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Height of a Polynomial

Definitions
Let P(X ) = p0X

d + · · ·+ pd−1X + pd , where p0 6= 0. Then

I height of P(X):
||P||∞ = max{|p0|, |p1|, . . . , |pd |}

I 2-norm of P(X ):

||P||2 =
(
|p0|2 + · · ·+ |pd |2

) 1
2

I We use |P| for ||P||∞ and ||P|| for ||P||2
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Relationship between these bounds
Propostion 81 Let P be a univariate polynomial of degree d over
C. Then

|P| ≤ ||P|| ≤
√

d + 1|P|
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Definition
Denote the zeros of P(X) by α1, . . . , αd . We define M(P) to be

M(P) = |p0|
∏

1≤i≤d

max{1, |αi |}

This norm is called the M-norm.
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Uniform Coefficient Bounds

Three Different Norms

I the height of a polynomial, |P|
I the 2-norm, ||P||
I the M-norm, M(P)
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Relations between these norms

I Propostion 85 (Landau) Let P(X) be a univariate
polynomial over C, then

M(P) ≤ ||P||.

I Propostion 86 Let P(X) be a polynomial in C[X ] of degree
d, then

2−d |P| ≤ M(P) ≤
√

d + 1|P|.
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Size of a Polynomial´s Zeros

Propostion 92 (Cauchy)
Let P(X ) = X d + p1X

d−1 + · · ·+ pd be a non-constant, monic
polynomial with coefficients in C. Then each root of P(X), α,
satisfies the inequality

|α| ≤ 1 + max{1, |p1|, . . . , |pn|} = 1 + |P|.

Skip Proof
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Proof
Assume |α| is greater than 1, otherwise the proposition is obvious.
By taking the absolute value of

αd = −(p1α
d−1 + . . . + pn),

we have

|α|d = |p1α
d−1 + . . . + pn| ≤ |αd−1 + . . . + 1| · |P| ≤ |α|d

|α| − 1
|P|.

Since |α| > 1, we can multiply by |α| − 1 which gives |α| ≤ 1 + |P|.

A. Würfl Zero Equivalence Testing



Outline
Bounds on Polynomials

Zero Equivalence Testing
Appendix

Height of Polynomials
Uniform Coefficient Bounds
Size of a Polynomial´s Zeros
Discriminants and Zero Separation

Proof
Assume |α| is greater than 1, otherwise the proposition is obvious.
By taking the absolute value of

αd = −(p1α
d−1 + . . . + pn),

we have

|α|d = |p1α
d−1 + . . . + pn| ≤ |αd−1 + . . . + 1| · |P| ≤ |α|d

|α| − 1
|P|.

Since |α| > 1, we can multiply by |α| − 1 which gives |α| ≤ 1 + |P|.

A. Würfl Zero Equivalence Testing



Outline
Bounds on Polynomials

Zero Equivalence Testing
Appendix

Height of Polynomials
Uniform Coefficient Bounds
Size of a Polynomial´s Zeros
Discriminants and Zero Separation

Proof
Assume |α| is greater than 1, otherwise the proposition is obvious.
By taking the absolute value of

αd = −(p1α
d−1 + . . . + pn),

we have

|α|d = |p1α
d−1 + . . . + pn| ≤ |αd−1 + . . . + 1| · |P| ≤ |α|d

|α| − 1
|P|.

Since |α| > 1, we can multiply by |α| − 1 which gives |α| ≤ 1 + |P|.

A. Würfl Zero Equivalence Testing



Outline
Bounds on Polynomials

Zero Equivalence Testing
Appendix

Height of Polynomials
Uniform Coefficient Bounds
Size of a Polynomial´s Zeros
Discriminants and Zero Separation

Discriminants and Zero Separation

The Vandermonde Matrix
As usual denote the zeros of P(X) by α1, . . . , αd and consider the
matrix

PD =


1 α1 α2

1 . . . αd−1
1

1 α2 α2
2 . . . αd−1

2
...

