
Constructive Proof of the Lovasz Local Lemma

Katharina Angermeier

November 3, 2014

1

Contents

1 Introduction 3

2 Local Lemma in Terms of SAT - Proof and Algorithm 5
2.1 First Proof of Local Lemma - Existence . 5
2.2 Second Proof of Local Lemma - Algorithm . 6
2.3 A Stronger Variant - Conflicts . 8

3 Bounded Variable Degree 8
3.1 Small Values . 9

4 Linear Formulas 9

5 A Sudden Jump in Complexity 10

6 Open Problems 11

2

1 Introduction

In the introduction some notations and definitions we will require for the presentation will be
explained. The conjunctive normal form (CNF) is a special notation form for boolean formu-
las. An example would be the following 3-CNF formula with 4 clauses over the set of variables
{x1, x2, x3, x4}:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

Variables in a clause do not repeat. In general we define a k-CNF formula (k ∈ N) as a CNF
formula where every clause contains exactly k literals. An assignment α over a variable set V is a
mapping α : V → {0, 1}, that extends to V via α(x) := 1− α(x) for x ∈ V .

A formula is called satisfiable if there is a true-false assignment to the variables so that every
clause has at least one literal that evaluates to true. In our example, a satisfying assignment could
be (x1, x2, x3, x4) 7→ (true, true, false, true). We define vbl(C) as the set of variables that occur in
a clause C. And equally vbl(F):=

⋃
C∈Fvbl(C) for F a CNF formula.

We can already make some statements to satisfiability.

Claim: It takes at least 2k clauses to construct an unsatisfiable k-CNF formula.

Justification: Suppose some k-CNF formula with fewer than 2k clauses. An assignment sampled
uniformly at random violates each clause with probability 2−k. So by linearity of expectation we
can say that the expected total number of violated clauses is smaller than 1. That means that
there needs to be at least one assignment that satisfies the whole formula.

Now it is easy to see that if some of the clauses are independent from each other we need more
than 2k clauses to obtain an unsatisfiable k-CNF formula. So the constraint on the formula size
needs not only to be satisfied globally but even locally. To observe that we introduce the neigh-
bourhood Γ(C) = ΓF (C) := {D ∈ F | vbl(D)∩vbl(C) 6= ∅} of a clause C, which is the set of clauses
that share variables with C. By intuition we can see that if we can change values in a clause C
without causing too much damage in its neighbourhood, and if this property holds everywhere,
then maybe we can find a globally satisfying assignment by just moving around violation issues.

If every clause in a k-CNF formula, k ≥ 1, has a neighbourhood of size at most 2k/e−1,
then the whole formula admits a satisfying assignment.
Lovász Local Lemma, 1975

Other variant: ”In an unsatisfiable CNF formula clauses have to interleave - the larger
the clauses, the more interleaving is required.”

So this is the main theorem the presentation is about. The big importance of that lemma is
not really easy to see in the formulation above, but if we observe the clauses as any collection of
events in a probability space, the lemma becomes very general. It is the so called symmetric form
of the lemma.
We define the conflict-neighbourhood Γ′(C) = Γ′F (C) := {D ∈ F | C ∩D 6= ∅} of a clause C as the
set of clauses which share variables with C, at least one with opposite sign. With that definition we
can ”measure” the quality of interleaving. The so called lopsided Local Lemma shows the condition
for neighbourhoods holds actually for conflict-neighbourhoods.
The degree of x is the number of occurrences of a variable x (with either sign) in a CNF formula,
deg(x) = degF (x) := |{C ∈ F | x ∈ vbl(C)}|.

3

Claim: If every variable in a k-CNF formula, k ≥ 1, has degree at most 2k/(ek), then
the formula is satisfiable.

For formulas with little interleaving we define a linear CNF formula as a CNF formula where any
two clauses share at most one variable.

Example: (y1 ∨ y2) ∧ (y1 ∨ x) ∧ (y2 ∨ x) ∧ (z1 ∨ x) ∧ (z2 ∨ x) ∧ (z1 ∨ z2)
This is a smallest unsatisfiable linear 2-CNF formula.

