Zero Equivalence Testing

A. Würfl

21. September 2004

A. Würfl

Zero Equivalence Testing

Bounds on Polynomials

 Height of Polynomials Uniform Coefficient BoundsSize of a Polynomial's Zeros
Discriminants and Zero Separation
Zero Equivalence Testing
Probabilistic Techniques
Deterministic Results
Negative Results
Appendix
Proofs
Riemann Hypothesis

Height of a Polynomial

Definitions

Let $P(X)=p_{0} X^{d}+\cdots+p_{d-1} X+p_{d}$, where $p_{0} \neq 0$. Then

Height of a Polynomial

Definitions

Let $P(X)=p_{0} X^{d}+\cdots+p_{d-1} X+p_{d}$, where $p_{0} \neq 0$. Then

- height of $\mathrm{P}(\mathrm{X})$:

$$
\|P\|_{\infty}=\max \left\{\left|p_{0}\right|,\left|p_{1}\right|, \ldots,\left|p_{d}\right|\right\}
$$

Height of a Polynomial

Definitions

Let $P(X)=p_{0} X^{d}+\cdots+p_{d-1} X+p_{d}$, where $p_{0} \neq 0$. Then

- height of $\mathrm{P}(\mathrm{X})$:
$\|P\|_{\infty}=\max \left\{\left|p_{0}\right|,\left|p_{1}\right|, \ldots,\left|p_{d}\right|\right\}$
- 2-norm of $P(X)$:
$\|P\|_{2}=\left(\left|p_{0}\right|^{2}+\cdots+\left|p_{d}\right|^{2}\right)^{\frac{1}{2}}$

Height of a Polynomial

Definitions

Let $P(X)=p_{0} X^{d}+\cdots+p_{d-1} X+p_{d}$, where $p_{0} \neq 0$. Then

- height of $\mathrm{P}(\mathrm{X})$:

$$
\|P\|_{\infty}=\max \left\{\left|p_{0}\right|,\left|p_{1}\right|, \ldots,\left|p_{d}\right|\right\}
$$

- 2-norm of $P(X)$:
$\|P\|_{2}=\left(\left|p_{0}\right|^{2}+\cdots+\left|p_{d}\right|^{2}\right)^{\frac{1}{2}}$
- We use $|P|$ for $\|P\|_{\infty}$ and $\|P\|$ for $\|P\|_{2}$

Relationship between these bounds
Propostion 81 Let P be a univariate polynomial of degree d over
\mathbb{C}. Then

$$
|P| \leq\|P\| \leq \sqrt{d+1}|P|
$$

Definition

Denote the zeros of $\mathrm{P}(\mathrm{X})$ by $\alpha_{1}, \ldots, \alpha_{d}$. We define $\mathrm{M}(\mathrm{P})$ to be

$$
M(P)=\left|p_{0}\right| \prod_{1 \leq i \leq d} \max \left\{1,\left|\alpha_{i}\right|\right\}
$$

This norm is called the M-norm.

Uniform Coefficient Bounds

Three Different Norms

Uniform Coefficient Bounds

Three Different Norms

- the height of a polynomial, $|P|$

Uniform Coefficient Bounds

Three Different Norms

- the height of a polynomial, $|P|$
- the 2 -norm, $\|P\|$

Uniform Coefficient Bounds

Three Different Norms

- the height of a polynomial, $|P|$
- the 2-norm, $\|P\|$
- the M-norm, $M(P)$

Relations between these norms

A. Würfl
 Zero Equivalence Testing

Relations between these norms

- Propostion 85 (Landau) Let $P(X)$ be a univariate polynomial over \mathbb{C}, then

$$
M(P) \leq\|P\|
$$

Relations between these norms

- Propostion 85 (Landau) Let $P(X)$ be a univariate polynomial over \mathbb{C}, then

$$
M(P) \leq\|P\| .
$$

- Propostion 86 Let $P(X)$ be a polynomial in $\mathbb{C}[X]$ of degree d, then

$$
2^{-d}|P| \leq M(P) \leq \sqrt{d+1}|P|
$$

Size of a Polynomial's Zeros

Propostion 92 (Cauchy)
Let $P(X)=X^{d}+p_{1} X^{d-1}+\cdots+p_{d}$ be a non-constant, monic polynomial with coefficients in \mathbb{C}. Then each root of $P(X), \alpha$, satisfies the inequality

$$
|\alpha| \leq 1+\max \left\{1,\left|p_{1}\right|, \ldots,\left|p_{n}\right|\right\}=1+|P| .
$$

