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Based on an article by Mireille Règnier and Wojciech Szpankowski this
report outlines the complexity analysis of Knuth-Morris-Pratt type algo-
rithms using the Subadditive Ergodic Theorem, Martingales and Azuma’s
Inequality.

Using the Subadditive Ergodic Theorem we will prove the existence of
a linearity constant for worst and average case. Although the Subadditive
Ergodic Theorem doesn’t indicate a way to compute the linearity constant,
we may use Azuma’s Inequality to show that the number of comparisons
done is well concentrated around its mean value.

6.1 Pattern Matching

6.1.1 Conventions

Before starting we have to introduce some conventions in nomenclature: a pattern p
of length m, denoted pm

1 , is matched against a text t of length n, denoted tn1 .

We have to define some kind of counting function:

M(l, k) =


1 t[l] is compared to p[k]
0 otherwise

.

A position in the text is called an alignment position (AP) if starting from it com-
parisons between text and pattern are done, or more formally
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M(AP + (k − 1), k) = 1 for some k.

6.1.2 Defining Sequential Algorithms

We will classify algorithms by a property we call sequentiality.

1. Semi-sequential: The sequence of alignment positions used by the algorithm
is non-decreasing.

2. Strongly semi-sequential: (1) and the comparisons M(li, ki) define non-
decreasing text-positions li.

3. Sequential: (1) and M(l, k) = 1 ⇒ tl−1
l−(k−1) = pk−1

1 , so: text-pattern compar-

isons M(l, k) are only done as long as there is a prefix of the pattern to the left
of the text position to be compared next.

4. Strongly sequential: (1), (2) and (3).

6.1.3 Naive / Brute Force Algorithm

In short we may outline the naive or brute force algorithm as follows:

• Every text position is an alignment position.

• The aligned pattern is matched against the text from left to right until either a
mismatch occurs or the pattern is found.

• The pattern is then shifted by one and the next matching is started.

The brute force algorithm is a sequential algorithm: the APs are non-decreasing and
the condition M(l, k) = 1 ⇒ tl−1

l−(k−1) = pk−1
1 holds: no more comparisons are done

after a mismatch is found, so every alignment is used only as long as prefixes of the
pattern are found in the text.

The sequence of text positions li defined by the sequence of comparisons M(li, ki),
however, may include ‘jumping backwards’, i.e. if a mismatch occurs, the AP is
shifted by one and comparisons again start at the beginning of the pattern.

6.1.4 Knuth-Morris-Pratt

Idea: (Morris-Pratt) Disregard APs if we already know that there cannot be a prefix
of the pattern, namely the ones that safisfy tl+k−1

l+i 6= pk−i
1 for all i. Or equivalently

pk
1+i 6= pk−1

1 as the already processed text has to be identical to the corresponding
prefix of the pattern.

This knowledge can be obtained by a preprocessing of the pattern. The specific shift-
ing functions can formally be described as following:

Morris-Pratt-Variant (MP):

S = min{k − 1; min{s > 0 : p
k−(s+1)
1+s }}

Knuth-Morris-Pratt-Variant (KMP):

S = min{k; min{s : p
k−(s+1)
1+s and pk

k 6= pk−s
k−s}}

MP and KMP differ in the amount of information used from the pattern. Both are
strongly sequential algorithms, because from the definition of the shift function it is
automatic that the sequentiality condition (2) holds, there is no ‘jumping backwards’.
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6.1.5 Defining Complexity

The complexity in matching a pattern p against a text portion tsr can be defined as
the number of comparisons needed:

cr,s(t, p) =
X

l∈[r,s],k∈[1,m]

M(l, k) (6.1)

Overall complexity c1,n is denoted as cn. If either the text or the pattern is a realization
of a random sequence we shall write Cn.
To look at KMP we have to introduce two probabilistic tools: the Subadditive Ergodic
Theorem and Azuma’s Inequality.