Claim: Any linear k-CNF formula with at most 4k/(4e2k3) clauses is satisfiable.

Whenever the easily checkable conditions formulated above are satisfied, then the algorithmic prob-
lem of deciding satisfiability becomes trivial. However, the actual construction of a satisfying as-
signment is by no means obvious.

We define f(k), k ∈ N, as the largest integer so that every k-CNF formula with no variable of
degree exceeding f(k) is satisfiable. We know that f(k) = Θ(2k/k). Although f(k) is not known for
k exceeding 4 one can show a sudden jump behaviour in complexity. For k-CNF formulas (k ≥ 3)
with max-degree at most f(k) + 1 the satisfiability problem becomes NP-complete. A similar im-
mediate transition can be observed for the related problem for the conflict-neighbourhood size.
l(k) is defined as the largest integer d such that every k-CNF formula F for which |ΓF (C)| ≤ d, for
all C ∈ F , is satisfiable. lc(k) is defined analogously, but with |Γ′F (C)| ≤ d.

In some of the proofs we use the relation of CNF formulas to hypergraphs. A hypergraph H
is a pair (V,E) with V a finite set and E ⊆ 2V . It is k-uniform if |e| = k for all e ∈ E. H
is called 2-colourable if there is a colouring of the vertices in V by two colors red and green so
that no hyperedge in E is monochromatic. The relation to satisfiablility of CNF formulas is that
H = (V,E) is 2-colourable iff the CNF formula E ∪ {e | e ∈ E}, with V now considered as set of
boolean variables, is satisfiable.

Figure 1: 3-uniform hypergraph

The corresponding formula to Figure 1 is:
(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x7) ∧ (x2 ∨ x3 ∨ x7)∧

(x4 ∨ x5 ∨ x6) ∧ (x4 ∨ x5 ∨ x6)

Figure 2 would be an assignment such that the formula evaluates to true, no matter if red is
considered as true and green as false or the other way round.

4

Figure 2: 2-coloured 3-uniform hypergraph

2 Local Lemma in Terms of SAT - Proof and Algorithm

Theorem 1 Let k ∈ N and let F be a k-CNF formula. If |Γ(C)| ≤ 2k/e − 1 for all C ∈ F , then
F is satisfiable. P. Erdős, L. Lovász: Problems and results on 3-chromatic hypergraphs and some
related questions.

Theorem 2 (Lovász Local Lemma, symmetric form) Let A = A1, A2, . . . , Am be any collec-
tion of events in a probability space, each one having probability at most p and such that each event
is mutually independent of all but at most d of the other events. If ep(d+ 1) ≤ 1, then with positive
probability, none of the events in A occur.

The SAT formulation, Theorem 1, follows as an immediate corollary. Considering the random
experiment of sampling truth assignments to the CNF formula F at random and defining Ai to be
the event that clause number i becomes violated, each event has probability 2−k and the desired
bound follows. This way, it is a natural extension of the simple pobabilistic argument bounding
from below the total number of clauses in an unsatisfiable formula.

The first ”existential” proof, which was given in 1975, was short but non-constructive. Then, for
a long time nothing happend in that area until in 1991 Beck proved the existence of a polynomial-
time algorithm to find a satisfying assignment for all C ∈ F , F a k-CNF formula Γ(C) ≤ 2k/48.
In the same year Alan simplified Beck’s algorithm by randomness, and presented an algorithm
that works for neighbourhoods of size up to 2k/8. About ten years later Czumaj and Scheideler
demonstrated that a variant of the method can be made to work for the case where clauses sizes
vary. The actual breakthrough came 2008 when Moser published an polynomial-time algorithm for
neighbourhood sizes up to O(2k/2), later for 2k−5 neighbours. In 2009 Moser and Tardos published
a fully constructive proof.

2.1 First Proof of Local Lemma - Existence

Since the existencial proof is based on a probabilistic argument, for its comprehension it is helpful to
observe some simple examples of the probability that a random assignment satisfies a CNF-formula.
There are some minimal examples in Figure 3.