Proof

Assume $|\alpha|$ is greater than 1, otherwise the proposition is obvious. By taking the absolute value of

$$
\alpha^{d}=-\left(p_{1} \alpha^{d-1}+\ldots+p_{n}\right),
$$

Proof

Assume $|\alpha|$ is greater than 1, otherwise the proposition is obvious. By taking the absolute value of

$$
\alpha^{d}=-\left(p_{1} \alpha^{d-1}+\ldots+p_{n}\right),
$$

we have

$$
|\alpha|^{d}=\left|p_{1} \alpha^{d-1}+\ldots+p_{n}\right| \leq\left|\alpha^{d-1}+\ldots+1\right| \cdot|P| \leq \frac{|\alpha|^{d}}{|\alpha|-1}|P| .
$$

Proof

Assume $|\alpha|$ is greater than 1, otherwise the proposition is obvious. By taking the absolute value of

$$
\alpha^{d}=-\left(p_{1} \alpha^{d-1}+\ldots+p_{n}\right),
$$

we have

$$
|\alpha|^{d}=\left|p_{1} \alpha^{d-1}+\ldots+p_{n}\right| \leq\left|\alpha^{d-1}+\ldots+1\right| \cdot|P| \leq \frac{|\alpha|^{d}}{|\alpha|-1}|P|
$$

Since $|\alpha|>1$, we can multiply by $|\alpha|-1$ which gives $|\alpha| \leq 1+|P|$.

Discriminants and Zero Separation

The Vandermonde Matrix
As usual denote the zeros of $\mathrm{P}(\mathrm{X})$ by $\alpha_{1}, \ldots, \alpha_{d}$ and consider the matrix

$$
P_{D}=\left(\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \ldots & \alpha_{1}^{d-1} \\
1 & \alpha_{2} & \alpha_{2}^{2} & \ldots & \alpha_{2}^{d-1} \\
\vdots & & \vdots & \ldots & \vdots \\
1 & \alpha_{d} & \alpha_{d}^{2} & \ldots & \alpha_{d}^{d-1}
\end{array}\right)
$$

Discriminants and Zero Separation

The Vandermonde Matrix
As usual denote the zeros of $\mathrm{P}(\mathrm{X})$ by $\alpha_{1}, \ldots, \alpha_{d}$ and consider the matrix

$$
P_{D}=\left(\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \ldots & \alpha_{1}^{d-1} \\
1 & \alpha_{2} & \alpha_{2}^{2} & \ldots & \alpha_{2}^{d-1} \\
\vdots & & \vdots & \ldots & \vdots \\
1 & \alpha_{d} & \alpha_{d}^{2} & \ldots & \alpha_{d}^{d-1}
\end{array}\right)
$$

This is a Vandermonde matrix. Its determinant is equal to the product of the difference of the zeros of $P(X)$:

$$
\operatorname{det}\left|P_{D}\right|=\prod_{1 \leq i<j \leq d}\left(\alpha_{i}-\alpha_{j}\right)
$$

Discriminant

Definition

The discriminant of $P(X)$ is defined to be

$$
\mathbf{D}(P)=p_{0}^{2 d-2} \operatorname{det}\left|P_{D}\right|^{2}
$$

Proposition 94

If $P(X)$ is a univariate polynomial over \mathbb{C} of degree d and leading coefficient p_{0} then the absolute value of the discriminant of $P(X)$ is bounded by

$$
|\mathbf{D}(P)| \geq d^{d} M(P)^{2(d-1)} \geq d^{d}\|P\|^{2(d-1)}
$$

Proposition 95

Let $P(X)$ be a univariate, square free polynomial over \mathbb{Z} of degree d. Denote the number of real zeros of $P(X)$ by r_{1} and the number of complex zeros by $2 r_{2}$. Then

$$
\begin{aligned}
& |\mathbf{D}(P)| \geq(60.1)^{r_{1}}(22.2)^{2 r_{2}} e^{-254} \\
& |\mathbf{D}(P)| \geq(58.6)^{r_{1}}(21.8)^{2 r_{2}} e^{-70}
\end{aligned}
$$

