (28)

where L
|m|
n (x) are Laguerre polynomials.



Step 2.

Substituting notation
δλ = λ − λ(0) − m/2 + Z/(γ|z|) ≡ Êj(z)/(2γ) − (n + (m + |m| + 1)/2) + Z/(γ|z|),
and decomposition

Z

γ|z| −
Z

γ
√

2x
γ

+ z2
=

jmax∑
k=1

V (k)

|z|k ,

V (k) =

{
−(−1)k′ (2k′−1)!!

k′!
Zxk′

γk′+1 , k = 2k′ + 1, k′ = 1, 2, . . . ,

0, otherwise,

to Eq. (23) at Z �= 0, transform it in the following form

L(n)Φ̂j(x; z) +


jmax∑

k=1

V (k)

|z|k − δλ


 Φ̂j(x; z) = 0. (29)



Step 3.

Solution of equation (29) is found in the form of the perturbation series by inverse
powers of |z|

δλ =

kmax∑
k=0

|z|−kλ(k), Φj(x; z) =

kmax∑
k=0

|z|−kΦ
(k)
n (x). (30)

Equating coefficients at the same powers of |z|, we arrive to the system of
inhomogeneous differential equations with respect to corrections λ(k) and Φ(k)

L(n)Φ(0)(x) = 0 ≡ f(0),

L(n)Φ(k)(x) =

k−1∑
p=0

(λ(k−p) − V (k−p))Φ(p)(x) ≡ f(k), k ≥ 1. (31)



For solving the Eqs. (29) the unnormalized orthogonal basis

Φn+s(x) = Cn|m|e−
x
2 x

|m|
2 L

|m|
n+s(x) = Cn|m|C

−1
n+s|m|Φ

(0)
n+s,m(x), (32)

〈s|s′〉 =

∫ ∞

0
Φn+s(x)Φn+s′ (x)dx = δss′γ

n!

(n + |m|)!
(n + s + |m|)!

(n + s)!
,

has been applied. The operators L(n) and x on the functions Φn+s(x) are defined by
the relations without fractional powers of quantum numbers n and m

L(n)Φn+s(x) = sΦn+s(x), (33)

xΦn+s(x) = −(n + s + |m|)Φn+s−1(x) + (2(n + s) + |m| + 1)Φn+s(x)

−(n + s + 1)Φn+s+1(x).



Step 4.

Applying relations (33), the right-hand side f(k) and solutions Φ(k)(x) of the system
(31) are expanded over basis states Φn+s(x)

Φ
(k)
n (x) =

k∑
s=−k

b
(k)
s Φn+s(x), f(k) =

k∑
s=−k

f
(k)
s Φn+s(x). (34)

Then a recurrent set of linear algebraic equations for unknown coefficients b
(k)
s and

corrections λ(k) is obtained

sb
(k)
s − f

(k)
s = 0, s = −k, . . . , k.

that is solved sequentially for k = 1, 2, . . . , kmax:

f
(k)
0 = 0 → λ(k); b

(k)
s = f

(k)
s /s, s = −k, . . . , k, s �= 0.

The initial conditions (26) and b
(0)
s = δs0 are followed from (25) and (28).



Step 5.

To obtain the normalized wave function Φ̂j(x; z) up to the k-th order, the coefficient
b
(k)
0 are defined by the following relation:

b
(k)
0 = − 1

2γ

k−1∑
p=1

k−p∑
s′=p−k

p∑
s=−p

b
(k−p)
s 〈s|s′〉b(p)

s′ , b
(k=1,...,5)
0 = 0.

As an example of output file at steps 1–5, we display nonzero coefficients λ(k), b
(k)
s of

the inverse power series (30), (34) up to O(|z|−5):

λ(0) = n + (|m| + 1)/2, λ(3) = Z(2n + |m| + 1)/γ2,

b
(0)
0 = 1, b

(3)
−1 = −Z(n + |m|)/γ2, b

(3)
1 = Z(n + 1)/γ2. (35)



Step 6.

