Zero Equivalence Testing

A. Würfl

21. September 2004

イロト イヨト イヨト イヨト

æ

Bounds on Polynomials

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial 's Zeros Discriminants and Zero Separation

Zero Equivalence Testing

Probabilistic Techniques Deterministic Results Negative Results

Appendix

Proofs Riemann Hypothesis

< A

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial's Zeros Discriminants and Zero Separation

Height of a Polynomial

Definitions Let $P(X) = p_0 X^d + \cdots + p_{d-1} X + p_d$, where $p_0 \neq 0$. Then

イロト イヨト イヨト イヨト

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial's Zeros Discriminants and Zero Separation

Height of a Polynomial

Definitions

Let $P(X) = p_0 X^d + \cdots + p_{d-1} X + p_d$, where $p_0 \neq 0$. Then

► height of
$$P(X)$$
:
 $||P||_{\infty} = max\{|p_0|, |p_1|, ..., |p_d|\}$

イロト イヨト イヨト イヨト

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial's Zeros Discriminants and Zero Separation

Height of a Polynomial

Definitions

Let $P(X) = p_0 X^d + \cdots + p_{d-1} X + p_d$, where $p_0 \neq 0$. Then

► height of P(X): $||P||_{\infty} = max\{|p_0|, |p_1|, ..., |p_d|\}$

► 2-norm of
$$P(X)$$
:
 $||P||_2 = (|p_0|^2 + \dots + |p_d|^2)^{\frac{1}{2}}$

イロト イポト イヨト イヨト

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial's Zeros Discriminants and Zero Separation

Height of a Polynomial

Definitions

Let $P(X) = p_0 X^d + \cdots + p_{d-1} X + p_d$, where $p_0 \neq 0$. Then

► height of P(X): $||P||_{\infty} = max\{|p_0|, |p_1|, ..., |p_d|\}$

► 2-norm of
$$P(X)$$
:
 $||P||_2 = (|p_0|^2 + \dots + |p_d|^2)^{\frac{1}{2}}$

• We use |P| for $||P||_{\infty}$ and ||P|| for $||P||_2$

イロト イポト イヨト イヨト

Relationship between these bounds

Propostion 81 Let P be a univariate polynomial of degree d over \mathbb{C} . Then

$$|P| \le ||P|| \le \sqrt{d+1}|P|$$

(日) (四) (注) (注)

æ

Definition

Denote the zeros of P(X) by $\alpha_1, \ldots, \alpha_d$. We define M(P) to be

$$M(P) = |p_0| \prod_{1 \le i \le d} max\{1, |\alpha_i|\}$$

This norm is called the *M*-norm.

イロト イヨト イヨト イヨト

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial's Zeros Discriminants and Zero Separation

Uniform Coefficient Bounds

Three Different Norms

・ロト ・ 日本・ ・ 日本・ ・ 日本・

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial's Zeros Discriminants and Zero Separation

Uniform Coefficient Bounds

Three Different Norms

• the height of a polynomial, |P|

イロト イヨト イヨト イヨト

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial's Zeros Discriminants and Zero Separation

Uniform Coefficient Bounds

Three Different Norms

- the height of a polynomial, |P|
- ▶ the 2-norm, ||*P*||

イロト イヨト イヨト イヨト

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial's Zeros Discriminants and Zero Separation

Uniform Coefficient Bounds

Three Different Norms

- the height of a polynomial, |P|
- ▶ the 2-norm, ||*P*||
- ▶ the M-norm, M(P)

イロト イヨト イヨト イヨト

æ

Outline Height of Polynomials Bounds on Polynomials Uniform Coefficient Bounds Zero Equivalence Testing Size of a Polynomial 's Zeros Appendix Discriminants and Zero Separation