Proposition 95

Let $P(X)$ be a univariate, square free polynomial over \mathbb{Z} of degree d. Denote the number of real zeros of $P(X)$ by r_{1} and the number of complex zeros by $2 r_{2}$. Then

$$
\begin{aligned}
& |\mathbf{D}(P)| \geq(60.1)^{r_{1}}(22.2)^{2 r_{2}} e^{-254} \\
& |\mathbf{D}(P)| \geq(58.6)^{r_{1}}(21.8)^{2 r_{2}} e^{-70}
\end{aligned}
$$

Assuming the generalized Riemann hypothesis

$$
|\mathbf{D}(P)| \geq(188.3)^{r_{1}}(41.6)^{2 r_{2}} e^{-3.7 \times 10^{8}}
$$

Zero Separation

Definition

We define the zero separation of P to be

$$
\Delta(P)=\min _{i \neq j}\left|a_{i}-a_{j}\right|
$$

Proposition 96 (Mahler)

Let $P(x)$ be a square free polynomial of degree d with discriminant $D(P)$. Then

$$
\Delta(P)>\sqrt{\frac{3|D(P)|}{d^{d+2}}} M(P)^{1-d}
$$

Proposition 96 (Mahler)

Let $P(x)$ be a square free polynomial of degree d with discriminant $D(P)$. Then

$$
\Delta(P)>\sqrt{\frac{3|D(P)|}{d^{d+2}}} M(P)^{1-d}
$$

Using Proposition 85 we have

$$
\Delta(P)>\sqrt{\frac{3|D(P)|}{d^{d+2}}}\|P\|^{1-d}
$$

Zero Equivalence Testing

The Black Box Approach
Let $P\left(X_{1}, \ldots, X_{v}\right)$ be some symoblic expression over a ring R. \mathcal{B}_{P} is a black box representing P if $\mathcal{B}_{P}\left(X_{1}, \ldots, X_{v}\right)$ returns $P\left(x_{1}, \ldots, x_{v}\right)$.

Probabilistic Techniques

Proposition 97
Let A be an integral domain, $P \in A\left[X_{1}, \ldots, X_{v}\right]$ and the degree of P in each of X_{i} be bounded by d_{i}. Let $Z_{v}(B)$ be the number of zeros of P, \vec{x} such that X_{i} is chosen from a set with B elements,
$B \gg d$. Then

$$
Z_{v}(B) \leq\left(d_{1}+d_{2}+\ldots+d_{v}\right) B^{v-1}
$$

Proposition 98 (Zippel)

Let $P \in A\left[X_{1}, \ldots, X_{V}\right]$ be a polynomial of total degree D over an integral domain A. Let \mathcal{S} be a subset of A of cardinality B. Then

$$
\mathcal{P}\left(P\left(x_{1}, \ldots, x_{\mathrm{v}}\right)=0 \mid x_{i} \in \mathcal{S}\right) \leq \frac{D}{B} .
$$

A Probabilistic Algorithm for Zero Equivalence

```
PZeroEquiv(\mathcal{B}},v,D,\epsilon) := 
    k\leftarrow4(\operatorname{log}1/\epsilon)/(\operatorname{log}vD);
    loop for 0\leqi<k do {
    if }\mp@subsup{\mathcal{B}}{P}{}(\mp@subsup{2}{}{i},\mp@subsup{3}{}{i},\ldots,\mp@subsup{p}{v}{i})\not=0\mathrm{ then return(false);
    }
    return(true);
}
```


Deterministic Results

Proposition 100

Let $P(\vec{X})$ be a non-zero polynomial in $R[\vec{X}]$ with at most T terms and with monomial exponent vectors \vec{e}_{i}. Assume there exists an n-tuple \vec{x} (in some R-module) such that the $\vec{x}^{\vec{e}}$ are distinct. Then not all of $P\left(\vec{x}^{0}\right), P\left(\vec{x}^{1}\right), P\left(\vec{x}^{2}\right), \ldots, P\left(\vec{x}^{T-1}\right)$ are zero.