6.2 Subadditive Ergodic Theorem

6.2.1 Fekete’s Theorem

Assume a deterministic sequence {xn}∞n=0 satisfies the so called subadditivity property,
that is

xm+n ≤ xn + xm (6.2)

for all integers m,n ≥ 0. We may fix m ≥ 0 and write

n = km+ l ⇔ k

n
=

1

m
− l

mn
. (6.3)

Then by successive application of the subadditivity property arrive at

xn = xkm+l ≤ xm + xm + · · ·+ xm + xl = kxm + xl . (6.4)

Now dividing by n and considering n→∞ resp. k/n→ 1/m, cf. (6.3) we get

lim sup
n→∞

xn

n
≤ inf

m≥1

xm

m
≤ α . (6.5)

To complete the derivation we may use the definition of lim inf and get the following:

lim inf
n→∞

xn

n
= sup

n≥0



inf
k≥n

xn

n

ff

= α (6.6)

Thus we just derived the theorem of Fekete.

Theorem 6.1 (Fekete 1923). If a sequence of real numbers satisfies the subadditive
property

xm+n ≤ xn + xm (6.7)

for all integers m,n ≥ 0, then

lim
n→∞

xn

n
= inf

m≥1

xm

m
. (6.8)

If the subadditvity property (6.7) is replaced by the superadditvity property

xm+n ≥ xn + xm (6.9)

for all integers m,n ≥ 0, then

lim
n→∞

xn

n
= sup

m≥1

xm

m
. (6.10)
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Example 6.1 (Longest Common Subsequence). The longest common subse-
quence (LCS) problem is a special case of the edit distance problem. Two ergodic
stationary sequences X = X1, X2, . . . , Xn and Y = Y1, Y2, . . . , Yn are given, then let

Ln = max{K : Xik = Yjk for 1 ≤ k ≤ K, where 1 ≤ i1 < i2 < · · · < iK ≤ n,
and 1 ≤ j1 < j2 < · · · < jK ≤ n}

be the length of the longest common subsequence. Observe that

L1,n ≥ L1,m + Lm,n . (6.11)

The LCS in the region (1, n) may cross the boundary of Xm
1 , Y m

1 and Xn
m, Y n

m. Hence
it may be bigger than the sum of the LCSs in each subregion (1,m) and (m,n) and
so an = E [L1,n] is superadditive:

lim
n→∞

an

n
= α = sup

m≥1

E [Lm]

m
. (6.12)

But here you can already see the cavity: Fekete’s Theorem1 only states the existence
of the linearity constant, but neither tells us its value nor even how to compute it.
For the LCS problem here Steele in 1982 conjectured α ≈ 0.8284.

Theorem 6.2 (DeBruijn and Erdös 1952). The subadditivtiy property can be
relaxed to include a sequence cn = o(n)

xn+m ≤ xn + xm + cn+m (6.13)

where

∞X

k=1

ck
k2

<∞ . (6.14)

Then, too

lim
n→∞

xn

n
= inf

m≥1

xm

m
. (6.15)

6.2.2 Subadditive Ergodic Theorem

As Fekete’s Theorem only applies to deterministic sequences, effort has been taken to
generalize it to sequences of random variables.

Theorem 6.3 (Kingman and Liggett). Let Xm,n (m < n) be a sequence of random
variables satisfying the following properties:

1. X0,n ≤ X0,m +Xm,n (subadditivity property)

2. For every k, {Xnk,(n+1)k, n ≥ 1} is a stationary sequence.

3. The distribution of {Xm,m+k, k ≥ 1} does not depend on m.

4. E [X0,1] <∞ and for each n, E [X0,n] ≥ c0n where c0 > −∞.

Then

lim
n→∞

E [X0,n]

n
= inf

m≥1

E [X0,m]

m
:= α , (6.16)

lim
n→∞

X0,n

n
= X (a.s) . (6.17)

1And the Subadditive Ergodic Theorem, as as we will see later.