Relations between these norms

・ロト ・ 同ト ・ モト ・ モト

Relations between these norms

Propostion 85 (Landau) Let P(X) be a univariate polynomial over C, then

 $M(P) \leq ||P||.$

イロト イヨト イヨト イヨト

Relations between these norms

Propostion 85 (Landau) Let P(X) be a univariate polynomial over C, then

 $M(P) \leq ||P||.$

▶ Propostion 86 Let P(X) be a polynomial in C[X] of degree d, then

$$2^{-d}|P| \le M(P) \le \sqrt{d+1}|P|.$$

(日) (日) (日) (日) (日)

Height of Polynomials Uniform Coefficient Bounds Size of a Polynomial's Zeros Discriminants and Zero Separation

Size of a Polynomial's Zeros

Propostion 92 (Cauchy) Let $P(X) = X^d + p_1 X^{d-1} + \dots + p_d$ be a non-constant, monic polynomial with coefficients in \mathbb{C} . Then each root of P(X), α , satisfies the inequality

$$|\alpha| \le 1 + max\{1, |p_1|, \dots, |p_n|\} = 1 + |P|.$$

Skip Proof

Proof

Assume $|\alpha|$ is greater than 1, otherwise the proposition is obvious. By taking the absolute value of

$$\alpha^d = -(p_1\alpha^{d-1} + \ldots + p_n),$$

・ロト ・ 日 ・ ・ ヨ ト ・ ・

Proof

Assume $|\alpha|$ is greater than 1, otherwise the proposition is obvious. By taking the absolute value of

$$\alpha^d = -(p_1\alpha^{d-1} + \ldots + p_n),$$

we have

$$|\alpha|^{d} = |p_{1}\alpha^{d-1} + \ldots + p_{n}| \le |\alpha^{d-1} + \ldots + 1| \cdot |P| \le \frac{|\alpha|^{d}}{|\alpha| - 1}|P|.$$

・ロト ・ 日 ・ ・ ヨ ト・・

æ

Proof

Assume $|\alpha|$ is greater than 1, otherwise the proposition is obvious. By taking the absolute value of

$$\alpha^d = -(p_1\alpha^{d-1} + \ldots + p_n),$$

we have

$$|\alpha|^{d} = |p_{1}\alpha^{d-1} + \ldots + p_{n}| \le |\alpha^{d-1} + \ldots + 1| \cdot |P| \le \frac{|\alpha|^{d}}{|\alpha| - 1}|P|.$$

Since $|\alpha| > 1$, we can multiply by $|\alpha| - 1$ which gives $|\alpha| \le 1 + |P|$.

Discriminants and Zero Separation

The Vandermonde Matrix

As usual denote the zeros of P(X) by $\alpha_1, \ldots, \alpha_d$ and consider the matrix

$$P_{D} = \begin{pmatrix} 1 & \alpha_{1} & \alpha_{1}^{2} & \dots & \alpha_{1}^{d-1} \\ 1 & \alpha_{2} & \alpha_{2}^{2} & \dots & \alpha_{2}^{d-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_{d} & \alpha_{d}^{2} & \dots & \alpha_{d}^{d-1} \end{pmatrix}$$

イロト イヨト イヨト イヨト

Discriminants and Zero Separation

The Vandermonde Matrix

As usual denote the zeros of P(X) by $\alpha_1, \ldots, \alpha_d$ and consider the matrix

$$P_D = \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{d-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{d-1} \\ \vdots & \vdots & \dots & \vdots \\ 1 & \alpha_d & \alpha_d^2 & \dots & \alpha_d^{d-1} \end{pmatrix}$$

This is a *Vandermonde matrix*. Its determinant is equal to the product of the difference of the zeros of P(X):

$$det|P_D| = \prod_{1 \leq i < j \leq d} (\alpha_i - \alpha_j).$$

Discriminant

Definition The *discriminant* of P(X) is defined to be

$$\mathbf{D}(P) = p_0^{2d-2} det |P_D|^2$$

イロト イヨト イヨト イヨト

Outline	Height of Polynomials
Bounds on Polynomials	Uniform Coefficient Bounds
Zero Equivalence Testing	Size of a Polynomial's Zeros
Appendix	Discriminants and Zero Separation