Without Degree Bounds

Proposition 101 (Grigor'ev and Karpinski)
Let $P(\vec{X})$ be a polynomial in v variables over a ring of characteristic zero, A, and assume that P has no more than T monomials. Then there exists a set of v-tuples, $\left\{\vec{x}_{0}, \ldots, \vec{x}_{T-1}\right\}$ such that either $P\left(\vec{x}_{i}\right) \neq 0$ for some \vec{x}_{i} or P is identically zero.

Proof

Let $\vec{x}=\left(2,3,5, \ldots, p_{v}\right)$, where the entries are the canonical images of the prime numbers of \mathbb{Z} in A. By unique factorization of \mathbb{Z}, the monomials $\vec{x}^{\vec{~}} \vec{i}$ are distinict, and thus by Proposition 100 either P is identiacally zero or does not vanish at every element of the set $\left\{\vec{x}^{0}, \ldots, \vec{x}^{T-1}\right\}$.

A Deterministic Algorithm Without Degree Bounds

```
GKZeroEquiv (\mathcal{B}},n,n,T):= 
    loop for 0\leqi<T do {
        if }\mp@subsup{\mathcal{B}}{P}{}(\mp@subsup{2}{}{i},\mp@subsup{3}{}{i},\ldots,\mp@subsup{p}{v}{i})\not=0\mathrm{ then return(false);
    }
    return(true);
}
```


With Degree Bounds

Linear Substitution
Let R be a field, then $R[Z]$ is a unique factorization domain and $Z+1, Z+2, \ldots$ are primes.

With Degree Bounds

Linear Substitution
Let R be a field, then $R[Z]$ is a unique factorization domain and $Z+1, Z+2, \ldots$ are primes.
Denote by \vec{Z} the vector $(Z+1, Z+2, \ldots, Z+v)$. Thus the $\vec{Z} \vec{e}_{i}$ are distinct.

With Degree Bounds

Linear Substitution

Let R be a field, then $R[Z]$ is a unique factorization domain and $Z+1, Z+2, \ldots$ are primes.
Denote by \vec{Z} the vector $(Z+1, Z+2, \ldots, Z+v)$. Thus the $\vec{Z} \vec{e}_{i}$ are distinct.
Sending

$$
\left(X_{1}, \ldots, X_{v}\right) \mapsto(Z+1, \ldots, Z+v)=\vec{Z}
$$

maps $P(\vec{X})$ into a univariate polynomial.

A Deterministic Algorithm Using Linear Substitution

```
SDZeroEquiv(\mathcal{B}},v,D,T):=
    loop for 0\leqi<T do {
        loop for 0\leqz\leqivD do {
        if }\mp@subsup{\mathcal{B}}{P}{}((z+1\mp@subsup{)}{}{i},(z+2\mp@subsup{)}{}{i},\ldots,(z+v\mp@subsup{)}{}{i})\not=
                then return(false);
        }
    }
    return(true);
}
```


Proposition 104

Let $P(x)$ be a univariate polynomial with coefficients in \mathbb{R}. The number of positive real zeros of $P(x)$ is less than terms (p).

Nonlinear Substitution

Instead of using the simple linear substitution, we use:

$$
\left(X_{1}, X_{2}, \ldots, X_{v}\right) \mapsto\left(Z^{u_{1}}, Z^{u_{2}}, \ldots, Z^{U_{v}}\right)
$$

where the u_{i} are positive integers. We call this substitution a nonlinear substitution.

