Computer functions

Philipp Riegger

September 29, 2004

We want to calculate the SINE:

1. Reducing the interval $(\mathbb{R}$, Float'Range,... $)$ to $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$
2. Reducing the interval to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
3. Reducing the interval to $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$
4. Calculating the sine with ...
(a)a Taylor Polynomial
(b)a Chebyshev Polynomial

1. Reducing the interval to $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$

We need a function $y=f(x)$ with $0 \leq y<2 \pi$ (one period of sine) and

$$
\sin x=\sin y
$$

So how can we do that? Why is this possible?

The function is called entier. It maps every $n \in \mathbb{R}$ to the biggest integer i with $i \leq n$. So our formula is

$$
\sin y=\sin \left(x-2 \pi * \text { entier } \frac{x}{2 \pi}\right)=\sin x .
$$

As it is much better to have the interval $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ instead of $[0,2 \pi]$, we change the above line to

$$
\begin{aligned}
\sin y & =\sin \left(x-2 \pi * \operatorname{entier} \frac{x+\frac{\pi}{2}}{2 \pi}\right) \\
y & =\left(x-2 \pi * \text { entier } \frac{x+\frac{\pi}{2}}{2 \pi}\right)
\end{aligned}
$$

2. Reducing the interval to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Now we have the sine on the interval $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$. The sine is symmetric to $y=\frac{\pi}{2}$ so we can reduce the interval to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (next slide).

The formula for that is

$$
z:= \begin{cases}y & \text { if }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \\ \pi-y & \text { if } \frac{\pi}{2}<y\end{cases}
$$

To calculate the sine in in the interval we will use a Taylor Polynominal. But before, we will reduce the interval some more.

3. Reducing the interval to $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$

From the addition theorems we get the following term:

$$
\sin (3 u)=3 \sin u-4 \sin ^{3} u
$$

With $z=3 u$ and some small changes we get:

$$
\sin z=3\left(1-\frac{4}{3} \sin ^{2} \frac{z}{3}\right) \sin \frac{z}{3} .
$$

This can easily be done with the two addition theorems and the Pythagoras

$$
\begin{aligned}
\sin (a+b) & =\sin a \cos b+\sin b \cos a \\
\cos (a+b) & =\cos a \cos b-\sin a \sin b \\
1 & =\sin ^{2}(x)+\cos ^{2}(x)
\end{aligned}
$$

$$
\begin{aligned}
\sin (3 u) & =\sin (u+2 u) \\
& =\sin u \cos 2 u+\sin 2 u \cos u \\
& =\sin u(\cos (u+u))+\sin (u+u) \cos u \\
& =\sin u\left(\cos ^{2} u-\sin ^{2} u\right)+(2 \sin u \cos u) \cos u \\
& =\sin u \cos ^{2} u-\sin ^{3} u+2 \sin u \cos ^{2} u \\
& =\sin u\left(3 \cos ^{2} u-\sin ^{2} u\right) \\
& =\sin u\left(3\left(1-\sin ^{2} u\right)-\sin ^{2} u\right) \\
& =\sin u\left(3-3 \sin ^{2} u-\sin 2 u\right) \\
& =3 \sin u-4 \sin 3 u
\end{aligned}
$$

4. (a) Calculating the sine with a Taylor Polynomial

Now we can calculate the sine with a Taylor Polynomial (for example). This can now be done with very little effort since we are close to 0 (we take $x_{0}=0$, then we get an odd function).

A Taylor Polynomial of degree n is defined

$$
\begin{aligned}
T_{n}(x) & =\sum_{k=0}^{n} \frac{1}{k!} * f^{(k)}\left(x_{0}\right) *\left(x-x_{0}\right)^{k} \\
f(x) & =T_{n}(x)+R_{n}(x, \xi) \\
R_{n}(x, \xi) & =\frac{1}{(n+1)!} * f^{(n+1)}(\xi) *\left(x-x_{0}\right)^{n+1} .
\end{aligned}
$$

Since we do this for a calculator we want to have 7 digits accuracy. So $R_{n}(x, \xi)$ has to be $<0.5 * 10^{-7}$.
Our $x_{0}=0$, since it is the centre of our interval, $f(x)=$ $\sin x$, and we try it for $n=8$.

$$
\begin{aligned}
& T_{n}(x)= \sum_{k=0}^{n} \frac{1}{k!} * f^{(k)}\left(x_{0}\right) *\left(x-x_{0}\right)^{k} \\
& T_{8}(u)= \sum_{k=0}^{8} \frac{1}{k!} * f^{(k)}(0) * u^{k} \\
&= \frac{1}{1!} * f^{(1)}(0) * u+\frac{1}{2!} * f^{(2)}(0) * u^{2} \\
&+\frac{1}{3!} * f^{(3)}(0) * u^{3}+\frac{1}{4!} * f^{(4)}(0) * u^{4}+\ldots \\
&= 1 * 1 * u+\frac{1}{2!} * 0 * u^{2}+\frac{1}{3!} *(-1) * u^{3}+\frac{1}{4!} * 0 * u^{4}+\ldots \\
&= u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\frac{u^{7}}{7!} \\
&=u-0.1666666667 u^{3}+0.008333333333 u^{5}-0.0001984126984 u^{7}
\end{aligned}
$$