Proposition 94

If P(X) is a univariate polynomial over \mathbb{C} of degree d and leading coefficient p_0 then the absolute value of the discriminant of P(X) is bounded by

$$|\mathbf{D}(P)| \ge d^d M(P)^{2(d-1)} \ge d^d ||P||^{2(d-1)}.$$

Proposition 95

Let P(X) be a univariate, square free polynomial over \mathbb{Z} of degree d. Denote the number of real zeros of P(X) by r_1 and the number of complex zeros by $2r_2$. Then

$$|\mathbf{D}(P)| \ge (60.1)^{r_1} (22.2)^{2r_2} e^{-254},$$

 $|\mathbf{D}(P)| \ge (58.6)^{r_1} (21.8)^{2r_2} e^{-70},$

(D) (A) (A)

Proposition 95

Let P(X) be a univariate, square free polynomial over \mathbb{Z} of degree d. Denote the number of real zeros of P(X) by r_1 and the number of complex zeros by $2r_2$. Then

$$|\mathbf{D}(P)| \ge (60.1)^{r_1} (22.2)^{2r_2} e^{-254},$$

 $|\mathbf{D}(P)| \ge (58.6)^{r_1} (21.8)^{2r_2} e^{-70},$

Assuming the generalized Riemann hypothesis

$$|\mathbf{D}(P)| \ge (188.3)^{r_1} (41.6)^{2r_2} e^{-3.7 imes 10^8}$$

Riemann Hypothesis

Zero Separation

Definition

We define the zero separation of P to be

$$\Delta(P) = \min_{i\neq j} |a_i - a_j|.$$

イロト イヨト イヨト イヨト

Proposition 96 (Mahler)

Let P(x) be a square free polynomial of degree d with discriminant D(P). Then

$$\Delta(P)>\sqrt{rac{3|D(P)|}{d^{d+2}}}M(P)^{1-d}$$

イロト イヨト イヨト イヨト

æ

Outline	Height of Polynomials
Bounds on Polynomials	Uniform Coefficient Bounds
Zero Equivalence Testing	Size of a Polynomial's Zeros
Appendix	Discriminants and Zero Separation

Proposition 96 (Mahler)

Let P(x) be a square free polynomial of degree d with discriminant D(P). Then

$$\Delta(P)>\sqrt{rac{3|D(P)|}{d^{d+2}}}M(P)^{1-d}$$

Using Proposition 85 we have

$$\Delta(P) > \sqrt{rac{3|D(P)|}{d^{d+2}}} ||P||^{1-d}.$$

A ■

Probabilistic Techniques Deterministic Results Negative Results

Zero Equivalence Testing

The Black Box Approach

Let $P(X_1, ..., X_v)$ be some symoblic expression over a ring R. \mathcal{B}_P is a *black box* representing P if $\mathcal{B}_P(X_1, ..., X_v)$ returns $P(x_1, ..., x_v)$.

Probabilistic Techniques Deterministic Results Negative Results

Probabilistic Techniques

Proposition 97

Let A be an integral domain, $P \in A[X_1, ..., X_v]$ and the degree of P in each of X_i be bounded by d_i . Let $Z_v(B)$ be the number of zeros of P, \vec{x} such that X_i is chosen from a set with B elements, $B \gg d$. Then

$$Z_{\nu}(B) \leq (d_1+d_2+\ldots+d_{\nu})B^{\nu-1}.$$

(D) (A) (A)

Probabilistic Techniques Deterministic Results Negative Results

Proposition 98 (Zippel)

Let $P \in A[X_1, ..., X_v]$ be a polynomial of total degree D over an integral domain A. Let S be a subset of A of cardinality B. Then

$$\mathcal{P}(P(x_1,\ldots,x_{\nu})=0|x_i\in\mathcal{S})\leq \frac{D}{B}.$$

イロト イポト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

A Probabilistic Algorithm for Zero Equivalence

$$\begin{array}{l} PZeroEquiv(\mathcal{B}_{P},v,D,\epsilon) := \{ \\ k \leftarrow 4(\log 1/\epsilon)/(\log vD); \\ loop for 0 \leq i < k \ do \ \{ \\ if \ \mathcal{B}_{P}(2^{i},3^{i},\ldots,p_{v}^{i}) \neq 0 \ then \ return(false); \\ \} \\ return(true); \\ \end{array}$$