Nonlinear Substitution

Instead of using the simple linear substitution, we use:

$$
\left(X_{1}, X_{2}, \ldots, X_{v}\right) \mapsto\left(Z^{u_{1}}, Z^{u_{2}}, \ldots, Z^{U_{v}}\right)
$$

where the u_{i} are positive integers. We call this substitution a nonlinear substitution.
The nonlinear substitution sends monomials in $P(\vec{X})$ to univariate monomials in Z, so that $P\left(Z^{\vec{u}}\right)$ has no more non-zero terms than $P(\vec{X})$.

Nonlinear Substitution

Instead of using the simple linear substitution, we use:

$$
\left(X_{1}, X_{2}, \ldots, X_{v}\right) \mapsto\left(Z^{u_{1}}, Z^{u_{2}}, \ldots, Z^{U_{v}}\right)
$$

where the u_{i} are positive integers. We call this substitution a nonlinear substitution.
The nonlinear substitution sends monomials in $P(\vec{X})$ to univariate monomials in Z, so that $P\left(Z^{\vec{u}}\right)$ has no more non-zero terms than $P(\vec{X})$.
Difficulty: finding a vector \vec{u} such that $P\left(Z^{\vec{u}}\right)$ is not identically zero

Definition

Let \mathcal{U} be a set of v-tuples with components in $\mathbb{Z} . \mathcal{U}$ is said to be maximally independent if every subset of n elements of \mathcal{U} is R-linearly independent.

Definition

Let \mathcal{U} be a set of v-tuples with components in $\mathbb{Z} . \mathcal{U}$ is said to be maximally independent if every subset of n elements of \mathcal{U} is R-linearly independent.

Idea:
The exponents u_{1}, \ldots, u_{v} should come from a large set of maximally independent v-tuples.

Construction of a maximally independent set of v-tuples Let p be a prime such that $S<p<2 S$. Using the following definition for $\mathcal{U}_{S, v}$

$$
\mathcal{U}_{S, v}=\begin{aligned}
& \left\{\left(1, i, i^{2} \bmod p, \ldots, i^{v-1} \bmod p\right) \mid 1 \leq i \leq v\right\} \\
& \left\{\left((i+1)^{-1} \bmod p, \ldots,(i+v)^{-1} \bmod p\right) \mid 1 \leq i \leq v\right\}
\end{aligned}
$$

Construction of a maximally independent set of v-tuples Let p be a prime such that $S<p<2 S$. Using the following definition for $\mathcal{U}_{S, v}$

$$
\mathcal{U}_{S, v}=\begin{aligned}
& \left\{\left(1, i, i^{2} \bmod p, \ldots, i^{v-1} \bmod p\right) \mid 1 \leq i \leq v\right\} \\
& \left\{\left((i+1)^{-1} \bmod p, \ldots,(i+v)^{-1} \bmod p\right) \mid 1 \leq i \leq v\right\}
\end{aligned}
$$

we obtain a set of maximally independent v-tuples $\mathcal{U}_{S, v}$, where the components of each vetor are positive and less than 2 S .

Proposition 106

For every non-zero polynomial $P\left(X_{1}, \ldots, X_{v}\right)$ with no more than T non-zero terms and the degree of each X_{i} bounded by D there is a \vec{u} in $\mathcal{U}_{v T, v}$ such that $P\left(Z^{\vec{u}}\right)$ is not identically zero. Furthermore, the degree of $P\left(Z^{\vec{u}}\right)$ is less than $2 v^{2} D T$ and $P\left(Z^{\vec{u}}\right)$ has no more than T non-zero terms.

Zero Equivalence Algorithm Using Nonlinear Substitution

```
RDZeroEquiv(\mathcal{B},v,T):= {
    loop for \vec{u}\in\mp@subsup{\mathcal{U}}{vT,v do {}{}={
        loop for 0\leqz\leqT do {
        if }\mp@subsup{\mathcal{B}}{P}{}(\mp@subsup{z}{}{\mp@subsup{u}{1}{}},\mp@subsup{z}{}{\mp@subsup{u}{2}{}},\ldots,,\mp@subsup{z}{}{\mp@subsup{u}{v}{}})\not=
                then return(false);
    }
    }
    return(true);
}
```


Complexity of different substitutions

	\# poly	\# terms	degree	points
Linear	T	$\leq v D T$	$\leq v D T$	$v D T^{2}+T$
Nonlinear	$v T$	$\leq T$	$\leq v^{2} D T$	$v T^{2}$

Finite Fields

Problem:

Take the coeffiecient domain be \mathbb{F}_{p} and consider the polynomial

$$
M(X)=X^{p}-X .
$$

$M(X)$ vanishes for every element of \mathbb{F}_{p}.