... . . .
...

1 αd α2
d . . . αd−1

d



This is a Vandermonde matrix. Its determinant is equal to the
product of the difference of the zeros of P(X ):

det|PD | =
∏

1≤i<j≤d

(αi − αj) .
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Discriminant

Definition
The discriminant of P(X ) is defined to be

D(P) = p2d−2
0 det|PD |2
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Proposition 94
If P(X) is a univariate polynomial over C of degree d and leading
coefficient p0 then the absolute value of the discriminant of P(X)
is bounded by

|D(P)| ≥ ddM(P)2(d−1) ≥ dd ||P||2(d−1).
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Proposition 95
Let P(X) be a univariate, square free polynomial over Z of degree
d. Denote the number of real zeros of P(X) by r1 and the number
of complex zeros by 2r2. Then

|D(P)| ≥ (60.1)r1(22.2)2r2e−254,

|D(P)| ≥ (58.6)r1(21.8)2r2e−70,

Assuming the generalized Riemann hypothesis

|D(P)| ≥ (188.3)r1(41.6)2r2e−3.7×108

Riemann Hypothesis
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Zero Separation

Definition
We define the zero separation of P to be

∆(P) = min
i 6=j
|ai − aj |.
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Proposition 96 (Mahler)
Let P(x) be a square free polynomial of degree d with discriminant
D(P). Then

∆(P) >

√
3|D(P)|
dd+2

M(P)1−d

Using Proposition 85 we have

∆(P) >

√
3|D(P)|
dd+2

||P||1−d .
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Zero Equivalence Testing

The Black Box Approach
Let P(X1, . . . ,Xv ) be some symoblic expression over a ring R. BP

is a black box representing P if BP(X1, . . . ,Xv ) returns
P(x1, . . . , xv ).
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Probabilistic Techniques

Proposition 97
Let A be an integral domain, P ∈ A[X1, . . . ,Xv ] and the degree of
P in each of Xi be bounded by di . Let Zv (B) be the number of
zeros of P, ~x such that Xi is chosen from a set with B elements,
B � d. Then

Zv (B) ≤ (d1 + d2 + . . . + dv )Bv−1.

Proof
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Proposition 98 (Zippel)
Let P ∈ A[X1, . . . ,Xv ] be a polynomial of total degree D over an
integral domain A. Let S be a subset of A of cardinality B. Then

P(P(x1, . . . , xv ) = 0|xi ∈ S) ≤ D

B
.

Proof Proposition 97

A. Würfl Zero Equivalence Testing



Outline
Bounds on Polynomials

Zero Equivalence Testing
Appendix

Probabilistic Techniques
Deterministic Results
Negative Results

A Probabilistic Algorithm for Zero Equivalence

PZeroEquiv(BP , v ,D, ε) := {
k ← 4(log1/ε)/(log vD);
loop for 0 ≤ i < k do {

if BP(2i , 3i , . . . , pi
v ) 6= 0 then return(false);

}
return(true);

}
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Deterministic Results

Proposition 100
Let P(~X ) be a non-zero polynomial in R[~X ] with at most T terms
and with monomial exponent vectors ~ei . Assume there exists an
n-tuple ~x (in some R-module) such that the ~x~ei are distinct. Then
not all of P(~x0),P(~x1),P(~x2), . . . ,P(~xT−1) are zero.
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Without Degree Bounds

Proposition 101 (Grigor´ev and Karpinski)
Let P(~X ) be a polynomial in v variables over a ring of
characteristic zero, A, and assume that P has no more than T
monomials. Then there exists a set of v-tuples, {~x0, . . . ,~xT−1}
such that either P(~xi ) 6= 0 for some ~xi or P is identically zero.