イロト イヨト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Deterministic Results

Proposition 100

Let $P(\vec{X})$ be a non-zero polynomial in $R[\vec{X}]$ with at most T terms and with monomial exponent vectors \vec{e}_i . Assume there exists an n-tuple \vec{x} (in some R-module) such that the $\vec{x}^{\vec{e}_i}$ are distinct. Then not all of $P(\vec{x}^0), P(\vec{x}^1), P(\vec{x}^2), \dots, P(\vec{x}^{T-1})$ are zero.

Probabilistic Techniques Deterministic Results Negative Results

Without Degree Bounds

Proposition 101 (Grigor ´ev and Karpinski)

Let $P(\vec{X})$ be a polynomial in v variables over a ring of characteristic zero, A, and assume that P has no more than T monomials. Then there exists a set of v-tuples, $\{\vec{x}_0, \ldots, \vec{x}_{T-1}\}$ such that either $P(\vec{x}_i) \neq 0$ for some \vec{x}_i or P is identically zero.

Skip Proof

(D) (A) (A)

Probabilistic Techniques Deterministic Results Negative Results

Proof

Let $\vec{x} = (2, 3, 5, \dots, p_v)$, where the entries are the canonical images of the prime numbers of \mathbb{Z} in A. By unique factorization of \mathbb{Z} , the monomials $\vec{x}^{\vec{e}_i}$ are distinict, and thus by Proposition 100 either P is identiacally zero or does not vanish at every element of the set $\{\vec{x}^0, \dots, \vec{x}^{T-1}\}$.

A Deterministic Algorithm Without Degree Bounds

$$\begin{array}{l} \textit{GKZeroEquiv}(\mathcal{B}_{P},n,T):= \{\\ \textit{loop for } 0 \leq i < T \textit{ do } \{\\ \textit{ if } \mathcal{B}_{P}(2^{i},3^{i},\ldots,p_{v}^{i}) \neq 0 \textit{ then return(false);} \\ \\ \}\\ \textit{ return(true);} \end{array}$$

<ロ> (四) (四) (注) (日) (日)
Probabilistic Techniques Deterministic Results Negative Results

With Degree Bounds

Linear Substitution

Let R be a field, then R[Z] is a unique factorization domain and Z + 1, Z + 2, ... are primes.

イロト イヨト イヨト イヨト

æ

Probabilistic Techniques Deterministic Results Negative Results

With Degree Bounds

Linear Substitution

Let *R* be a field, then *R*[*Z*] is a unique factorization domain and Z + 1, Z + 2, ... are primes. Denote by \vec{Z} the vector (Z + 1, Z + 2, ..., Z + v). Thus the $\vec{Z}^{\vec{e}_i}$ are distinct.

イロト イポト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

With Degree Bounds

Linear Substitution

Let *R* be a field, then *R*[*Z*] is a unique factorization domain and Z + 1, Z + 2, ... are primes. Denote by \vec{Z} the vector (Z + 1, Z + 2, ..., Z + v). Thus the $\vec{Z}^{\vec{e}_i}$ are distinct.

Sending

$$(X_1,\ldots,X_v)\mapsto (Z+1,\ldots,Z+v)=\vec{Z}$$

maps $P(\vec{X})$ into a univariate polynomial.

イロト イポト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

A Deterministic Algorithm Using Linear Substitution

・ロト ・ 日ト ・ モト・

Probabilistic Techniques Deterministic Results Negative Results

Proposition 104

Let P(x) be a univariate polynomial with coefficients in \mathbb{R} . The number of positive real zeros of P(x) is less than terms(p).

イロト イポト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Nonlinear Substitution

Instead of using the simple linear substitution, we use:

$$(X_1,X_2,\ldots,X_{\nu})\mapsto (Z^{u_1},Z^{u_2},\ldots,Z^{u_{\nu}})$$

where the u_i are positive integers. We call this substitution a *nonlinear substitution*.