6.3. MARTINGALES AND AZUMA’S INEQUALITY 57

Theorem 6.4 (Deriennic). Similar to subadditivity with deterministic sequences,
subaddititvity with random sequences can be relaxed to include a sequence An

X0,n ≤ X0,m +Xm,n +An (6.18)

such that limn→∞ E [An/n] = 0. Then, too

lim
n→∞

X0,n

n
= X (a.s) . (6.19)

6.3 Martingales and Azuma’s Inequality

6.3.1 Basic Properties of Martingales

Martingale is a standard tool in probabilistic analysis. A sequence

Yn = f(X1, X2, . . . , Xn), n > 0 (6.20)

is a martingale with respect to the filtration

Fn = (X1, X2, . . . , Xn) (6.21)

if for all n ≥ 0 the following hold:

1. E [|Yn|] <∞ and

2. E [Yn+1 | X0, X1, . . . , Xn] = E [Yn+1 | Fn] = Yn

So E [Yn+1 | Fn] defines a random variable depending on the knowledge contained in
(X1, X2, . . . , Xn). Now let’s define the martingale difference as

Dn = Yn − Yn−1 (6.22)

so that

Yn = Y0 +
nX

i=1

Di ⇔
nX

i=1

Di = Yn − Y0 . (6.23)

Then we may rewrite the martingale difference as

Di = Yi − Yi−1 = E [Yn | Fi] −E [Yn | Fi−1] (6.24)

This is possible as the realization of the martingale sequence Yn depends on the knowl-
edge contained in Fi, so the difference between neighbouring elements depends on the
difference in knowledge about Xi. Now observe:

E [Yn | Fn] = Yn and E [Yn | F0] = E [Yn] .

Note: Fn completely defines Yn, while F0 contains no information about Yn.

Interestingly we are now able to rewrite the martingale diffence sum, cf. (6.23), as

nX

i=1

Di = Yn −E [Y0] . (6.25)

And this is what we are interested in: the deviation of Yn from its mean value. To
further assess it we will now introduce Hoeffding’s Inequality.
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6.3.2 Hoeffding’s Inequality and Azuma’s Inequality

Theorem 6.5 (Hoeffding’s Inequality). Let {Yn}∞n=0 be a martingale and let there
exist a constant cn such that

|Yn − Yn−1| = |Dn| ≤ cn (6.26)

Then

Pr {|Yn − Y0| ≥ x} = Pr

(˛
˛
˛
˛
˛

nX

i=1

Di

˛
˛
˛
˛
˛
≥ x

)

≤ 2 exp

„

− x2

2
Pn

i=1 c
2
i

«

. (6.27)

By now, we know how to use the martingale difference sum
Pn

i=1Di for assessing the
deviation from the mean. We also know how to assess this martingale difference sum,
provided Di is bounded.
What we still need is to establish bounds on Di.
The trick: let X̂i be an independent copy of Xi. Then

E [fn(X1, . . . , Xi, . . . , Xn) | Fi−1] =

E
h

fn(X1, . . . , X̂i, . . . , Xn) | Fi−1

i

=

E
h

fn(X1, . . . , X̂i, . . . , Xn) | Fi

i

because both Xi and X̂i share the same distribution, but Fi in respect to Fi−1 doesn’t
contain additional information about X̂i. Hence we may rewrite the martingale dif-
ference again as

Di = E [Yn | Fi] −E [Yn | Fi−1]

= E [fn(X1, . . . , Xi, . . . , Xn) | Fi]−E [fn(X1, . . . , Xi, . . . , Xn) | Fi−1]

= E [fn(X1, . . . , Xi, . . . , Xn) | Fi]−E
h

fn(X1, . . . , X̂i, . . . , Xn) | Fi

i

Taking into account both terms only differ in including Xi resp. X̂i we are able to
postulate the existence of a constant di with |Di| ≤ di and using Hoeffding’s Inequaltity
we finally arrive at Azuma’s Inequality.

Theorem 6.6 (Azuma’s Inequality). Let {Yn}∞n=0 be a martingale and let there
exist a constant cn such that

˛
˛
˛fn(X1, . . . , Xi, . . . , Xn)− fn(X1, . . . , X̂i, . . . , Xn)