Let F be a k-CNF formula with neighbourhood size at most d := 2k

e
− 1 other clauses. The

main idea of the proof is that if the probability of a random assignment α to satisfy F is positive,
F is satisfiable. Let F ′ ⊂ F be any subformula of F with one fewer clause. Let C ∈ F\F ′ be one
of the clauses removed. The assignment α has a certain probability Pr(F ′) of satisfying F ′. We
now want to compute the drop in probability when adding back C as an additional constraint.
We claim that the drop is bounded by a factor of (1 − e2−k), which means Pr(F ′ ∧ C) ≥ (1 −
e2−k)Pr(F ′)(⇔ Pr(F ′∧¬C) ≤ e2−kPr(F ′)). If the factor is positive, the claim is proved, since the

5

k = 1 p

∅ 1
x1

1
2

x1 ∧ x2 1
4

x1 ∧ x2 ∧ x3 1
8

x1 ∧ x2 ∧ x3 ∧ x4 1
16

k = 2 p

∅ 1
(x1 ∨ x2) 3

4

(x1 ∨ x2) ∧ (x3 ∨ x4) 9
16

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6) 27
64

Figure 3: Probability p of random assignments to satisfy a k-CNF formula

empty formula is satisfied with probabilitiy 1 and then successively adding back all of F ’s clauses
diminishes that probability by a positive factor each step, leaving a positive probabiliy in the very
end.

We proceed inductively. Suppose the latter claim has been proved for all subformulas F ′ up to
a given size and now we would like to establish it for larger subformulas. There is a trivial special
case. If the constraint C that we join back to F ′ is independent, so has no variables in common
with F ′, the probability decreases by a factor of exactly (1 − 2−k). We can see that factor in the
tabulars in Figure 3. Now we have to show why lowering that factor to (1 − e2−k) is sufficient to
account for the amount of possible dependencies that we might encounter. So if C shares some
variables with F ′, we remove all clauses of F ′ neighbouring C and get F ′′ := F ′\Γ(C) to get rid of
those dependencies. Now F ′′ and C are independent.

⇒ Pr(F ′′ ∧ ¬C) = 2−kPr(F ′′)

By adding back all clauses one by one to F ′′ to get F ′ we obtain

Pr(F ′) ≥ (1− e2−k)dPr(F ′′) ≥ e−1Pr(F ′′)

Now since every assignment satisfying F ′ satisfies F ′′, we have

Pr(F ′ ∧ ¬C) ≤ Pr(F ′′ ∧ ¬C) = 2−kPr(F ′′)

⇒ Pr(F ′ ∧ ¬C)

Pr(F ′)
≤ 2−k

e−1

2.2 Second Proof of Local Lemma - Algorithm

The main idea of the Algorithm is: We repeatedly select any of the violated clauses and just select
new uniformly random variables occurring in that clause until a satisfying assignment is obtained.

Now we want to show that under the hypothesis of the Local Lemma it converges to a satisfying
assignment in an expected polynomial number of steps. For the analysis of the algorithm we record
a log of corrections with the mapping L : N0 → F . In step t, the algorithm selects clause L(t) for
correction. We hope for the algorithm to terminate after a a finite number of steps, but for the
moment we have to allow for an infinite log and then prove that we will never encounter one. Let
N : F → N0 ∪ {∞} be random variables that count the number of times a given clause occurs in
the log. So N(C) := |{t ∈ N0 | L(t) = C}|. Again we have to allow for such a counter to take
infinity as a value. We prove now that for each clause C ∈ F the expected value E[N(C)] is upper
bounded by a constant, so every clause is corrected at most a constant number of times. That
means the total number of clauses corrected is bounded by O(|F |).

