Hilbert's Nullstellensatz

Bernhard Bauer
bauerb@in.tum.de

Sarntal, September 19 - October 1, 2004

Outline

1) Affine Varieties
2) Ideals
3) The Weak Nullstellensatz
4) Gröbner Bases
5) The Strong Nullstellensatz
6) Radical Ideals
7) Operations on Ideals
(a) Addition
(b) Multiplication
(c) Intersection
8) An Application from Mechanics

Affine Varieties

Problem: Given a set of polynomials $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$, what are the common zeroes?

Definition 1 Let k be a field, and let f_{1}, \ldots, f_{r} be polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then we set

$$
\mathbf{V}\left(f_{1}, \ldots, f_{r}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n}: f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } 1 \leq i \leq r\right\}
$$

We call $\mathbf{V}\left(f_{1}, \ldots, f_{r}\right)$ the affine variety (or simply variety) defined by f_{1}, \ldots, f_{r}.

Examples of affine varieties (in \mathbb{R}^{3})

- $\mathbf{V}(z): x y-p l a n e$
- $\mathbf{V}(x, y): z$-axis
- $\mathbf{V}\left(x^{2}+y^{2}-z^{2}\right)$: cone

Ideals

We now consider the set of all polynomials vanishing on a given variety.
Definition 2 Let $V \subset k^{n}$ be an affine variety. The we set

$$
\mathbf{I}(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in V\right\}
$$

$\mathbf{I}(V)$ is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. This means:
Definition 3 A subset I of a ring R is an ideal if:
(i) $0 \in I$.
(ii) If $f, g \in I$, then $f+g \in I$.
(iii) If $f \in I$ and $h \in R$, then $h f \in I$.

An ideal is closed under linear combinations with R.

Ideals (2)

Every ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ can be generated by linear combinations of a finite set of polynomials called basis (Hilbert's Basis Theorem):

$$
I=\left\langle f_{1}, \ldots, f_{r}\right\rangle=\left\{A_{1} f_{1}+\ldots+A_{r} f_{r}: f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

An ideal generated by a single polynom is called a principal ideal.

Examples:

- $\langle x\rangle$: The set of all polynomials divisible by x
- $\langle 1\rangle=k\left[x_{1}, \ldots, x_{n}\right]$

The Ideal-Variety Correspondence

The variety $\mathbf{V}(I)$ of a whole ideal $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ is the same as the variety of its generators $\mathbf{V}\left(f_{1}, \ldots, f_{r}\right)$.

Therefore, we have maps

$$
\mathbf{V}: \text { ideals } \mapsto \text { affine varieties }
$$

and

$$
\text { I : affine varieties } \mapsto \text { ideals }
$$

which give us a correspondence between ideals and varieties.
Is this correspondence one-to-one?

- $\mathbf{V}(\mathbf{I}(V))=V$, i.e. \mathbf{I} is one-to-one
- Different ideals can give the same variety:
$-\langle x\rangle \neq\left\langle x^{2}\right\rangle$, but $\mathbf{V}(x)=\mathbf{V}\left(x^{2}\right)=\{0\}$
- If k isn't algebraically closed, e.g. $k=\mathbb{R}$:

$$
\begin{aligned}
& I_{1}=\langle 1\rangle, I_{2}=\left\langle 1+x^{2}\right\rangle, I_{3}=\left\langle 1+x^{2}+x^{4}\right\rangle \text { are different ideals, but } \\
& \mathbf{V}\left(I_{1}\right)=\mathbf{V}\left(I_{2}\right)=\mathbf{V}\left(I_{3}\right)=\emptyset
\end{aligned}
$$

The Weak Nullstellensatz

Theorem 1 Let k be an algebraically closed field and let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal with $\mathbf{V}(I)=\emptyset$. Then $I=k\left[x_{1}, \ldots, x_{n}\right]$.

We can check whether a set of polynomials $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ has one or more common zeroes (consistency problem) if we check whether the ideal $\left\langle f_{1}, \ldots, f_{r}\right\rangle$ generated by them is not equal to $k\left[x_{1}, \ldots, x_{n}\right]$.

Gröbner Bases

A basis of an ideal $\left\langle f_{1}, \ldots, f_{r}\right\rangle$ is a Gröbner Basis $G\left(f_{1}, \ldots, f_{r}\right)$ for some monomial order if the ideal given by the leading terms of all elements of the ideal is itself generated by the leading terms of the basis.

A reduced Gröbner Basis $G_{r e d}$ is a Gröbner Basis where the coefficients of the leading terms are 1 and no monomial in any element of the basis can be generated by the leading terms of the rest of the basis.