˛
˛
˛ ≤ ci (6.28)

where X̂i is an independent copy of Xi. Then

Pr
n˛
˛
˛fn(X1, . . . , Xi, . . . , Xn)−E

h

fn(X1, . . . , X̂i, . . . , Xn)
i˛
˛
˛ ≥ x

o

= Pr {|Yn −E [Yn]| ≥ x} ≤ 2 exp

„

− x2

2
P

i=1 nc
2
i

«

6.4 Application to KMP

6.4.1 Establishing m-Convergence

An alignment position in the text is called unavoidable alignment position if for any
r ≤ i and any l ≥ i + m it’s an alignment position when the algorithm is run on tlr.
KMP-like algorithms share the same set of unavoidable alignment positions
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U =

n[

l=1

{Ul} (6.29)

where

Ul = min{ min
1≤k≤l

{tlk � p}, l + 1} . (6.30)

This equation on the one hand specifies starting positions of pattern prefixes as un-
avoidable alignment positions (no positions inside those prefixes, as those would be
jumped over) and on the other hand specifies steps of size one if there is no pattern
prefix.
Interstingly this property seems to be uniquely limited to Morris-Pratt type algorithms
– e.g. the Boyer-Moore algorithm does not have this property.

An algorithm is said to be l -convergent if there exists an increasing sequence of un-
avoidable alignment positions {Ul}ni=1 satisfying

Ui+1 − Ui ≤ l . (6.31)

Thus, l-convergence indicates the maximum size ‘jumps’ for an algorithm. For exam-
ple, the brute force algorithm is 1-convergent and – what we are interested in more –
KMP-like algorithms are m-convergent.

Proof. Let l be a text position and let r be any text position with r ≤ Ul. Then let
{Ai} be the set of APs when the algorithm is run on Tm

r . Note: r ∈ {Ai} as the
algorithm inevitably aligns at the starting position.
Then we may define the last alignment position AJ before Ul as

AJ = max {Ai : Ai < Ul} . (6.32)

So we have AJ+1 ≥ Ul. Using an adversary argument we will show that AJ+1 > Ul

cannot be true, thus AJ+1 = Ul. We define

y = max {k : M (k, (k −AJ) + 1) = 1} , (6.33)

so y is the rightmost position in the text we can do a comparison at when starting at
AJ . Observe: y ≤ l. Otherwise, when comparisons would be done further, T l

AJ
� H

would have to hold – and this in turn contradicts the definition of Ul.
Since KMP-like algorithms are strongly sequential, the text-pattern comparisons de-
fine non-decreasing sequences of text positions. For pattern-text comparisons at text
position y + 1 the pattern cannot be aligned at AJ , it has to be aligned at the next
alignment position AJ+1 with AJ+1 ≤ y + 1 ≤ l + 1.
The definition of Ul leaves two possibilities: Ul ≤ l if there is a prefix of the pattern,
or Ul = l + 1 if there is no prefix. The above equation AJ+1 ≤ l + 1 together with
the second possibility Ul = l + 1 contradicts the assumption Ul < AJ+1, so we may
assume the first possibility Ul ≤ l – this then implies that H l

Ul
� H.

An occurence of the whole pattern is consistent with the available information. We –
as we want to create a contradiction – may assume this is the case. As the sequence
{Ai} is non-decreasing and AJ+1 > Ul this occurence will be ‘jumped over’ and not
be detected by the algorithm. Thus AJ+1 = Ul as needed.

Taking this a bit further we may combine AJ+1 ≤ y + 1 and y ≤ AJ + m − 1 to
AJ+1 ≤ y + 1 ≤ AJ +m + 1 − 1 = AJ + m. So we have shown AJ+1 − AJ ≤ m for
any pair (AJ , AJ+1) of APs in the text, thus KMP-like algorithms are m-convergent.
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6.4.2 Establishing Subadditivity

If cn, the number of comparisons, is subadditive we may use the Subadditive Ergodic
Theorem to prove linear complexity of algorithms. To achieve this we have to show
that cn is (almost) subadditive

c1,n ≤ c1,r + cr,n + a . (6.34)

After rearranging the equation it suffices to prove the existence of an a such that

|c1,n − (c1,r + cr,n)| ≤ a . (6.35)

Let Ur be the smallest unavoidable aligment position greater than r. Then we are able
to split c1,n − (c1,r + cr,n) into c1,n − (c1,r + cUr,n) and cr,n − cUr ,n.

For the first part we have to count either:

• S1: comparisons done after position r with alignment positions before r. Those
only contribute to c1,n but neither to c1,r (the algorithm won’t compare after r)
nor cUr ,n (the algorithm doesn’t align before Ur, thus not before r, too).