$$
\begin{aligned}
R_{n}(x, \xi) & =\frac{1}{(n+1)!} * f^{(n+1)}(\xi) *\left(x-x_{0}\right)^{n+1} \\
\left|R_{8}(u, \xi)\right| & =\left|\frac{1}{9!} * \sin ^{9}(\xi) *(u)^{9}\right| \\
& =\frac{|\cos (\xi)| *\left|(u)^{9}\right|}{9!} \leq \frac{|u|^{9}}{9!} \\
\text { relative error } & =\frac{|p(u)-\sin (u)|}{|\sin (u)|} \\
& =\frac{\left|R_{8}\right|}{|\sin (u)|} \leq \frac{\left|R_{8}\right|}{0.95|u|} \leq \frac{1.1|u|^{8}}{9!} \\
& \leq \frac{1.1}{9!}\left(\frac{\pi}{6}\right)^{8} \approx 0.18 * 10^{-7}<0.5 * 10^{-7}
\end{aligned}
$$

Now we have to write that algorithm optimized for the computer:

$$
\begin{aligned}
\tilde{x}= & x * 0.15915494 \\
\tilde{y}= & \tilde{x}-\operatorname{entier}(\tilde{x}+0.25) \\
\tilde{z}= & \begin{cases}\tilde{y} & , \text { if }-0.25 \leq \tilde{y} \leq 0.25 \\
0.5-\tilde{y} & , \text { if } 0.25<\tilde{y}\end{cases} \\
v= & \tilde{z} \tilde{z} \\
w= & \tilde{z}(3.32464499+v(-2.43058747 \\
& +v(0.53308748-v * 0.0556757))) \\
\sin x= & w(1.88988158-w w)
\end{aligned}
$$

We have reduced the sine to 8 multiplications and 7 additions.

4. (b) Calculating the sine with a Chebyshev Polynomial

There are other ways then using a Taylor Polynomial. For example can a Chebyshev Polynomial be used, this is better since with the same number of terms it is more accurate. Since this is a much more complicated thing, we have to learn some more basics.

Optimal polynomial approximations

We want to approximate a function $F(x)$ in the closed interval $[a, b]$ by means of a polynomial of degree $\leq n$.

1. the polynomial $P_{n}(x)$ of degree $\leq n$ for which $\max \left|P_{n}(x)-F(x)\right|$ is as small as possible, if it is ab[a,b] solute error that we are interested in (minimax-absolute-error), or
2. the polynomial $P_{n}(x)$ of degree $\leq n$ for which $\max _{[a, b]}\left|\frac{P_{n}(x)-F(x)}{F(x)}\right|$ is as small as possible, if it is relative error that we are interested in (minimax-relativeerror).

Chebyshev's theorem on polynomial approximations

Let $u(x)$ denote a function continuous in a closed, finite interval $[a, b]$, and let $v(x)$ denote a function continuous and nonzero in $[a, b]$. Let V_{n} denote the set of polynomials of degree $\leq n$. There exists a unique polynomial $P_{n}^{*}(x)$ in V_{n} such that

$$
\max _{[a, b]}\left|\frac{P_{n}^{*}(x)}{v(x)}-u(x)\right|=\min _{P_{n}(x) \mathrm{in} V_{n}[a, b]} \max \left|\frac{P_{n}(x)}{v(x)}-u(x)\right| .
$$

Let $P_{n}(x)$ denote a polynominal in V_{n}. Then $P_{n}(x)$ is $P_{n}^{*}(x)$ if and only if there exist $N \geq n+2$ points in $[a, b]$,

$$
x_{1}^{*}<x_{2}^{*}<x_{3}^{*}<\cdots<x_{N}^{*}
$$

such that

$$
\begin{array}{r}
\frac{P_{n}\left(x_{k}^{*}\right)}{v\left(x_{k}^{*}\right)}-u\left(x_{k}^{*}\right)=(-1)^{k} \mu^{*} \\
k=1,2,3, \ldots, N,
\end{array}
$$

where

$$
\left|\mu^{*}\right|=\max _{[a, b]}\left|\frac{P_{n}(x)}{v(x)}-u(x)\right| .
$$

A proof of this theorem is beyond the scope of this lecture. Listeners wishing to study the proof can find one in Achieser (1956)*.

Two ways of construing the foregoing theorem are of interest to us:
*Achieser, N. I. (1956): Theory of Approximation. Ungar, New York. english translation by C. J. Hyman.

