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We want to calculate the SINE:

1. Reducing the interval (R, Float’Range,. . . ) to [−π
2 , 3π

2 ]

2. Reducing the interval to [−π
2 , π

2 ]

3. Reducing the interval to [−π
6 , π

6 ]

4. Calculating the sine with . . .

(a) . . . a Taylor Polynomial

(b) . . . a Chebyshev Polynomial



1. Reducing the interval to [−π
2 , 3π

2 ]

We need a function y = f (x) with 0 ≤ y < 2π (one period

of sine) and

sin x = sin y.

So how can we do that? Why is this possible?



The function is called entier. It maps every n ∈ R to

the biggest integer i with i ≤ n. So our formula is

sin y = sin(x − 2π ∗ entier
x

2π
) = sin x.

As it is much better to have the interval [−π
2 , 3π

2 ] instead

of [0, 2π], we change the above line to

sin y = sin(x − 2π ∗ entier
x + π

2
2π

)

y = (x − 2π ∗ entier
x + π

2
2π

).



2. Reducing the interval to [−π
2 , π

2 ]

Now we have the sine on the interval [−π
2 , 3π

2 ]. The sine

is symmetric to y = π
2 so we can reduce the interval to

[−π
2 , π

2 ] (next slide).





The formula for that is

z :=

{
y if −π

2 ≤ y ≤ π
2

π − y if π
2 < y

To calculate the sine in in the interval we will use a

Taylor Polynominal. But before, we will reduce the

interval some more.



3. Reducing the interval to [−π
6 , π

6 ]

From the addition theorems we get the following term:

sin(3u) = 3 sin u − 4 sin3 u.

With z = 3u and some small changes we get:

sin z = 3(1− 4
3

sin2 z
3
) sin

z
3

.

This can easily be done with the two addition theorems
and the Pythagoras

sin(a + b) = sin a cos b + sin b cos a
cos(a + b) = cos a cos b − sin a sin b

1 = sin2(x) + cos2(x)



sin(3u) = sin(u + 2u)

= sin u cos 2u + sin 2u cos u
= sin u(cos(u + u)) + sin(u + u) cos u
= sin u(cos2 u − sin2 u) + (2 sin u cos u) cos u
= sin u cos2 u − sin3 u + 2 sin u cos2 u
= sin u(3 cos2 u − sin2 u)

= sin u(3(1− sin2 u)− sin2 u)

= sin u(3− 3 sin2 u − sin 2u)

= 3 sin u − 4 sin 3u



4. (a) Calculating the sine with a Taylor

Polynomial

Now we can calculate the sine with a Taylor Polynomial

(for example). This can now be done with very little

effort since we are close to 0 (we take x0 = 0, then we

get an odd function).



A Taylor Polynomial of degree n is defined

Tn(x) =
n
∑
k=0

1
k!
∗ f (k)(x0) ∗ (x − x0)

k

f (x) = Tn(x) + Rn(x, ξ)

Rn(x, ξ) =
1

(n + 1)!
∗ f (n+1)(ξ) ∗ (x − x0)

n+1.

Since we do this for a calculator we want to have 7

digits accuracy. So Rn(x, ξ) has to be < 0.5 ∗ 10−7.

Our x0 = 0, since it is the centre of our interval, f (x) =
sin x, and we try it for n = 8.



Tn(x) =
n
∑
k=0

1
k!
∗ f (k)(x0) ∗ (x − x0)

k

T8(u) =
8

∑
k=0

1
k!
∗ f (k)(0) ∗ uk

=
1
1!
∗ f (1)(0) ∗ u +

1
2!
∗ f (2)(0) ∗ u2

+
1
3!
∗ f (3)(0) ∗ u3 +

1
4!
∗ f (4)(0) ∗ u4 + . . .

= 1 ∗ 1 ∗ u +
1
2!
∗ 0 ∗ u2 +

1
3!
∗ (−1) ∗ u3 +

1
4!
∗ 0 ∗ u4 + . . .