In scaled variable x the relations of effective potentials Ĥij(z) = Ĥji(z) and
Q̂ij(z) = −Q̂ji(z) takes form

Ĥij(z)=
1

γ

∞∫
0

dx
∂Φ̂i(x; z)

∂z

∂̂Φj(x; z)

∂z
, Q̂ij(z)=− 1

γ

∞∫
0

dxΦ̂i(x; z)
∂Φ̂j(x; z)

∂z
. (36)

For their evaluation the decomposition of solution Eqs. (25) over the normalized
orthogonal basis Φ

(0)
n+s with the normalized coefficients b

(k)
n;n+s,

Φ
(k)
n (x) =

k∑
s=−k

b
(k)
n;n+sΦ

(0)
n+s, (37)

has been applied. The normalized coefficients b
(k)
n;n+s are calculated via b

(k)
s ,

b
(k)
n;n+s = b

(k)
s

√
n!

(n + |m|)!
(n + s + |m|)!

(n + s)!
(38)

as follows from (34), (37) and (32).



Step 7.

In a result of substitution (30), (37) in (36), matrix elements takes form

Q̂jj+t(z) = −
kmax−1∑

k=0

|z|−k−1
k∑

k′=0

min(k,k−k′−t)∑
s=max(−k,k′−k−t)

(k − k′)b(k
′)

n;n+sb
(k−k′)
n+t;n+s,

Ĥjj+t(z) =

kmax−2∑
k=0

|z|−k−2
k∑

k′=0

min(k,k−k′−t)∑
s=max(−k,k′−k−t)

k′(k − k′)b(k
′)

n;n+sb
(k−k′)
n+t;n+s. (39)

Collecting of coefficients of (39) at equal powers of |z|, algorithm leads to final
expansions of eigenvalues and effective potentials of output file

Êj(z) =

kmax∑
k=0

|z|−kE
(k)
j , Ĥij(z) =

kmax∑
k=8

|z|−kH
(k)
ij , Q̂ij(z) =

kmax∑
k=4

|z|−kQ
(k)
ij . (40)



The successful run of the above algorithm was occurs up to kmax = 16 (Run time is
95s on Intel Pentuim IV, 2.40 GHz, 512 MB). The some first nonzero coefficients
takes form (j = n + 1)

E
(0)
j = 2γ(n + (m + |m| + 1)/2),

E
(1)
j = −2Z,

E
(3)
j = 2Z(2n + |m| + 1)/γ,

E
(5)
j = −3Z(2 + 3|m| + 6n2 + |m|2 + 6n|m| + 6n)/γ2,

E
(6)
j = −2Z2(2n + |m| + 1)/γ3,

Q
(4)
jj+1 = 3Z

√
n+1

√
n+|m|+1/γ2,

Q
(6)
jj+1 = −15Z

√
n+1

√
n+|m|+1(2n + |m| + 2)/γ3,

Q
(6)
jj+2 = 15Z

√
n+1

√
n+2

√
n+|m|+1

√
n+|m|+2/(4γ3),

H
(8)
jj = 9Z2(2n2 + 2n|m| + 2n + |m| + 1)/γ4,

H
(10)
jj = −90Z2(2n + |m| + 1)(2n2 + 2n|m| + 2n + |m| + 2)/γ5,

H
(10)
jj+1 = 45Z2

√
n+1

√
n+|m|+1(n2 + n|m| + 2n + |m| + 2)/(2γ5),

H
(8)
jj+2 = −9Z2

√
n+1

√
n+2

√
n+|m|+1

√
n+|m|+2/γ4,

H
(10)
jj+2 = 90Z2

√
n+1

√
n+2

√
n+|m|+1

√
n+|m|+2(2n + |m| + 3)/γ5,

H
(10)
jj+3 = −45Z2

√
n+1

√
n+2

√
n+3

√
n+|m|+1

√
n+|m|+2

√
n+|m|+3/(2γ5).
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Values of the partial sums (40) depending on kmax for m = −1,
Z = 1, z = 10, γ = 10. The last row contains the corresponding numerical values (n.v.).