Skip Proof
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Proof
Let ~x = (2, 3, 5, . . . , pv ), where the entries are the canonical
images of the prime numbers of Z in A. By unique factorization of
Z, the monomials ~x~ei are distinict, and thus by Proposition 100
either P is identiacally zero or does not vanish at every element of
the set {~x0, . . . ,~xT−1}.
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A Deterministic Algorithm Without Degree Bounds

GKZeroEquiv(BP , n,T ) := {
loop for 0 ≤ i < T do {

if BP(2i , 3i , . . . , pi
v ) 6= 0 then return(false);

}
return(true);

}
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With Degree Bounds

Linear Substitution
Let R be a field, then R[Z ] is a unique factorization domain and
Z + 1,Z + 2, . . . are primes.

Denote by ~Z the vector (Z + 1,Z + 2, . . . ,Z + v). Thus the ~Z~ei

are distinct.
Sending

(X1, . . . ,Xv ) 7→ (Z + 1, . . . ,Z + v) = ~Z

maps P(~X ) into a univariate polynomial.
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A Deterministic Algorithm Using Linear Substitution

SDZeroEquiv(BP , v ,D,T ) := {
loop for 0 ≤ i < T do {

loop for 0 ≤ z ≤ ivD do {
if BP((z + 1)i , (z + 2)i , . . . , (z + v)i ) 6= 0

then return(false);

}
}
return(true);

}
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Proposition 104
Let P(x) be a univariate polynomial with coefficients in R. The
number of positive real zeros of P(x) is less than terms(p).
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Nonlinear Substitution
Instead of using the simple linear substitution, we use:

(X1,X2, . . . ,Xv ) 7→ (Zu1 ,Zu2 , . . . ,Zuv )

where the ui are positive integers. We call this substitution a
nonlinear substitution.

The nonlinear substitution sends monomials in P(~X ) to univariate
monomials in Z , so that P(Z~u) has no more non-zero terms than
P(~X ).
Difficulty: finding a vector ~u such that P(Z~u) is not identically zero
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Definition
Let U be a set of v-tuples with components in Z. U is said to be
maximally independent if every subset of n elements of U is
R-linearly independent.

Idea:
The exponents u1, . . . , uv should come from a large set of
maximally independent v -tuples.
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Construction of a maximally independent set of v -tuples
Let p be a prime such that S < p < 2S . Using the following
definition for US ,v

US ,v =
{(1, i , i2 mod p, . . . , iv−1 mod p)|1 ≤ i ≤ v}

{((i + 1)−1 mod p, . . . , (i + v)−1 mod p)|1 ≤ i ≤ v}

we obtain a set of maximally independent v -tuples US ,v , where the
components of each vetor are positive and less than 2S.
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Proposition 106
For every non-zero polynomial P(X1, . . . ,Xv ) with no more than T
non-zero terms and the degree of each Xi bounded by D there is a
~u in UvT ,v such that P(Z~u) is not identically zero. Furthermore,
the degree of P(Z~u) is less than 2v2DT and P(Z~u) has no more
than T non-zero terms.

Proof
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Zero Equivalence Algorithm Using Nonlinear Substitution

RDZeroEquiv(BP , v ,T ) := {
loop for ~u ∈ UvT ,v do {

loop for 0 ≤ z ≤ T do {
if BP(zu1 , zu2 , . . . , zuv ) 6= 0

then return(false);

}
}
return(true);

}
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Complexity of different substitutions

# poly # terms degree points

Linear T ≤ vDT ≤ vDT vDT 2 + T

Nonlinear vT ≤ T ≤ v2DT vT 2
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Finite Fields

Problem:
Take the coeffiecient domain be Fp and consider the polynomial

M(X ) = X p − X .

M(X) vanishes for every element of Fp.

This issue means that it is not possible to do deterministic zero
testing for polynomials over a finite field without degree bounds.
However, the problem is solvable if we have degree bounds on the
black box.
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However, the problem is solvable if we have degree bounds on the
black box.
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Let BQ be a black box for a polynomial Q. Assume Q is a
univariate polynomial of degree d , with T terms, with coefficients
in Fp:

Q(X ) = q1X
e1 + q2X

e2 + . . . + qTX eT ,

where ei ≤ d .