イロト イヨト イヨト イヨト

æ

Nonlinear Substitution

Instead of using the simple linear substitution, we use:

$$(X_1,X_2,\ldots,X_{\nu})\mapsto (Z^{u_1},Z^{u_2},\ldots,Z^{u_{\nu}})$$

where the u_i are positive integers. We call this substitution a *nonlinear substitution*.

The nonlinear substitution sends monomials in $P(\vec{X})$ to univariate monomials in Z, so that $P(Z^{\vec{u}})$ has no more non-zero terms than $P(\vec{X})$.

Nonlinear Substitution

Instead of using the simple linear substitution, we use:

$$(X_1,X_2,\ldots,X_{\nu})\mapsto (Z^{u_1},Z^{u_2},\ldots,Z^{u_{\nu}})$$

where the u_i are positive integers. We call this substitution a *nonlinear substitution*.

The nonlinear substitution sends monomials in $P(\vec{X})$ to univariate monomials in Z, so that $P(Z^{\vec{u}})$ has no more non-zero terms than $P(\vec{X})$.

Difficulty: finding a vector \vec{u} such that $P(Z^{\vec{u}})$ is not identically zero

Probabilistic Techniques Deterministic Results Negative Results

Definition

Let \mathcal{U} be a set of v-tuples with components in \mathbb{Z} . \mathcal{U} is said to be **maximally independent** if every subset of n elements of \mathcal{U} is R-linearly independent.

イロト イヨト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Definition

Let \mathcal{U} be a set of v-tuples with components in \mathbb{Z} . \mathcal{U} is said to be **maximally independent** if every subset of n elements of \mathcal{U} is R-linearly independent.

Idea:

The exponents u_1, \ldots, u_v should come from a large set of maximally independent *v*-tuples.

イロト イポト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Construction of a maximally independent set of *v*-tuples Let *p* be a prime such that $S . Using the following definition for <math>U_{S,v}$

$$\mathcal{U}_{S,v} = \begin{array}{l} \{(1, i, i^2 \bmod p, \dots, i^{v-1} \bmod p) | 1 \le i \le v\} \\ \{((i+1)^{-1} \bmod p, \dots, (i+v)^{-1} \bmod p) | 1 \le i \le v\} \end{array}$$

イロト イヨト イヨト イヨト

Construction of a maximally independent set of v-tuples Let p be a prime such that S . Using the following $definition for <math>U_{S,v}$

$$\mathcal{U}_{\mathcal{S},v} = \begin{array}{l} \{(1,i,i^2 \bmod p,\ldots,i^{v-1} \bmod p) | 1 \le i \le v\} \\ \{((i+1)^{-1} \bmod p,\ldots,(i+v)^{-1} \bmod p) | 1 \le i \le v\} \end{array}$$

we obtain a set of maximally independent v-tuples $\mathcal{U}_{S,v}$, where the components of each vetor are positive and less than 2S.

イロト イポト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Proposition 106

For every non-zero polynomial $P(X_1, ..., X_v)$ with no more than T non-zero terms and the degree of each X_i bounded by D there is a \vec{u} in $\mathcal{U}_{vT,v}$ such that $P(Z^{\vec{u}})$ is not identically zero. Furthermore, the degree of $P(Z^{\vec{u}})$ is less than $2v^2DT$ and $P(Z^{\vec{u}})$ has no more than T non-zero terms.

Proof

Probabilistic Techniques Deterministic Results Negative Results

Zero Equivalence Algorithm Using Nonlinear Substitution

・ロト ・ 日ト ・ モト・

Probabilistic Techniques Deterministic Results Negative Results

Complexity of different substitutions

	∦ poly	# terms	degree	points
Linear	Т	$\leq vDT$	$\leq vDT$	$vDT^2 + T$
Nonlinear	νT	$\leq T$	$\leq v^2 DT$	vT^2

イロト イヨト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Finite Fields

Problem:

Take the coeffiecient domain be \mathbb{F}_p and consider the polynomial

$$M(X)=X^p-X.$$

M(X) vanishes for every element of \mathbb{F}_p .