i, j Q̂12, 10−6 Q̂23, 10−6 Q̂34, 10−5 Q̂13, 10−8 Q̂24, 10−8

z −4Q
( 4)
ij 4.24264069 7.34846923 1.03923048 0 0

+z −6Q
( 6)
ij 4.17900108 7.16475750 1.00285742 1.29903811 3.18198052

+z −7Q
( 7)
ij 4.17883137 7.16446356 1.00281585 1.29903811 3.18198052

+z −8Q
( 8)
ij 4.17972233 7.16857870 1.00394341 1.26266504 3.04833733

+z −9Q
( 9)
ij 4.17972824 7.16859579 1.00394680 1.26260268 3.04818460

+z−10Q
(10)
ij 4.17971489 7.16850321 1.00391243 1.26342108 3.05252800

+z−11Q
(11)
ij 4.17971474 7.16850253 1.00391224 1.26342451 3.05254060

+z−12Q
(12)
ij 4.17971496 7.16850469 1.00391330 1.26340651 3.05240830

+z−13Q
(13)
ij 4.17971496 7.16850471 1.00391331 1.26340638 3.05240762

+z−14Q
(14)
ij 4.17971496 7.16850466 1.00391328 1.26340679 3.05241163

+z−15Q
(15)
ij 4.17971496 7.16850466 1.00391327 1.26340679 3.05241166

+z−16Q
(16)
ij 4.17971496 7.16850466 1.00391328 1.26340678 3.05241154

(n.v.) 4.17971496 7.16850466 1.00391328 1.26340678 3.05241154



Algorithm 3 of evaluation the asymptotics of solutions at large |z| in Kantorovich method

Step 1. We write the set of differential equations (14) at fixed values m, and ε in the
explicit form for χjio (z) ≡ χ̂

(io)
j (z) and j = 1, 2, . . . , jmax, io = 1, 2, . . . , No

−d2χjio (z)

dz2
− 2Z

|z| χjio (z) −
(

ε − Êj(z) − 2Z

|z|
)

χjio(z) + Ĥjj(z)χjio (z)

=

jmax∑
j′=1,j′ �=j

(
−Q̂jj′ (z)

d

dz
− Ĥjj′ (z) − dQ̂jj′ (z)

dz

)
χj′io

(z), (41)

where matrix elements Q̂jj′ (z) and Ĥjj′ (z) have of the form (40).



Note, that at large z, E
(2)
i =H

(2)
ii =0, i.e., the centrifugal terms are eliminated and

the longitudinal solution has the asymptotic form corresponding to zero angular
momentum solutions, or to the one-dimensional problem on a semi-axis:

χjio (z) =
exp(w(z))√

pio

φjio (z), φjio (z) =

kmax∑
k=0

φ
(k)
jio

|z|−k, (42)

where w(z) = ıpio |z|+ ıζ ln(2pio |z|) + ıδio , pio is the momentum in the channel, ζ is
the characteristic parameter, and δio is the phase shift.



The components φ
(k)
jio

satisfy the system of ordinary differential equations

(p2
io

− 2E + E
(0)
j )φ

(k)
jio

= f
(k)
jio

(φ
(k′=0,...,k−1)
j′io

, pio)

≡ −2(ζpio + ı(k − 1)pio − Z)φ
(k−1)
jio

− (ζ + ı(k − 2))(ζ + ı(k − 1))φ
(k−2)
jio

−
k∑

k′=3

(E
(k′)
j + H

(k′)
jj )φ

(k−k′)
jio

+

jmax∑
j′=1

k∑
k′=4

(−2ıQ
(k′)
jj′ pio − H

(k′)
jj′ )φ

(k−k′)
j′io

+

jmax∑
j′=1

k∑
k′=5

(2k − 1 − k′ − 2ıζ)Q
(k′−1)
jj′ φ

(k−k′)
j′io

,

k = 0, 1, . . . , kmax, φ
(−1)
jio

≡ 0, φ
(−2)
jio

≡ 0, kmax ≤ jmax − io. (43)

Here index of summation, j′, takes integer values, except io and j, (j′ = 1, . . . ,
jmax, j′ �= io, j′ �= j).