Using Proposition 100, the sequence of evaluation
points, 1,m,m2, . . . will be a distinguishing sequence if each of the
values

me1 ,me2 , . . . ,meT

are distinct. If the multiplicative order of m is greater than d , then
these values are certainly distinct.
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Solution:
Enlarge the ground field Fp to Fpk which does have elements of
order d.

I the characteristic of the ground field is very large, p > 2d ,
m = 2 will suffice

I if p is small we expand Fp by adjoining an element of degree
k over Fp, where pk > d

I if p is very large we construct a degree extension of Fp of
degree K, where K > d

A. Würfl Zero Equivalence Testing



Outline
Bounds on Polynomials

Zero Equivalence Testing
Appendix

Probabilistic Techniques
Deterministic Results
Negative Results

Solution:
Enlarge the ground field Fp to Fpk which does have elements of
order d.

I the characteristic of the ground field is very large, p > 2d ,
m = 2 will suffice

I if p is small we expand Fp by adjoining an element of degree
k over Fp, where pk > d

I if p is very large we construct a degree extension of Fp of
degree K, where K > d

A. Würfl Zero Equivalence Testing



Outline
Bounds on Polynomials

Zero Equivalence Testing
Appendix

Probabilistic Techniques
Deterministic Results
Negative Results

Solution:
Enlarge the ground field Fp to Fpk which does have elements of
order d.

I the characteristic of the ground field is very large, p > 2d ,
m = 2 will suffice

I if p is small we expand Fp by adjoining an element of degree
k over Fp, where pk > d

I if p is very large we construct a degree extension of Fp of
degree K, where K > d

A. Würfl Zero Equivalence Testing



Outline
Bounds on Polynomials

Zero Equivalence Testing
Appendix

Probabilistic Techniques
Deterministic Results
Negative Results

Solution:
Enlarge the ground field Fp to Fpk which does have elements of
order d.

I the characteristic of the ground field is very large, p > 2d ,
m = 2 will suffice

I if p is small we expand Fp by adjoining an element of degree
k over Fp, where pk > d

I if p is very large we construct a degree extension of Fp of
degree K, where K > d

A. Würfl Zero Equivalence Testing



Outline
Bounds on Polynomials

Zero Equivalence Testing
Appendix

Probabilistic Techniques
Deterministic Results
Negative Results

Negative Results

Computational Complexity
The zero equivalence problem with only degree bounds, and no
bound on the number of terms, is not solvable in deterministic
polynomial time:

Proposition 108
Given a black box representing a polynomial P(~X ) in v variables
and of degree less than D in each variable, any deterministic
algorithm that determines if P is the zero polynomial runs in time
at least O(Dv ).
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Complexity of Zero Testing

Probabilistic Deterministic

degree bounds log 1
ε · logr−1 vD Dv logr D

term bounds T r+1 logr v

r is a constant corresponding to the type of arithmetic being used
by BP . For classical arithmetic r = 2; for fast arithmetic r is
slightly greater than 1.

A. Würfl Zero Equivalence Testing



Outline
Bounds on Polynomials

Zero Equivalence Testing
Appendix

Probabilistic Techniques
Deterministic Results
Negative Results

Thank you for your attention!
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Proofs

Proof (Proposition 97)
There are at most dv values of Xv at which P is identically zero.
So for any of these dv values of Xv and any value for the other Xi ,
P is zero. This comes to dvBv−1. For all other b − dv values of Xv

we have a polynomial in v − 1 variables. The polynomial can have
no more than Zv−1(B) zeros. Therefore,

Zv (B) ≤ dvBv−1 + (B − dv )Zv−1(B).
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Rather than solving this recurrence for Zv , we solve it for
Nv = Bv − Zv . Since Z1 is less than or equal to d1,
Nv ≥ (B − d1). This is the basic step of the inductive proof.
Writing the recurrence in terms of Nv we have

Bv − Nv (B) ≤ dvBv−1 + (B − dv )(Bv−1 − Nv−1(B)).

or
Nv (B) ≥ (B − dv )Nv−1(B),

the proposition follows with

Bv − (B − d1)(B − d2) . . . (B − dv ) ≥ (d1 + d2 + . . . + dv )Bv−1.