Finite Fields

Problem:

Take the coeffiecient domain be \mathbb{F}_{p} and consider the polynomial

$$
M(X)=X^{p}-X .
$$

$M(X)$ vanishes for every element of \mathbb{F}_{p}.
This issue means that it is not possible to do deterministic zero testing for polynomials over a finite field without degree bounds. However, the problem is solvable if we have degree bounds on the black box.

Let \mathcal{B}_{Q} be a black box for a polynomial Q. Assume Q is a univariate polynomial of degree d, with T terms, with coefficients in \mathbb{F}_{p} :

$$
Q(X)=q_{1} X^{e_{1}}+q_{2} X^{e_{2}}+\ldots+q_{T} X^{e_{T}}
$$

where $e_{i} \leq d$.

Let \mathcal{B}_{Q} be a black box for a polynomial Q. Assume Q is a univariate polynomial of degree d, with T terms, with coefficients in \mathbb{F}_{p} :

$$
Q(X)=q_{1} X^{e_{1}}+q_{2} X^{e_{2}}+\ldots+q_{T} X^{e_{T}}
$$

where $e_{i} \leq d$. Using Proposition 100, the sequence of evaluation points, $1, m, m^{2}, \ldots$ will be a distinguishing sequence if each of the values

$$
m^{e_{1}}, m^{e_{2}}, \ldots, m^{e_{T}}
$$

are distinct.

Let \mathcal{B}_{Q} be a black box for a polynomial Q. Assume Q is a univariate polynomial of degree d, with T terms, with coefficients in \mathbb{F}_{p} :

$$
Q(X)=q_{1} X^{e_{1}}+q_{2} X^{e_{2}}+\ldots+q_{T} X^{e_{T}}
$$

where $e_{i} \leq d$. Using Proposition 100, the sequence of evaluation points, $1, m, m^{2}, \ldots$ will be a distinguishing sequence if each of the values

$$
m^{e_{1}}, m^{e_{2}}, \ldots, m^{e_{T}}
$$

are distinct. If the multiplicative order of m is greater than d, then these values are certainly distinct.

Solution:

Enlarge the ground field \mathbb{F}_{p} to $\mathbb{F}_{p^{k}}$ which does have elements of order d.

Solution:

Enlarge the ground field \mathbb{F}_{p} to $\mathbb{F}_{p^{k}}$ which does have elements of order d.

- the characteristic of the ground field is very large, $p>2^{d}$, $m=2$ will suffice

Solution:

Enlarge the ground field \mathbb{F}_{p} to $\mathbb{F}_{p^{k}}$ which does have elements of order d.

- the characteristic of the ground field is very large, $p>2^{d}$, $m=2$ will suffice
- if p is small we expand \mathbb{F}_{p} by adjoining an element of degree k over \mathbb{F}_{p}, where $p^{k}>d$

Solution:

Enlarge the ground field \mathbb{F}_{p} to $\mathbb{F}_{p^{k}}$ which does have elements of order d.

- the characteristic of the ground field is very large, $p>2^{d}$, $m=2$ will suffice
- if p is small we expand \mathbb{F}_{p} by adjoining an element of degree k over \mathbb{F}_{p}, where $p^{k}>d$
- if p is very large we construct a degree extension of \mathbb{F}_{p} of degree K, where $K>d$

Negative Results

Computational Complexity

The zero equivalence problem with only degree bounds, and no bound on the number of terms, is not solvable in deterministic polynomial time:

Negative Results

Computational Complexity

The zero equivalence problem with only degree bounds, and no bound on the number of terms, is not solvable in deterministic polynomial time:

Proposition 108

Given a black box representing a polynomial $P(\vec{X})$ in v variables and of degree less than D in each variable, any deterministic algorithm that determines if P is the zero polynomial runs in time at least $O\left(D^{v}\right)$.