イロト イヨト イヨト イヨト

æ

Probabilistic Techniques Deterministic Results Negative Results

Finite Fields

Problem:

Take the coeffiecient domain be \mathbb{F}_p and consider the polynomial

$$M(X)=X^p-X.$$

M(X) vanishes for every element of \mathbb{F}_p .

This issue means that it is not possible to do *deterministic* zero testing for polynomials over a finite field *without degree bounds*. However, the problem is solvable if we have degree bounds on the black box.

(D) (A) (A)

Let \mathcal{B}_Q be a black box for a polynomial Q. Assume Q is a univariate polynomial of degree d, with T terms, with coefficients in \mathbb{F}_p :

$$Q(X) = q_1 X^{e_1} + q_2 X^{e_2} + \ldots + q_T X^{e_T},$$

where $e_i \leq d$.

イロト イヨト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Let \mathcal{B}_Q be a black box for a polynomial Q. Assume Q is a univariate polynomial of degree d, with T terms, with coefficients in \mathbb{F}_p :

$$Q(X) = q_1 X^{e_1} + q_2 X^{e_2} + \ldots + q_T X^{e_T},$$

where $e_i \leq d$. Using Proposition 100, the sequence of evaluation points, $1, m, m^2, \ldots$ will be a distinguishing sequence if each of the values

$$m^{e_1}, m^{e_2}, \ldots, m^{e_7}$$

are distinct.

Probabilistic Techniques Deterministic Results Negative Results

Let \mathcal{B}_Q be a black box for a polynomial Q. Assume Q is a univariate polynomial of degree d, with T terms, with coefficients in \mathbb{F}_p :

$$Q(X) = q_1 X^{e_1} + q_2 X^{e_2} + \ldots + q_T X^{e_T},$$

where $e_i \leq d$. Using Proposition 100, the sequence of evaluation points, $1, m, m^2, \ldots$ will be a distinguishing sequence if each of the values

$$m^{e_1}, m^{e_2}, \ldots, m^{e_7}$$

are distinct. If the multiplicative order of m is greater than d, then these values are certainly distinct.

Probabilistic Techniques Deterministic Results Negative Results

Solution:

Enlarge the ground field \mathbb{F}_p to \mathbb{F}_{p^k} which does have elements of order d.

イロト イヨト イヨト イヨト

Solution:

Enlarge the ground field \mathbb{F}_p to \mathbb{F}_{p^k} which does have elements of order d.

the characteristic of the ground field is very large, p > 2^d, m = 2 will suffice

イロト イヨト イヨト イヨト

æ

Solution:

Enlarge the ground field \mathbb{F}_p to \mathbb{F}_{p^k} which does have elements of order d.

- ► the characteristic of the ground field is very large, p > 2^d, m = 2 will suffice
- If p is small we expand 𝑘_p by adjoining an element of degree k over 𝑘_p, where p^k > d

Solution:

Enlarge the ground field \mathbb{F}_p to \mathbb{F}_{p^k} which does have elements of order d.

- ► the characteristic of the ground field is very large, p > 2^d, m = 2 will suffice
- if p is small we expand 𝑘_p by adjoining an element of degree k over 𝑘_p, where p^k > d
- ▶ if p is very large we construct a degree extension of 𝑘_p of degree K, where K > d

イロト イポト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Negative Results

Computational Complexity

The zero equivalence problem with only degree bounds, and no bound on the number of terms, is not solvable in deterministic polynomial time:

イロト イポト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Negative Results

Computational Complexity

The zero equivalence problem with only degree bounds, and no bound on the number of terms, is not solvable in deterministic polynomial time:

Proposition 108

Given a black box representing a polynomial $P(\vec{X})$ in v variables and of degree less than D in each variable, any deterministic algorithm that determines if P is the zero polynomial runs in time at least $O(D^v)$.