Step 2.

From first two equations (k = 0, 1) of set (43) we have the leading terms of
eigenfunction φ

(0)
jio

, eigenvalue p2
io

and characteristic parameter ζ, i.e initial data for
solving recurrence sequence,

φ
(0)
jio

= δjio , p2
io

= 2E − E
(0)
io

→ pio =

√
2E − E

(0)
io

, ζ = Z/pio . (44)

Open channels have p2
io

≥ 0, and close channels have p2
io

< 0. Lets there are
No ≤ jmax open channels, i.e., p2

io
≥ 0 for io = 1, . . . No and p2

io
< 0 for

io = No + 1, . . . jmax.



Step 3.

Substituting (44) in (43), we obtain the following recurrent set of algebraic equations
for the unknown coefficients φjio (z) for k = 1, 2, . . . , kmax:

(E
(0)
io

− E
(0)
j )φ

(k)
jio

= f
(k)
jio

(φ
(k′=0,...,k−1)
j′io

, pio ) (45)

that is solved sequentially for k = 1, 2, . . . , kmax:

φ
(k)
jio

= f
(k)
jio

(φ
(k′=0,...,k−1)
j′io

, pio)/(E
(0)
io

−E
(0)
j ), j �= io,

f
(k+1)
ioio

(φ
(k′=0,...,k)
j′io

, pio) = 0 → φ
(k)
ioio

. (46)



The successful run of the above algorithm was occurs up to kmax = 16 (Run time is
167s on Intel Pentuim IV, 2.40 GHz, 512 MB). The some first nonzero coefficients
takes form (j = n + 1)

φ
(0)
jio

= δjio ,

φ
(1)
jio

= δjio ıZ(Z+ıpio)/(2p3
io

),

φ
(2)
jio

= δjio [ıE
(3)
j /(4pio )−Z(Z+ıpio)2(Z+2ıpio )/(8p6

io
)],

φ
(3)
jio

= δjio [−E
(3)
j (3Z2+7ıpioZ−6p2

io
)/(24p4

io
)

−ıZ(Z+ıpio)2(Z+2ıpio)2(Z+3ıpio)/(48p9
io

)],

φ
(4)
jio

= δjio [ıE
(5)
j /(8pio )−(E

(3)
j )2/(32p2

io
)

−ıE
(3)
j (3Z4+20ıpioZ3−53p2

io
Z2−66ıp3

io
Z+36p4

io
))/(96p7

io
)

+Z(Z+ıpio)2(Z+2ıpio )2(Z+3ıpio)2(Z+4ıpio )/(384p12
io

)]

+2ıpioQ
(4)
jio

/(E
(0)
io

−E
(0)
j ).



Remarks:

1. Expansion (42) holds true for |zm| � max(Z2/(2p3
io

), 2Z(2io + |m| − 1)/(8γp2
io

)).
The choice of a new value of zmax for the constructed expansions of the linearly
independent solutions for pio > 0 is controlled by the fulfillment of the Wronskian
condition with a long derivative Dz ≡ Id/dz − Q(z)

Wr(Q(z); χ∗(z), χ(z)) = (χ∗(z))T Dzχ(z) − (Dzχ∗(z))T χ(z) = 2ıIoo

up to the prescribed accuracy. Here Ioo is the No-by-No identity matrix.
2. This algorithm can be applied also for evaluation asymptotics of solutions in closed
channels pio = ıκio , κio > 0.