Complexity of Zero Testing

	Probabilistic	Deterministic
degree bounds	$\log \frac{1}{\epsilon} \cdot \log ^{r-1} v D$	$D^{r} \log ^{r} D$
term bounds		$T^{r+1} \log ^{r} v$

r is a constant corresponding to the type of arithmetic being used by \mathcal{B}_{P}. For classical arithmetic $r=2$; for fast arithmetic r is slightly greater than 1.

Thank you for your attention!

A. Würfl
Zero Equivalence Testing

Appendix

A. WürfI Zero Equivalence Testing

Proofs

Proof (Proposition 97)

There are at most d_{v} values of X_{v} at which P is identically zero.
So for any of these d_{v} values of X_{v} and any value for the other X_{i}, P is zero. This comes to $d_{v} B^{v-1}$. For all other $b-d_{v}$ values of X_{v} we have a polynomial in $v-1$ variables. The polynomial can have no more than $Z_{v-1}(B)$ zeros. Therefore,

$$
Z_{v}(B) \leq d_{v} B^{v-1}+\left(B-d_{v}\right) Z_{v-1}(B)
$$

Applan

Rather than solving this recurrence for Z_{v}, we solve it for $N_{v}=B^{v}-Z_{v}$. Since Z_{1} is less than or equal to d_{1}, $N_{v} \geq\left(B-d_{1}\right)$. This is the basic step of the inductive proof. Writing the recurrence in terms of N_{v} we have

$$
B^{v}-N_{v}(B) \leq d_{v} B^{v-1}+\left(B-d_{v}\right)\left(B^{v-1}-N_{v-1}(B)\right)
$$

or

$$
N_{v}(B) \geq\left(B-d_{v}\right) N_{v-1}(B)
$$

the proposition follows with

$$
B^{v}-\left(B-d_{1}\right)\left(B-d_{2}\right) \ldots\left(B-d_{v}\right) \geq\left(d_{1}+d_{2}+\ldots+d_{v}\right) B^{v-1}
$$

Proof (Proposition 98)

We use induction on the number of variables as was done in the proof of the previous proposition.
For $v=1, f$ is univariate polynomial of degree D and can have no more than D zeros in A, so

$$
\mathcal{P}\left(P\left(x_{1}\right)=0 \mid x_{1} \in \mathcal{S}\right) \leq \frac{D}{B} .
$$

Assume the proposition is true for polynomials in $v-1$ variables. Let the degree of P in X_{v} be d_{v} and denote the leading coefficient of f with respect to X_{v} by f_{0}, i.e.,

$$
P=p_{0}\left(X_{1} \ldots, X_{v-1}\right) X_{v}^{d}+\ldots
$$

The total degree of p_{0} is no more than $D-d$, so the probability that $p_{0}=0$ is

$$
\mathcal{P}\left(p_{0}\left(x_{1}, \ldots, x_{v}\right)=0 \mid x_{i} \in \mathcal{S}\right) \leq \frac{D-d}{B}
$$

Omitting the arguments of x_{1}, \ldots, x_{v} and x_{1}, \ldots, x_{v-1} for brevity, we can write

$$
\begin{aligned}
\mathcal{P}(P=0)= & \mathcal{P}\left(P=0 \wedge p_{0}=0\right) \cdot \mathcal{P}\left(p_{0}=0\right) \\
& +\mathcal{P}\left(P=0 \wedge p_{0} \neq 0\right) \cdot \mathcal{P}\left(p_{0} \neq 0\right) \\
\leq & \mathcal{P}\left(p_{0}\right)+\mathcal{P}\left(P=0 \wedge p_{0} \neq p\right)
\end{aligned}
$$