Probabilistic Techniques Deterministic Results Negative Results

Complexity of Zero Testing

	Probabilistic	Deterministic
degree bounds	$\log \frac{1}{\epsilon} \cdot \log^{r-1} vD$	$D^{v} \log^{r} D$
term bounds		$T^{r+1}\log^r v$

r is a constant corresponding to the type of arithmetic being used by \mathcal{B}_P . For classical arithmetic r = 2; for fast arithmetic *r* is slightly greater than 1.

イロト イヨト イヨト イヨト

Probabilistic Techniques Deterministic Results Negative Results

Thank you for your attention!

イロト イヨト イヨト イヨト

Proofs Riemann Hypothesis

Appendix

A. Würfl Zero Equivalence Testing

・ロト ・回ト ・モト ・モト

æ

Proofs Riemann Hypothesis

Proofs

Proof (Proposition 97)

There are at most d_v values of X_v at which P is identically zero. So for any of these d_v values of X_v and any value for the other X_i , P is zero. This comes to $d_v B^{v-1}$. For all other $b - d_v$ values of X_v we have a polynomial in v - 1 variables. The polynomial can have no more than $Z_{v-1}(B)$ zeros. Therefore,

$$Z_{v}(B) \leq d_{v}B^{v-1} + (B - d_{v})Z_{v-1}(B).$$

・ロト ・ 同ト ・ 三ト ・

Rather than solving this recurrence for Z_v , we solve it for $N_v = B^v - Z_v$. Since Z_1 is less than or equal to d_1 , $N_v \ge (B - d_1)$. This is the basic step of the inductive proof. Writing the recurrence in terms of N_v we have

$$B^{v} - N_{v}(B) \leq d_{v}B^{v-1} + (B - d_{v})(B^{v-1} - N_{v-1}(B)).$$

or

$$N_{\nu}(B) \geq (B-d_{\nu})N_{\nu-1}(B),$$

the proposition follows with

$$B^{v}-(B-d_{1})(B-d_{2})\ldots(B-d_{v})\geq (d_{1}+d_{2}+\ldots+d_{v})B^{v-1}.$$

🕨 Back

イロト イポト イヨト イヨト

Proofs Riemann Hypothesis

Proof (Proposition 98)

We use induction on the number of variables as was done in the proof of the previous proposition.

For v = 1, f is univariate polynomial of degree D and can have no more than D zeros in A, so

$$\mathcal{P}(P(x_1) = 0 | x_1 \in S) \leq \frac{D}{B}.$$

イロト イヨト イヨト イヨト

Assume the proposition is true for polynomials in v - 1 variables. Let the degree of P in X_v be d_v and denote the leading coefficient of f with respect to X_v by f_0 , *i.e.*,

$$P = p_0(X_1 \ldots, X_{\nu-1})X_{\nu}^d + \ldots$$

The total degree of p_0 is no more than D - d, so the probability that $p_0 = 0$ is

$$\mathcal{P}(p_0(x_1,\ldots,x_{\nu})=0|x_i\in\mathcal{S})\leq \frac{D-d}{B}.$$

Outline Bounds on Polynomials Zero Equivalence Testing Appendix Proofs Riemann Hypothesis

Omitting the arguments of x_1, \ldots, x_v and x_1, \ldots, x_{v-1} for brevity, we can write

$$egin{aligned} \mathcal{P}(P=0) &= \mathcal{P}(P=0 \wedge p_0=0) \cdot \mathcal{P}(p_0=0) \ &+ \mathcal{P}(P=0 \wedge p_0
eq 0) \cdot \mathcal{P}(p_0
eq 0), \ &\leq \mathcal{P}(p_0) + \mathcal{P}(P=0 \wedge p_0
eq p). \end{aligned}$$

Assume that $p_0(x_1, \ldots, x_{\nu-1}) \neq 0$. $P(x_1, \ldots, x_{\nu-1}, X_{\nu})$ is a polynomial of degree d, so there are at most $d x_{\nu} \in \text{scr } S$ such that $P(x_1, \ldots, x_{\nu}) = 0$. Consequently,

$$\mathcal{P}(P(x_1,\ldots,x_v)=0|x_i\in\mathcal{S})\leq rac{D-d}{B}+rac{d}{B}=rac{D}{B}$$