6

To continue we introduce witness trees. A witness tree is an unordered, rooted tree T along
with a labelling σ : V (T) → F of its vertices V (T) by clauses from F . For every time index t
such that L(t) is defined we build a witness tree in the following sense. We label the root vertex
r σ(r) := L(t). Now we traverse the log backwards and for each time step s = t − 1, t − 2, . . . , 0,
check if the clause L(s) has any variables that it shares with any of the labels in the tree built so
far. If L(s) is independent from all clauses currently serving as labels, we discard it. Otherwise we
select any deepest of the nodes the tree has wich have variables in common with L(s) and create a
new child node of it, labelling that new child L(s). When arriving at s = 0 we have built a witness
tree T (t) that justifies correction step t.
We can reconstruct a significant portion of the execution history only by looking at the witness
tree T (t). By traversing T (t) in a breadth-first-search that starts at the root we obtain a sequence
of clauses that is a subsegment of the execution log. Each node we encounter represents some
correction step in L with the label of the node being the clause corrected in that step.
The way we defined T (t) assures two things:
(a) The ordering in which the corrections have taken place is similar to the ordering in which we
traverse the nodes, in the following sense: Whenever two nodes v1 and v2 are labelled with clauses
that depend on each other, then v1 occurs before v2 in the traversal if and only if v1 represents a
correction step occurring before v2.
(b) When we traverse some node v representing correction step t, then all correction steps t′ < t
that relate to step t, in the sense that L(t) and L(t′) share common variables, do occur in the tree
and have therefore been traversed before.
These two properties imply that the number of times some variable x has occurred so far in
labelling clauses corresponds to the number of times x has been reassigned new values before the
corresponding correction step.

So if we have seen variable x already 10 times before we traverse a node v labelled σ(v) = C,
then this means that at the time the correction v represents took place, x had its 10th new random
value and was then assigned its 11th one. This in turn means that we can reconstruct, by just
looking at the tree, all the 10 values x had been assigned before. This is because node v represents
a time step where clause C was selected for correction, that is a time step when C was violated
and thus the 10th value of x has to have been the one hat dissatisfies the corresponding literal we
find in C. The same holds for all other variables in the clause and for all other nodes we traverse.

Now what about when you have given a fixed witness tree T , what is the probability that exactly
this tree can occur as witness for some correction step? We can reconstruct for each node the values
the k variables in the corresponding clause were assigned before the correction step represented,
that is we can reconstruct k of the random bits the algorithm has used. If the tree has n vertices,
we can reconstruct nk bits in total, just by looking at the tree. The probability that all of them
sample such that T can be constructed is exactly 2−nk. For a fixed clause C ∈ F , number n, we
want the number of witness trees of order n which have C as the label of their root vertex. That
number is restricted by the definition of witness trees, which requires that if u is a child node of v,
then the label σ(u) must be a neighbour of the clause σ(v). This allows us to embed each witness
tree rooted at label C into an infinite tree that just enumerates neighbouring nodes. Consider an
infinite tree with its root labelled C and such that each node v labelled σ(v) has |Γ(σ(v))| children
labelled Γ(σ(v)). Such a tree is at most (≤ d)-ary and each witness tree is clearly a subtree of it.
An infinite rooted (≤ d)-ary tree has at most (ed)n subtrees of size n. That implies that there are
at most (ed)n witness trees of order n that have C as their root label. The expected number of
witness trees of size n that can occur is bounded by (ed2−k)n, since each of them may occur with a
probability of at most 2−nk. Summing over all possible sizes n ≥ 1 this becomes a geometric series
that converges to a constant, so there is at most a constant expected number of valid witness trees

7

rooted at C.
For each of the N(C) (t1, t2, . . . , tN(C)) times a clause C occurs in the execution log we can ask

for a corresponding witness tree T (t1), T (t2), . . . T (tN(C)) to justify that correction step. The trees
are distinct since T (ti+1) needs to have basically the same vertices as T (ti) and at least one more
(for step ti+1). N(C) is at most as large as the number of valid witness trees rooted at C, which is
bounded by a constant in expectation. �

2.3 A Stronger Variant - Conflicts

The so called lopsided Local Lemma, which does not only distinguish between dependent and in-
dependent events but also discriminates between positive and negative correlations, is a slightly
stronger version of the Lovász Local Lemma. So the bound on the maximum neighbourhood size
is replaced by a bound on conflict neighbourhoods.