Assume that $p_{0}\left(x_{1}, \ldots, x_{v-1}\right) \neq 0 . P\left(x_{1}, \ldots, x_{v-1}, X_{v}\right)$ is a polynomial of degree d, so there are at most $d x_{v} \in \operatorname{scr} S$ such that $P\left(x_{1}, \ldots, x_{v}\right)=0$. Consequently,

$$
\mathcal{P}\left(P\left(x_{1}, \ldots, x_{v}\right)=0 \mid x_{i} \in \mathcal{S}\right) \leq \frac{D-d}{B}+\frac{d}{B}=\frac{D}{B} .
$$

Proof (Proposition 106)

Let the non-zero terms of P be

$$
P(\vec{X})=c_{1} \vec{X}^{\vec{e}_{1}}+c_{2} \vec{X}_{\vec{e}_{2}}+\ldots+c_{T} \vec{X}^{\vec{e}_{T}}
$$

The substitution $X_{i} \mapsto Z^{u_{i}}$ transforms this polynomial into

$$
P(\vec{Z})=c_{1} \vec{Z}^{\vec{e}_{1} \cdot \vec{u}}+c_{2} \vec{Z}^{\vec{e}_{2} \cdot \vec{u}}+\ldots+c_{T} \vec{Z}^{\vec{e}_{T} \cdot \vec{u}}
$$

To find a substitution for which $P\left(Z^{\vec{u}}\right)$ is not identically zero we require \vec{u} satisfy

$$
\vec{e}_{1} \cdot \vec{u} \neq \vec{e}_{i} \cdot \vec{u},
$$

or equivalently $\left(\vec{e}_{i}-\vec{e}_{1}\right) \cdot \vec{u} \neq 0$, for $2 \leq i<T$. Let $d=\vec{e}_{1} \cdot \vec{u}_{1}$.

With such a substitution only one monomial in $P(\vec{X})$ will be mapped to a term in $P(Z)$ of degree d, namely the $c_{1} \vec{X}^{\vec{e}_{1}}$ term. Since $c_{1} \neq 0, P(Z)$ cannot be identically zero; it must contain a Z^{d} term. Letting $L_{i}(\vec{w})=\left(\vec{e}_{i}-\vec{e}_{1}\right) \cdot \vec{w}, 2 \leq i<T$ we want to find a \vec{u} at which none of the L_{i} vanish. Let $\vec{w}_{1}, \ldots, \vec{w}_{v}$ be destinct elements of $\mathcal{U}_{v T, v}$, so

$$
\left(\begin{array}{c}
\vec{w}_{1} \\
\vdots \\
\vec{w}_{v}
\end{array}\right) \cdot\left(\vec{e}_{i}-\vec{e}_{1}\right)=A \cdot\left(\vec{e}_{i}-\vec{e}_{1}\right)=\left(\begin{array}{c}
L_{i}\left(\vec{w}_{1}\right) \\
\vdots \\
L_{i}\left(\vec{w}_{v}\right)
\end{array}\right)
$$

Since A is non-singular, the right hand side can only be zero if L_{i} is identically zero. Thus, L_{i} cannot vanish for more than $n-1$ of the elements of $\mathcal{U}_{v T, v}$. There are $T-1 L_{i}$'s. Since $(v-1) \cdot(T-1)$ is less than $v T$, there must be at least one element of $\mathcal{U}_{v T, v}$ for which none of the L_{i} vanish as desired. We denote such an element by \vec{u}. Each of the components of \vec{u} is less than $2 n T$, while the elements of \vec{e}_{i} are less than D. Thus the degree of $P\left(Z^{\vec{u}}\right)$ is less than $2 v^{2} D T$.

Riemann Hypothesis

In his 1859 paper On the Number of Primes Less Than a Given Magnitude, Bernhard Riemann (1826-1866) examined the properties of the function

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

for s a complex number. This function is analytic for real part of s greater than 1.

It is realted to the prime numbers by the Euler Product Formula

$$
\zeta(s)=\prod_{p \text { prim }}\left(1-p^{-s}\right)^{-1}
$$

again definied for real part of s greater than one.

Riemann hypothesis
The nontrivial zeros of $\zeta(s)$ have real part equal to $\frac{1}{2}$.

Riemann hypothesis
The nontrivial zeros of $\zeta(s)$ have real part equal to $\frac{1}{2}$.

Back