• S2: comparisons done with alignment positions between r and Ur. Those also
only contribute to c1,n but neither to c1,r nor cUr ,n (the algorithm in those cases
only aligns before r resp. after Ur).

Summing up we arrive at

S1 =
X

AP<r

X

i≥r

M(i, i −AP + 1) ≤ m2 . (6.36)

This sum is bounded as there are at maximum m alignment positions before r with
comparisons done after r. And for each aligment position there are at maximum m
comparisons done.

S2 =
X

r≤AP<Ur

X

i≥r

M(AP + (i− 1), i) ≤ lm (6.37)

This sum is bounded: because of the l-convergence of sequential algorithms there are
at maximum l text positions between r and Ur, each with at maximum m comparisons
done. Note: with m-convergent KMP-like algorithms this would resolve to m2, too.

For the second part we have to count comparisons done with alignment positons before
Ur (thus between r and Ur). Those contribute to cr,n only as cUr,n starts comparing
at position Ur.

S3 =
X

r≤AP<Ur

X

i≥r

M(AP + (i− 1), i) ≤ lm (6.38)

This is the same sum as S2, hence bounded for the same reasons. Finally we are able
to put the parts together:

|c1,n − (c1,r + cr,n)| ≤ |S1 + S2 − S3| ≤ m2 + lm = a . (6.39)

So by now we have show subadditivity

c1,n ≤ c1,r + cr,n + a (6.40)

and are able to apply the Subadditive Ergodic Theorem.
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6.4.3 Applying the Subadditive Ergodic Theorem

Before continuing we have to develop some modelling assumptions about the structure
of text and pattern.

• Deterministic Model: Both text and pattern are non-random.2 In this case
we have to maximize complexity over all possible texts.

• Semi-Random Model: The text is a realization of stationary and ergodic
sequence, the pattern is given, thus non-random. In this case we use average
complexity over all texts.

• Stationary Model: Both text and pattern are a realization of a stationary
and ergodic sequence, so we use average complexity over all texts and patterns.

Applying the Subadditve Ergodic Theorem yields similar results for worst and average
case:

Deterministic Model: lim
n→∞

maxt(cn(t, p))

n
= α1(p)

Semi-Random Model: lim
n→∞

Et [Cn(p)]

n
= α2(p)

Stationary Model: lim
n→∞

Et,p [Cn]

n
= α3

6.4.4 Applying Azuma’s Inequality

Even if we cannot determine the linearity constants α1 to α3, we still can show that
Cn is concentrated around its mean.

We may assume that the text t is generated by a memoryless source, and Cn is a
function of this random text t = t1, t2, . . . , tn. By flipping a single character we may
change Cn by at most 2m2 comparisons, so Cn satisfies the condition for applying
Azuma’s Inequality:

˛
˛Cn (t1, t2, . . . , ti, . . . , tn)− Cn

`
t1, t2, . . . , t̂i, . . . , tn

´˛
˛ ≤ 2m2 (6.41)

Theorem 6.7. Let t be a random text of length m generated by a memoryless source
and let the pattern p of length m be given. Then the number Cn of comparisons made
by the Knuth-Morris-Pratt algorithm is concentrated around its mean

E [Cn] = α2n (1 + o(n)) . (6.42)

Equally

Pr {|Cn − α2n| ≥ εn} ≤ 2 exp

„

− (εn)2

2 · n · (2m2)2
(1 + o(n))

«

= 2 exp

„

− ε2n

4m4
(1 + o(n))

«

(6.43)

for any ε > 0.

2Applying Murphy’s Law we may asume text and/or pattern to be exactly what you do
not want them to be. . .
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6.5 Concluding Remarks

The Subadditive Ergodic Theorem proves the existence of the linearity constant under
quite general probabilistic assumptions. The main prerequisite is the existence of so
called unavoidable alignment positions, a property that seems to be uniquely limited
to Knuth-Morris-Pratt like algorithms.
Although we have not been able to compute this constant, we have been able to show
that the number Cn of comparisons done is concentrated around its mean value α2n.