1. With $v(x)=1$ and $u(x)=F(x)$, the function $\frac{P_{n}(x)}{v(x)}-$ $u(x)$ becomes the absolute-error function $P_{n}(x)-$ $F(x)$. In this case, the theorem asserts that there exists a unique polynimial $P_{n}^{*}(x)$ of degree $\leq n$ that approximates $F(x)$ with minimal absolute error in $[a, b]$. The theorem further asserts that $P_{n}^{*}(x)$ is uniquely characterized by the fact that the absoluteerror finction $P_{n} *(x)-F(x)$ possesses at least $n+2$ extreme points in $[a, b]$ at which it is alternately positive and negative and at which the magnitudes of $P_{n}^{*}(x)-F(x)$ are equal.
2. With $v(x)=F(x)$ and $u(x)=1$, where now it is assumed that $F(x) \neq 0$ in $[a, b]$, the function $\frac{P_{n}(x)}{v(x)}-u(x)$ becomes the relative-error function $\frac{P_{n}(x)-F(x)}{F(x)}$. In this case the theorem asserts that there exists a unique polynomial $P_{n}^{*}(x)$ of degree $\leq n$ that approximates $F(x)$ with minimax relative error in $*[a$, b]*. This $P_{n}^{*}(x)$ is uniquely characterized by the fact that the relative-error function $\frac{P_{n}^{*}(x)-F(x)}{F(x)}$ posesses at least $n+2$ extreme points in $[a, b]$ at which it is alternatively positive and negative and at which the magnitude of $\frac{P_{n}^{*}(x)-F(x)}{F(x)}$ are equal.

An argument for which the maximum magnitude of the error function is attained is called critical point, of the approximation. A minimax polynomial approximation to a function is specifically associated with an integer n and an approximation interval $[a, b]$. Generally, there is also a difference between the the function with minimax-absolute-error and the one with minimax-relative-error.

We want a a function of the degree 8 in the interval $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ and we want minimax-absolute-error.

Remez' method for polynomial

 approximationsThis is one of two methods by E. Ya. Remez and is called Remez' second method.
We want to approximate $F(x)$ in $[a, b]$ and want to determine the polynomial $P_{n}^{*}(x)$ of the degree $\leq n$ that approximates $F(x)$ with minimax absolute error in $[a, b]$. Let $P_{n}^{*}(x)=a_{0}^{*}+a_{1}^{*} x+\cdots+a_{n}^{*} x^{n}$. For the sake of simplicity, we assume that $P_{n}^{*}(x)-F(x)$ is a standard error function. Then $P_{n}^{*}(x)-F(x)$ possesses exactly $n+2$ critical points in $[a, b]$, including a and b. Let these be denoted by $x_{k}^{*}, k=1,2, \ldots, n$ and labelled so that

$$
a=x_{1}^{*}<x_{2}^{*}<x_{3}^{*}<\cdots<x_{n+2}^{*}=b .
$$

Then we know by chebyshev's theorem that

$$
\begin{array}{r}
a_{0}^{*}+a_{1}^{*} x_{k}^{*}+\cdots+a_{n}^{*}\left(x_{k}^{*}\right)^{n}-F(x)_{k}^{*}=(-1)^{k} \mu^{*} \\
\\
k=1,2, \ldots, n+2
\end{array}
$$

where

$$
\left|\mu^{*}\right|=\max _{[a, b]}\left|P_{n}^{*}(x)-F(x)\right| .
$$

The objective in this method is to compute iteratively the $x_{s}^{* \prime} s, \mu^{\prime}$ s, andthe coefficients of $P_{n}^{*}(x)$.

1. Initially select $n+2$ numbers $x_{k}, k=1,2, \ldots, n+2$, such that

$$
a=x_{1}^{*}<x_{2}^{*}<x_{3}^{*}<\cdots<x_{n+2}^{*}=b
$$

2. Compute the coefficients of a polynomial $P_{n}(x)=$ $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and the number μ by solving the system of $n+2$ linear equations

$$
\begin{array}{r}
a_{0}+a_{1} x_{k}+\cdots+a_{n}\left(x_{k}\right)^{n}-(-1)^{k} \mu=F\left(x_{k}\right) \\
k=1,2, \ldots, n+2
\end{array}
$$

for $n+2$ unknowns $a_{0}, a_{1}, \ldots, a_{n}$, and μ.
3. Locate the extreme points in $[a, b]$ of the absoluteerror function $P_{n}(x)-F(x)$. For the sake of simplicity, we assume that there are exactly $n+2$ extreme points, including a and b. Let these be labelled $y_{k}, k=1,2, \ldots, n+2$, where

$$
a=y_{1}<y_{2}<y_{3}<\cdots<y_{n+2}=b
$$

4. Replace x_{k} with y_{k} for $k=1,2, \ldots, n+2$, and repeat the sequence of steps given above beginning with step (2).
x_{k} converges to x_{k}^{*}, a_{k} converges to a_{k}^{*}, and μ converges to μ^{*}. The convergence is quadric. A good algorithm to compute the starting values in step 1 is

$$
\begin{array}{r}
x_{k}=\frac{1}{2} \cos \frac{(n-k+2) \pi}{n+1}+\frac{1}{2}(b+a), \\
k=1,2, \ldots, n+2 .
\end{array}
$$

If $F(x)$ is an even or an odd function and the interval is of the form $[-a, a]$, you can use $[0, a]$ instead.

And now we will have fun using Maple.

Enjoy!