= u − u3

3!
+

u5

5!
− u7

7!

= u− 0.1666666667u3 + 0.008333333333u5 − 0.0001984126984u7



Rn(x, ξ) =
1

(n + 1)!
∗ f (n+1)(ξ) ∗ (x − x0)

n+1.

|R8(u, ξ)| = | 1
9!
∗ sin9(ξ) ∗ (u)9|

=
| cos(ξ)| ∗ |(u)9|

9!
≤ |u|9

9!

relative error =
|p(u)− sin(u)|

|sin(u)|

=
|R8|

| sin(u)|
≤ |R8|

0.95|u|
≤ 1.1|u|8

9!

≤ 1.1
9!

(
π

6
)8 ≈ 0.18 ∗ 10−7 < 0.5 ∗ 10−7



Now we have to write that algorithm optimized for the

computer:

x̃ = x ∗ 0.15915494

ỹ = x̃ − entier(x̃ + 0.25)

z̃ =

{
ỹ , if− 0.25 ≤ ỹ ≤ 0.25
0.5− ỹ , if 0.25 < ỹ

v = z̃z̃
w = z̃(3.32464499 + v(−2.43058747

+v(0.53308748− v ∗ 0.0556757)))

sin x = w(1.88988158− ww)

We have reduced the sine to 8 multiplications and 7

additions.



4. (b) Calculating the sine with a

Chebyshev Polynomial

There are other ways then using a Taylor Polynomial.

For example can a Chebyshev Polynomial be used, this

is better since with the same number of terms it is more

accurate. Since this is a much more complicated thing,

we have to learn some more basics.



Optimal polynomial approximations

We want to approximate a function F(x) in the closed
interval [a, b] by means of a polynomial of degree ≤ n.

1. the polynomial Pn(x) of degree ≤ n for which
max
[a,b]

|Pn(x)− F(x)| is as small as possible, if it is ab-

solute error that we are interested in (minimax-
absolute-error), or

2. the polynomial Pn(x) of degree ≤ n for which
max
[a,b]

|Pn(x)−F(x)
F(x) | is as small as possible, if it is relative

error that we are interested in (minimax-relative-
error).



Chebyshev’s theorem on polynomial

approximations

Let u(x) denote a function continuous in a closed, finite

interval [a, b], and let v(x) denote a function continuous

and nonzero in [a, b]. Let Vn denote the set of polyno-

mials of degree ≤ n. There exists a unique polynomial

P∗n(x) in Vn such that

max
[a,b]

|P
∗
n(x)

v(x)
− u(x)| = min

Pn(x)inVn
max
[a,b]

|Pn(x)
v(x)

− u(x)|.

. . .



. . .

Let Pn(x) denote a polynominal in Vn. Then Pn(x) is

P∗n(x) if and only if there exist N ≥ n + 2 points in [a, b],

x∗1 < x∗2 < x∗3 < · · · < x∗N

such that

Pn(x∗k)
v(x∗k)

− u(x∗k) = (−1)kµ∗

k = 1, 2, 3, . . . , N,

where

|µ∗| = max
[a,b]

|Pn(x)
v(x)

− u(x)|.



A proof of this theorem is beyond the scope of this lec-

ture. Listeners wishing to study the proof can find one

in Achieser (1956)∗.

Two ways of construing the foregoing theorem are of

interest to us:

∗Achieser, N. I. (1956): Theory of Approximation. Ungar, New
York. english translation by C. J. Hyman.



1. With v(x) = 1 and u(x) = F(x), the function Pn(x)
v(x) −

u(x) becomes the absolute-error function Pn(x)−
F(x). In this case, the theorem asserts that there

exists a unique polynimial P∗n(x) of degree ≤ n that

approximates F(x) with minimal absolute error in

[a, b]. The theorem further asserts that P∗n(x) is

uniquely characterized by the fact that the absolute-

error finction Pn∗(x) − F(x) possesses at least n + 2
extreme points in [a, b] at which it is alternately pos-

itive and negative and at which the magnitudes of

P∗n(x)− F(x) are equal.