Back
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Proof (Proposition 98)
We use induction on the number of variables as was done in the
proof of the previous proposition.
For v = 1, f is univariate polynomial of degree D and can have no
more than D zeros in A, so

P(P(x1) = 0|x1 ∈ S) ≤ D

B
.
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Assume the proposition is true for polynomials in v − 1 variables.
Let the degree of P in Xv be dv and denote the leading coefficient
of f with respect to Xv by f0, i.e.,

P = p0(X1 . . . , Xv−1)X
d
v + . . . .

The total degree of p0 is no more than D − d , so the probability
that p0 = 0 is

P(p0(x1, . . . , xv ) = 0|xi ∈ S) ≤ D − d

B
.
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Omitting the arguments of x1, . . . , xv and x1, . . . , xv−1 for brevity,
we can write

P(P = 0) = P(P = 0 ∧ p0 = 0) · P(p0 = 0)

+ P(P = 0 ∧ p0 6= 0) · P(p0 6= 0),

≤ P(p0) + P(P = 0 ∧ p0 6= p).

Assume that p0(x1, . . . , xv−1) 6= 0. P(x1, . . . , xv−1,Xv ) is a
polynomial of degree d , so there are at most d xv ∈ scr S such
that P(x1, . . . , xv ) = 0. Consequently,

P(P(x1, . . . , xv ) = 0|xi ∈ S) ≤ D − d

B
+

d

B
=

D

B
.
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Proof (Proposition 106)
Let the non-zero terms of P be

P(~X ) = c1
~X~e1 + c2

~X~e2 + . . . + cT
~X~eT

The substitution Xi 7→ Zui transforms this polynomial into

P(~Z ) = c1
~Z~e1·~u + c2

~Z~e2·~u + . . . + cT
~Z~eT ·~u

To find a substitution for which P(Z~u) is not identically zero we
require ~u satisfy

~e1 · ~u 6= ~ei · ~u,

or equivalently (~ei − ~e1) · ~u 6= 0, for 2 ≤ i < T . Let d = ~e1 · ~u1.
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With such a substitution only one monomial in P(~X ) will be
mapped to a term in P(Z ) of degree d , namely the c1

~X~e1 term.
Since c1 6= 0, P(Z ) cannot be identically zero; it must contain a
Zd term. Letting Li (~w) = (~ei −~e1) · ~w , 2 ≤ i < T we want to find
a ~u at which none of the Li vanish. Let ~w1, . . . , ~wv be destinct
elements of UvT ,v , so ~w1

...
~wv

 · (~ei − ~e1) = A · (~ei − ~e1) =

 Li (~w1)
...

Li (~wv )
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Since A is non-singular, the right hand side can only be zero if Li is
identically zero. Thus, Li cannot vanish for more than n − 1 of the
elements of UvT ,v . There are T − 1 Li´s. Since (v − 1) · (T − 1) is
less than vT , there must be at least one element of UvT ,v for
which none of the Li vanish as desired. We denote such an element
by ~u. Each of the components of ~u is less than 2nT , while the
elements of ~ei are less than D. Thus the degree of P(Z~u) is less
than 2v2DT .
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Riemann Hypothesis

In his 1859 paper On the Number of Primes Less Than a Given
Magnitude, Bernhard Riemann (1826-1866) examined the
properties of the function

ζ(s) :=
∞∑

n=1

1

ns
,

for s a complex number. This function is analytic for real part of s
greater than 1.
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It is realted to the prime numbers by the Euler Product Formula

ζ(s) =
∏

p prim

(1− p−s)−1,

again definied for real part of s greater than one.
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Riemann hypothesis
The nontrivial zeros of ζ(s) have real part equal to 1

2 .
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