Applications algorithms for solving the eigenvalue problem

The symbolic-numerical algorithms are used to generate an input file of effective
potentials in the Gaussian points z = zk of the FEM grid Ωp

h(z)
[zmin = 0, zmax] and

asymptotic of solutions of a set of longitudinal equations (14)–(18) for the KANTBP
code (Chuluunbaatar, O., et al: KANTBP: A program for computing energy levels,
reaction matrix and radial wave functions in the coupled-channel hyperspherical
adiabatic approach. accepted in Comput. Phys. Commun. (2007)). The calculations
was performed on a grid Ωp

h(z)
= {0(200)2(600)150} (the number in parentheses

denotes the number of finite elements of order p = 4 in each interval). Comparison
with corresponding calculations given in spherical coordinates from (Dimova, M.G.,
Kaschiev, M.S., Vinitsky, S.I.: The Kantorovich method for high-accuracy calculations
of a hydrogen atom in a strong magnetic field: low-lying excited states. Journal of
Physics B: At. Mol. Phys. 38 (2005) 2337–2352) given in the last line of the Table is
shown that elaborated method in cylindrical coordinates is applicable for strength
magnetic field γ > 5 and magnetic number m of order of ∼ 10.
Convergence of the method for the binding energy E = γ/2 − E (in a.u.) of even wave
functions m = −1, γ = 10 and γ = 5 versus the number jmax of coupled equations.

jmax 2p−1 (γ = 10) 3p−1 (γ = 10) 2p−1 (γ = 5) 3p−1 (γ = 5)
1 1.123 532 554 (3) 0.182 190 992 (2) 0.857 495 336 (9) 0.165 082 403 (4)
2 1.125 069 513 (1) 0.182 282 868 (7) 0.859 374 058 (2) 0.165 234 428 (1)
3 1.125 280 781 (8) 0.182 294 472 (5) 0.859 641 357 (6) 0.165 253 152 (9)
4 1.125 343 075 (2) 0.182 297 825 (6) 0.859 721 942 (4) 0.165 258 606 (4)
6 1.125 381 347 (9) 0.182 299 867 (7) 0.859 772 441 (3) 0.165 261 973 (6)
8 1.125 392 776 (1) 0.182 300 474 (6) 0.859 787 833 (7) 0.165 262 991 (9)
10 1.125 397 502 (9) 0.182 300 725 (2) 0.859 794 289 (0) 0.165 263 418 (0)
12 1.125 399 854 (7) 0.182 300 849 (8) 0.859 797 533 (8) 0.165 263 631 (9)

1.125 422 341 (8) 0.182 301 494 (7) 0.859 832 622 (6) 0.165 264 273 (1)



Conclusion

• A set of symbolic-numerical algorithms for calculating wave functions of a hydrogen
atom in a strong magnetic field is developed. The method is based on the Kantorovich
approach to parametric eigenvalue problems in cylindrical coordinates.
•The rate of convergence of the Kantorovich expansion is examined numerically and
illustrated by a set of typical examples. The results are in a good agreement with
calculations executed in spherical coordinates at fixed m for γ > 5.
•The elaborated symbolic-numerical algorithms for calculating effective potentials and
asymptotic solutions allows us to generate effective approximations for a finite set of
longitudinal equations describing an open channel to have the low upper estimations.

• The main goal of the method consists in the fact that for states having preferably a
cylindrical symmetry a convergence rate is increased at fixed m with growing values of
γ � 1 or the high-|m| Rydberg states at |m| > 150 in laboratory magnetic fields
B = 6.10T (γ = 2.595 · 10−5 a.u.), such that several equations are provide a given
accuracy.
•The developed approach yields a useful tool for calculation of threshold phenomena
in formation and ionization of (anti)hydrogen like atoms and ions in magnetic traps
and channeling of ions in thin films .
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