Properties of Gröbner Bases:

- The remainder obtained when applying the multivariate division algorithm is independent of the ordering of the polynomials.
- The reduced Gröbner Basis is unique up to the monomial ordering, and can therefore be used to check the equality of two ideals.
- When using lexicographic order with $x_{1}>x_{2}>\ldots>x_{n}$, the intersection of an ideal I with the subring $k\left[x_{m}, x_{m+1}, \cdots, x_{n}\right]$ is generated by the intersection of the Gröbner Basis $G(I)$ with $k\left[x_{m}, x_{m+1}, \cdots, x_{n}\right]$ (elimination property).

A Gröbner Basis can be computed using Buchberger's Algorithm.

The Consistency Problem

A set of polynomials $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ has no common zeroes iff

$$
\begin{gathered}
\left\langle f_{1}, \ldots, f_{r}\right\rangle=k\left[x_{1}, \ldots, x_{n}\right] \\
\Leftrightarrow 1 \in\left\langle f_{1}, \ldots, f_{r}\right\rangle
\end{gathered}
$$

This is the case if the reduced Gröbner Basis $G_{r e d}\left(f_{1}, \ldots, f_{r}\right)=\{1\}$.

Hilbert's Nullstellensatz

We have seen that $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ lead to the same variety.
In general, a power of a polynomial vanishes on the same set as the original polynomial.
Hilbert's Nullstellensatz states that (over an algebraically closed field) this the only reason that two different ideals lead to the same variety:

Theorem 2 Let k be an algebraically closed field. If $f, f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ are such that $f \in \mathbf{I}\left(\mathbf{V}\left(f_{1}, \ldots, f_{r}\right)\right)$, then there exists an integer $m \geq 1$ such that $f^{m} \in\left\langle f_{1}, \ldots, f_{r}\right\rangle$.

Proof

Given a polynomial f which vanishes at every common zero of the polynomials f_{1}, \ldots, f_{r}, we must show that there exists an integer $m \geq 1$ and polynomials A_{1}, \ldots, A_{r} such that

$$
f^{m}=A_{1} f_{1}+A_{2} f_{2}+\ldots+A_{r} f_{r}
$$

To show this, we consider the ideal

$$
\tilde{I}=\left\langle f_{1}, \ldots, f_{r}, 1-y f\right\rangle \subset k\left[x_{1}, \ldots, x_{n}, y\right] .
$$

We claim that $\mathbf{V}(\tilde{I})=\emptyset$.
To see this, let $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \in k^{n+1}$. Either

- $\left(a_{1}, \ldots, a_{n}\right)$ is a common zero of f_{1}, \ldots, f_{r}, or
- $\left(a_{1}, \ldots, a_{n}\right)$ is not a common zero of f_{1}, \ldots, f_{r}.

In the first case $f\left(a_{1}, \ldots, a_{n}\right)$ since f vanishes at every common zero of f_{1}, \ldots, f_{r}. Thus, $1-y f=1-a_{n+1} f\left(a_{1}, \ldots, a_{n}\right)=1 \neq 0$ at the point $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)$.

Proof(2)

In the second case, for some $f_{i}, f_{i}\left(a_{1}, \ldots, a_{n}\right) \neq 0$. If we think of f_{i} as a polynomial with $n+1$ variables which doesn't depend on the last variable, we have $f_{i}\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \neq 0$.
Because one of the two cases applies for any $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right), \mathbf{V}(\tilde{I})$ must be empty. We now apply the Weak Nullstellensatz to conclude that $1 \in \tilde{I}$. That is,

$$
1=\sum_{i=1}^{s} p_{i}\left(x_{1}, \ldots, x_{n}, y\right) f_{i}+q\left(x_{1}, \ldots, x_{n}, y\right)(1-y f)
$$

for some polynomials $p_{i}, q \in k\left[x_{1}, \ldots, x_{n}, y\right]$. Now set $y=1 / f\left(x_{1}, \ldots, x_{n}\right)$. Then we get

$$
1=\sum_{i=1}^{s} p_{i}\left(x_{1}, \ldots, x_{n}, 1 / f\right) f_{i}
$$

If we multiply both sides by f^{m}, where m is chosen high enough to clear all the denominators, we have for some $A_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$:

$$
f^{m}=\sum_{i=1}^{s} A_{i} f_{i}
$$

Radical Ideals

Definition 4 An ideal I is radical if $f^{m} \in I$ for any integer $m \geq 1$ implies that $f \in I$.
We also define the operation of taking the radical of an ideal:
Definition 5 Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. The radical of I, denoted \sqrt{I}, is the set

$$
\left\{f: f^{m} \in I \text { for some integer } m \geq 1\right\} .
$$

For an arbitrary ideal, the computation of a basis for a radical is quite complicated.
Fortunately, it is simpler for principal ideals:

$$
\sqrt{\langle f\rangle}=\sqrt{\left\langle f_{1}^{a_{1}} f_{2}^{a_{2}} \cdots f_{r}^{a_{r}}\right\rangle}=\left\langle f_{1} f_{2} \cdots f_{r}\right\rangle
$$