Back

<ロ> (四) (四) (注) (注) (注) (三)

Proofs Riemann Hypothesis

Proof (Proposition 106)

Let the non-zero terms of P be

$$P(\vec{X}) = c_1 \vec{X}^{\vec{e}_1} + c_2 \vec{X}^{\vec{e}_2} + \ldots + c_T \vec{X}^{\vec{e}_T}$$

The substitution $X_i \mapsto Z^{u_i}$ transforms this polynomial into

$$P(\vec{Z}) = c_1 \vec{Z}^{\vec{e}_1 \cdot \vec{u}} + c_2 \vec{Z}^{\vec{e}_2 \cdot \vec{u}} + \ldots + c_T \vec{Z}^{\vec{e}_T \cdot \vec{u}}$$

To find a substitution for which $P(Z^{\vec{u}})$ is not identically zero we require \vec{u} satisfy

$$\vec{e}_1 \cdot \vec{u} \neq \vec{e}_i \cdot \vec{u},$$

or equivalently $(\vec{e}_i - \vec{e}_1) \cdot \vec{u} \neq 0$, for $2 \leq i < T$. Let $d = \vec{e}_1 \cdot \vec{u}_1$.

With such a substitution only one monomial in $P(\vec{X})$ will be mapped to a term in P(Z) of degree d, namely the $c_1 \vec{X}^{\vec{e}_1}$ term. Since $c_1 \neq 0$, P(Z) cannot be identically zero; it must contain a Z^d term. Letting $L_i(\vec{w}) = (\vec{e}_i - \vec{e}_1) \cdot \vec{w}$, $2 \leq i < T$ we want to find a \vec{u} at which none of the L_i vanish. Let $\vec{w}_1, \ldots, \vec{w}_v$ be destinct elements of $\mathcal{U}_{vT,v}$, so

$$\left(egin{array}{c} ec{w_1} \ ec{\cdot} \ ec{w_v} \end{array}
ight) \cdot (ec{e_i} - ec{e_1}) = A \cdot (ec{e_i} - ec{e_1}) = \left(egin{array}{c} L_i(ec{w_1}) \ ec{\cdot} \ L_i(ec{w_v}) \end{array}
ight)$$

< /i>
</i>
▲ □ ▶
Since A is non-singular, the right hand side can only be zero if L_i is identically zero. Thus, L_i cannot vanish for more than n-1 of the elements of $\mathcal{U}_{vT,v}$. There are T-1 L_i 's. Since $(v-1) \cdot (T-1)$ is less than vT, there must be at least one element of $\mathcal{U}_{vT,v}$ for which none of the L_i vanish as desired. We denote such an element by \vec{u} . Each of the components of \vec{u} is less than 2nT, while the elements of \vec{e}_i are less than D. Thus the degree of $P(Z^{\vec{u}})$ is less than $2v^2DT$.

Back

< ロト (周) (日) (日)

Riemann Hypothesis

In his 1859 paper *On the Number of Primes Less Than a Given Magnitude*, Bernhard Riemann (1826-1866) examined the properties of the function

$$\zeta(s):=\sum_{n=1}^{\infty}\frac{1}{n^s},$$

for s a complex number. This function is analytic for real part of s greater than 1.

イロト イポト イヨト イヨト

It is realted to the prime numbers by the Euler Product Formula

$$\zeta(s) = \prod_{p \text{ prim}} (1 - p^{-s})^{-1},$$

again definied for real part of *s* greater than one.

<ロ> (四) (四) (三) (三) (三)

-2

Riemann hypothesis The nontrivial zeros of $\zeta(s)$ have real part equal to $\frac{1}{2}$.

イロト イヨト イヨト イヨト

4

Proofs Riemann Hypothesis

Riemann hypothesis

The nontrivial zeros of $\zeta(s)$ have real part equal to $\frac{1}{2}$.

Back

イロト イヨト イヨト イヨト

4