Theorem 3 Let k ∈ N and let F be a k-CNF formula. If |Γ′(C)| ≤ 2k/e− 1 for all C ∈ F , then F
is satisfiable.

Both proofs for the Lovász Local Lemma can be adapted to demonstrate this statement. For
the constructive proof the same algorithm will work and for the analysis it suffices to observe
that witness trees built by attaching only lopsided neighbours during backward traversal of the log
equally allow to reconstruct k bits of the randomness used per vertex, irrespective of the fact that
a smaller amount of information might be encoded by the tree. Berman, Karpinski and Scott have
demonstrated using the lopsided Local Lemma, that every 6-, 7-, 8- or 9-CNF formula in which
every variable occurs at most 7, 13, 23 or 41 times, respectively, is satisfiable.

3 Bounded Variable Degree

A k-CNF formula in which no variable occurs in more than d clauses is called a (k, d)-CNF formula.
So f(k) is now defined as the unique integer so that all (k, f(k))-CNF formulas are satisfiable and an
unsatisfiable (k, f(k)+1)-CNF formula exists. We know that f(k) exists with 0 ≤ f(k) ≤ 2k. Tovey
was the first to consider f(k) in 1984. He showed f(k) ≥ k and conjectured that all (k, 2k−1 − 1)-
CNF formulas are satisfiable. A clearer picture of f(k) has evolved since then. For, if every variable
occurs at most d times in a k-CNF formula, no clause can have more than k(d − 1) neighbours.
Thus, k(d−1) ≤ 2k/e−1 implies that every (k, d)-CNF formula is satisfiable. This connection was
made by Kratochv́ıl, Savický and Tuza, who also established 1993 the bounds of f(k) ≥ b2k/(ek)c
and f(k) ≤ 2k−1−2k−4−1. This is still the best lower bound known for k large. Another significant
progress on the upper end was made by Savický and Sgall, when they showed f(k) = O(k−0.262k)
(2000). Hoory and Szeider improved it to f(k) = O((2klogk)/k) (2006). Recently Gebauer settled
f(k) = Θ(2k/k).

Theorem 4 For k a large enough integer,

b2k/ekc ≤ f(k) < 2k+1/k.

If k is a sufficiently large power of 2 we have f(k) < 2k/k.

To demonstrate that SAT connects to many (sometimes seemingly unrelated) problems, I ex-
plain you the main idea of the proof of the upper bound in this Theorem. The actual construction
was originally developed for refuting a conjecture of Beck on Combinatorial games. In such a game

8

we have a Maker and Breaker who take turns in choosing vertices from a given hypergraph. Maker
wants to completely occupy a hyperedge and Breaker tries to prevent this. The problem is to find
the minimum d = d(k) such that there is a k-uniform hypergraph of maximum vertex degree d
where Maker has a winning strategy. If Maker uses a pairing strategy, which means he partitions
all the vertices and if Breaker claims one vertex of a pair, Maker takes the other one, this game is
equivalent to unsatisfiability. A hypergraph H, pairing P can be interpreted as a CNF formula F
where the hyperedges of H are clauses and two vertices of a pair of P are complementary literals.
Maker wins the game on H using the pairing strategy according to P if and only if F is unsatisfi-
able.
If there is a k-uniform hypergraph of maximum vertex degree d with a winning pairing strategy for
Maker, then there is an unsatisfiable (k, 2d)− CNF formula.

3.1 Small Values

Although the lower bounds on f(k), l(k) and lc(k) we can derive via the Local Lemma grow
exponentially, they are weak for small values of k.

Lemma 3 (1) f(k) ≥ k for k ≥ 1 and (2) l(k) ≥ lc(k) ≥ k for k ≥ 2
Sketch of proof of (1): For k ≥ 1, let F be a k-CNF formula over a variable set V , no variable

occurring in more than k clauses. Consider the incidence graph between clauses and variables,
which is a bipartite graph with vertex set F ∪ V , where {C, x} is an edge iff x ∈ vbl(C). In this
graph, clause-vertices have degree exactly k and by assumption variable-vertices have degree at
most k.
So Hall’s condition for a matching covering all clause-vertices holds. An assignment is now defined
by letting every variable x that is matched to a clause C map to the value so that it satisfies
C. The matching property prevents conflicts and no matter how we complete the assignment for
unmatched variables it will satisfy all clauses. ⇒ (1).

f(k) = k is known for k ≤ 4, the best known bounds for k = 5 are 5 ≤ f(5) ≤ 7. k = 6 is the
first value for which the bound in Lemma 3(1) is known not to be tight: 7 ≤ f(6) ≤ 11.