Hilbert's Nullstellensatz (in terms of ideals) states that

$$
\sqrt{I}=\mathbf{I}(\mathbf{V}(I)) .
$$

Sums of Ideals

Definition 6 If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then the sum of I and J, denoted $I+J$, is the set

$$
I+J=\{f+g: f \in I \text { and } g \in J\} .
$$

If $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$, then $I+J=\left\langle f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right\rangle$.
The corresponding operation on varieties is intersection:

$$
\mathbf{V}(I+J)=\mathbf{V}(I) \cap \mathbf{V}(J)
$$

$V\left(y-x^{2}\right)$

V(z-x3)

$\mathbf{V}\left(y-x^{2}, z-x^{3}\right)$

Products of Ideals

Definition 7 If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then the product of I and J, denoted $I \cdot J$ or short $I J$, is the set

$$
I \cdot J=\{f g: f \in I \text { and } g \in J\}
$$

If $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$, then
$I J=\left\langle f_{i} g_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\rangle$.
The corresponding operation on varieties is union:

$$
\mathbf{V}(I J)=\mathbf{V}(I) \cup \mathbf{V}(J)
$$

Example: $\langle x, y\rangle \cdot\langle z\rangle=\langle x z, y z\rangle$.
$\mathbf{V}(x z, y z)$ is the union of the z-axis $\mathbf{V}(x, y)$ and the xy-plane $\mathbf{V}(z)$.

Intersections of Ideals

Definition 8 The intersection $I \cap J$ of two ideals I and $J \in k\left[x_{1}, \ldots, x_{n}\right]$ is the set of all polynomials which belong to both I and J.

The corresponding operation on varieties is again union:

$$
\mathbf{V}(I \cap J)=\mathbf{V}(I) \cup \mathbf{V}(J)
$$

Calculating a basis is a bit more difficult than in the former two cases:

$$
\begin{aligned}
\left\langle f_{1}, \ldots, f_{r}\right\rangle \cap\left\langle g_{1}, \ldots, g_{s}\right\rangle & = \\
\left\langle t f_{1}, \ldots, t f_{r},(1-t) g_{1}, \ldots,(1-t) g_{s}\right\rangle & \cap k\left[x_{1}, \ldots, x_{n}\right]
\end{aligned}
$$

The elimination of t can be done via the elimination property of Gröbner Bases: Calculate a Gröbner basis with lexicographic order where $t>x_{1}>\ldots>x_{n}$ and drop all polynomials which depend on t.

The GCD of two polynomials

The intersection of two principal ideals gives the ideal generated by the lowest common multiple of the polynomials.

$$
\langle f\rangle \cap\langle g\rangle=\langle\operatorname{LCM}(f, g)\rangle
$$

Compare with product:

$$
\langle f\rangle \cdot\langle g\rangle=\langle f \cdot g\rangle \subset\langle f\rangle \cap\langle g\rangle
$$

Therefore, we can calculate the greatest common divisor of two polynomials (without having to factorise them):

$$
\operatorname{GCD}(f, g)=\frac{f \cdot g}{\operatorname{LCM}(f, g)}
$$

An Application from Mechanics

We have the following leverage mechanism:

What are the possible locations of the green point (x, y) ?

The restrictions can be described by polynomial equations:

$$
\begin{array}{ll}
(a+3)^{2}+b^{2}=6^{2} & \Rightarrow f_{1}=a^{2}+6 a+c^{2}-27 \\
(c-3)^{2}+d^{2}=6^{2} & \Rightarrow f_{2}=-6 b+b^{2}+d^{2}-27 \\
(c-a)^{2}+(d-b)^{2}=10^{2} & \Rightarrow f_{3}=a^{2}-2 a b+b^{2}+c^{2}-2 c d+d^{2}-100 \\
x=\frac{1}{2}(a+c) & \Rightarrow f_{4}=a+b-2 x \\
y=\frac{1}{2}(b+d) & \Rightarrow f_{5}=c+d-2 y
\end{array}
$$

The variety $\mathbf{V}\left(f_{1}, \ldots, f_{5}\right) \subset \mathbb{R}^{6}$ generated by these polynomials describes all possible 6 -tuples (a, b, c, d, x, y).

We calculate a Gröbner basis using lexicographic order with $a>b>c>d>x>y$. By to the elimination property, the last element of the basis depends only on x and y :

$$
f_{6}=x^{6}+3 x^{4} y^{2}-40 x^{4}+3 x^{2} y^{4}-44 x^{2} y^{2}+400 x^{2}+y^{6}-4 y^{4}-896 y^{2}
$$

Plotting $\mathbf{V}\left(f_{6}\right)$ gives the following picture:

Different values for the distance between the fixed points give completely different pictures (distance is, from left to right, 2, 10, 10.2, 16):