2. With v(x) = F(x) and u(x) = 1, where now it is as-

sumed that F(x) 6= 0 in [a, b], the function Pn(x)
v(x) − u(x)

becomes the relative-error function Pn(x)−F(x)
F(x) . In

this case the theorem asserts that there exists a

unique polynomial P∗n(x) of degree ≤ n that approx-

imates F(x) with minimax relative error in *[a,

b]*. This P∗n(x) is uniquely characterized by the fact

that the relative-error function P∗n(x)−F(x)
F(x) posesses at

least n + 2 extreme points in [a, b] at which it is al-

ternatively positive and negative and at which the

magnitude of P∗n(x)−F(x)
F(x) are equal.



An argument for which the maximum magnitude of

the error function is attained is called critical point,

of the approximation. A minimax polynomial approxi-

mation to a function is specifically associated with an

integer n and an approximation interval [a, b]. Gener-

ally, there is also a difference between the the function

with minimax-absolute-error and the one with minimax-

relative-error.

We want a a function of the degree 8 in the interval

[−π
6 , π

6 ] and we want minimax-absolute-error.



Remez’ method for polynomial

approximations

This is one of two methods by E. Ya. Remez and is

called Remez’ second method.

We want to approximate F(x) in [a, b] and want to de-

termine the polynomial P∗n(x) of the degree ≤ n that

approximates F(x) with minimax absolute error in [a, b].
Let P∗n(x) = a∗0 + a∗1x + · · · + a∗nxn. For the sake of sim-

plicity, we assume that P∗n(x)− F(x) is a standard error

function. Then P∗n(x)− F(x) possesses exactly n + 2 crit-

ical points in [a, b], including a and b. Let these be

denoted by x∗k , k = 1, 2, . . . , n and labelled so that

a = x∗1 < x∗2 < x∗3 < · · · < x∗n+2 = b.



Then we know by chebyshev’s theorem that

a∗0 + a∗1x∗k + · · ·+ a∗n(x∗k)n − F(x)∗k = (−1)kµ∗,

k = 1, 2, . . . , n + 2,

where

|µ∗| = max
[a,b]

|P∗n(x)− F(x)|.



The objective in this method is to compute iteratively

the x∗s ’s, µ’s, andthe coefficients of P∗n(x).

1. Initially select n + 2 numbers xk, k = 1, 2, . . . , n + 2, such

that

a = x∗1 < x∗2 < x∗3 < · · · < x∗n+2 = b.



2. Compute the coefficients of a polynomial Pn(x) =
a0 + a1x + · · ·+ anxn and the number µ by solving the
system of n + 2 linear equations

a0 + a1xk + · · ·+ an(xk)
n − (−1)kµ = F(xk),

k = 1, 2, . . . , n + 2,

for n + 2 unknowns a0, a1, . . . , an, and µ.

3. Locate the extreme points in [a, b] of the absolute-
error function Pn(x)− F(x). For the sake of simplici-
ty, we assume that there are exactly n + 2 extreme
points, including a and b. Let these be labelled
yk, k = 1, 2, . . . , n + 2, where

a = y1 < y2 < y3 < · · · < yn+2 = b.



4. Replace xk with yk for k = 1, 2, . . . , n + 2, and repeat

the sequence of steps given above beginning with

step (2).



xk converges to x∗k, ak converges to a∗k, and µ converges

to µ∗. The convergence is quadric. A good algorithm

to compute the starting values in step 1 is

xk =
1
2

cos
(n − k + 2)π

n + 1
+

1
2
(b + a),

k = 1, 2, . . . , n + 2.

If F(x) is an even or an odd function and the interval

is of the form [−a, a], you can use [0, a] instead.



And now we will have fun using Maple.

Enjoy!