4 Linear Formulas

A CNF formula F is called linear if |vbl(C) ∩ vbl(D)| ≤ 1, C,D ∈ F,C 6= D. For example, the
formula {{x, y}, {y, z}, {x, z}} is linear. This class of formulas is a natural analogue of the notion
of linear hypergraphs : A hypergraph H = (V,E) is linear if |e ∩ f | ≤ 1 for any two distinct edges
e, f ∈ E.

Given a k-uniform non-2-colorable hypergraph H with m hyperedges, we immediately obtain
an unsatisfiable k-CNF formula F (H) with 2m clauses. For k ≥ 2, even if H is linear, F (H) is
certainly not. So it is not clear that bounds on the size of unsatisfiable linear k-CNF formulas are
similar to those of non-2-colourable linear k-uniform hypergraphs.

Let flin(k) be the largest integer so that every linear (k, flin(k))-CNF formula is satisfiable.
Note that flin ≥ f(k) ≥ b2k/(ek)c.
Theorem 6 Any unsatisfiable linear k-CNF formula has at least

1

k
(1 + flin(k − 1))2 >

4k

4e2k3

clauses. There exists an unsatisfiable linear k-CNF formula with at most 8k34k clauses.
Remark. 1

k
(1 + flin(k − 1)2) ≤ 8k34k follows thus flin(k − 1) ∈ O(k22k).

9

Idea of the proof. The proof is similar to the proof for the size of non-2-colourable linear
k-uniform hypergraphs in ”Problems and results on 3-chromatic hypergraphs and some related
questions” (Erdős, Lovász).

Lemma 5 Let F be a linear k-CNF formula. If there are at most flin(k− 1) variables of degree
exceeding flin(k − 1), then F is satisfiable.

Let X be the set of variables x with degF (x) > flin(k−1). If F is unsatisfiable |X| > flin(k−1).
Therefore the lower bound follows from

|F | =
∑

x∈vbl(F)

degF (x) ≥ 1

k
(1 + flin(k − 1))|X| ≥ 1

k
(1 + flin(k − 1))2

The whole proof will not be done here since it would be very long and it is not really important.

5 A Sudden Jump in Complexity

Although satisfiability of (k, f(k))-CNF formulas is trivially decidable in polynomial time, if we
relax the bound of the degree it becomes NP-complete. Tovey proved in 1984 that for 3-CNF
formulas with maximum variable degree f(3) + 1 = 4 satisfiability is NP-complete. Later (1993)
Kratochv́ıl, Savický and Tuza generalised this sudden jump: For every fixed k ≥ 3, satisfiability
of (k, f(k) + 1)-CNF formulas is NP-complete. It may be somewhat intriguing that one can prove
such a result, given that we do not even know the values of f(k) for k ≥ 5; but we will see.
Berman, Karpinski and Scott (2003) showed that for (k, f(k) + 1)-CNF formulas it is even hard
to approximate the maximum number of clauses that can be simultaneously satisfied. We will
approach the related problems for the size of neighbouhoods and conflict-neighbourhoods. While
we can show that the latter performs a similar sudden jump, we have to leave a slack for the
neighbourhood bound.

Theorem 9 Let k ≥ 3. Then,
(1) deciding satisfiability of k-CNF formulas with variable degrees at most f(k) + 1 is NP-complete
(2) deciding satisfiability of k-CNF formulas with clause neighbourhoods of size at most max{k +
3, l(k) + 2} is NP-complete
(3) deciding satisfiability of k-CNF formulas with clause conflict-neighbourhoods of size at most
lc(k) + 1 is NP-complete

For the proof we describe a general construction that takes a k-CNF formula F and produces
a CNF formula F̂ which is satisfiable iff F is satisfiable, so that F̂ is very sparsely interleaved, at
the expense of the appearance of 2-clauses. We will later expand these 2-clauses to k-clauses in
a fashion tailored to which of the three claims we want to prove. Given a set of j ≥ 2 variables,
U = {x0, x1, . . . , xj−1}, the 2-CNF formula

{{x0, x1}, {x1, x2}, . . . , {xj−2, xj−1}, {xj−1, x0}}

is called an equaliser of U . The equaliser of a singleton set U is the empty formula. It is easy
to see that such an equaliser is satisfied by an assignment to U iff all variables in U are mapped
to the same value. Let F be a k-CNF formula, k ≥ 3. For each variable x ∈vbl(F), we replace
every occurrence by a new variable inheriting the sign of x in this occurrence. This yields a k-CNF
formula F ′ with |F | clauses over a set of k|F | variables. For each x ∈ vbl(F) we add an equaliser
for the set of variables that have replaced occurrences of x. This gives a set F ′′ of at most k|F |
2-clauses. By the property of equalisers, F̂:= F ′ ∪ F ′′ is satisfiable iff F is satisfiable. F̂ can be
obtained from F in polynomial time. We know that every variable of vbl(F̂) occurs at most 3 times
in F̂. It is also given that each k-clause in F ′ does not share variables with any other clause in F ′

10

and the number of its neighbouring 2-clauses in F ′′ is at most 2k and at most k of the 2-clauses
are in the conflict-neighbourhood. Another thing we know is that each 2-clause in F ′′ neighbours
two k-clauses in F ′ and at most two 2-clauses in F ′′.
With that construction we can prove the theorem.

Proof of (1) (variable degrees) Let k ≥ 3 and fix some minimal unsatisfiable (k, f(k) + 1)-CNF
formula G. We choose some clause C in G and replace one of its literals by x for a new variable
x to get G(x). This new formula G(x) is satisfiable (otherwise G would not be minimal), every
satisfying assignment has to set x to 0 (since otherwise G would be satisfiable), all variables have
degree at most f(k) + 1 and degG(x)(x) = 1.

Given a k-CNF formula F we first generate F̂, as described before the proof. Then we augment
each 2-clause in F̂ by (k − 2) positive literals of new variables so that it becomes a k-clause. For
each new variable x we add a copy of G(x) to our formula. By renaming variables in G these copies
are chosen so that their variable sets are pairwise disjoint. By construction, the new formula is
satisfiable iff F̂ is satisfiable. The maximum variable degree is max{3, f(k) + 1}, which is f(k) + 1,
since k ≥ 3.
This constitutes a polynomial reduction of satisfiability of general k-CNF formulas to satisfiability
of k-CNF formulas with maximum variable degree f(k) + 1. �

The proof of (2) and (3) is very similar to the proof of (1), so it will not be done here.

6 Open Problems

Now there will be mentioned some open problems in that area. We know f(k), l(k) and lc(k) up to
a constant, so one might hope to eventually determine them exactly. Progress on the lower bounds
would also be very interesting.
Open Problem 1. Is it possible to improve any of the known lower bounds on f(k), l(k), and
lc(k) by a constant factor?
For that one possible approach would be to better understand how these functions depend on each
other. For example, the current lower bound on f(k) follows by a very simple argument from a
lower bound on l(c).
Open Problem 2. Is there a constant c0 > 1 with f(k) ≥ c0l(k)/k for k large enough?
Open Problem 3. Is there a constant c1 > 1 such that l(k) ≥ c1lc(k) for k large enough?
Open Problem 4. Are the functions f(k), l(k) and lc(k) computable?

11

	Introduction
	Local Lemma in Terms of SAT - Proof and Algorithm
	First Proof of Local Lemma - Existence
	Second Proof of Local Lemma - Algorithm
	A Stronger Variant - Conflicts

	Bounded Variable Degree
	Small Values

	Linear Formulas
	A Sudden Jump in Complexity
	Open Problems

