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1 Introduction

The central task in natural sciences is to describe reality as accurately as
possible in order to better understand natural phenomena. In engineering
sciences the purpose of research is to develop new products and to optimize
the existing ones.

In the past there have been two approaches in science: the experimental
and the theoretical. With the invention of the computer a new approach
have appear: the numerical simulation.

Mathematical equations that describe the physical world with reasonable
accuracy are usually so complex that analytical solutions can no longer be
obtained.

Computational Fluid Dynamics is the analysis of systems involving
fluid flow, heat transfer and associated phenomena by means of computer-
based simulation. Nowadays expensive experiments are increasingly being
replaced by computer simulations. Moreover, simulation enables the exam-
ination of processes that cannot be experimentally tested.

2 Fluids and flows

Fluids are substances that cannot resist external shear forces, even the small-
est force causes deformation of a fluid particle. Although significant differ-
ences exist between liquids and gases, both types of fluids obey the same
laws of motion. Fluid flow is caused by externally applied forces like pressure
differences, gravity, shear, rotation and surface tension. The most important
properties of fluids are density and viscosity .
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A flow is incompressible if the fluid density (mass per unit volume)
may be assumed constant. This is not only true for liquids, but also for
gases if the Mach number Ma = flow velocity

sound velocity is < 0.3. Incompressibility
is not a property of the fluid, but of the flow.

The viscosity of a fluid is a measure of its resistance to shear deforma-
tions. It is due to interaction between fluid molecules. As the temperature
increases, the viscosities of all liquids decrease, while the viscosities of all
gases increase.

In flows far from solid surfaces, the effects of viscosity are usually very
small. A inviscid (Euler) flow cannot stick to walls and slip is possible
at solid boundaries.

The Reynolds number is a dimensionless parameter that expresses the
ratio of inertial forces to friction forces in a flow.

Re =
ρuL

µ

where u is a characteristic velocity of the flow, L is a characteristic length
of the problem and µ is the dynamic viscosity.

When the flow velocity is very small, the fluid is very viscous or the
geometric dimensions are very small (i.e. when the Reynolds number is
small), the convective (inertial terms) in the Navier-Stokes equations play a
minor role and can be neglected. The flow is then called creeping (Stokes)
flow.

As the velocity is increased, and thus the Re, inertia becomes important
but each fluid particle follows a smooth trajectory, the flow is laminar. Still
viscosity effects dominate and are able to damp out a disturbance. Further
increase in velocity may lead to instability that produces a more random
type of flow called turbulent. Turbulent flows are unsteady, irregular,
nonlinear and are characterized by the formation of eddies. At high velocities
the Reynolds number is very high and viscous and turbulence effects are
important in a small region near the walls, in the boundary layer. A finer
grid is necessary to resolve the boundary layer.

Many flows of practical interest are difficult to describe exactly mathe-
matically. These flows include turbulence, combustion or multiple phases.
Since exact description is often impossible, one usually uses semi-empirical
models to represent these phenomena.

Lagrangian description follows the a particle as it moves through the
space. The position of a fluid particle at time t is a function of time and its
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initial position.

~r = ~r(~r0, t) where ~r(t = t0) = ~r0

Eulerian description focus on a fixed point in space and observes fluid
particles as they pass by. The velocity is expressed as a funcion of time and
of the position in space at which observations are made.

~u = ~u(~r, t)

Eulerian and Lagrangian points of view meet in the transport theorem
(section 4).

3 Introduction to Numerical Methods

The equations of fluid mechanics, which were already derived about 150
years ago by Navier (1785-1836) and Stokes (1819-1903), are solvable analyt-
ically only in special cases. To obtain an approximate solution numerically,
we have to use a discretization method which approximates the differential
equations by a system of algebraic equations, which can then be solved on
a computer.

3.1 Components of a numerical method

The starting point of any numerical method is the mathematical model,
the set of partial differential equations and boundary conditions.

After selecting the mathematical model, one has to choose a suitable
discretization method. The most important are: finite differences (FD),
finite volume (FV) and finite element (FE) methods.

The discrete locations at which the variables are to be calculated are
define by the numerical grid, which is essentially a discrete representation
of the geometric domain on which the problem is to be solved. It divides
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the solution domain into a finite number of subdomains. Different types of
grids are:

• structured grid: A structured mesh is defined as a mesh where all the
nodes have the same number of elements around it. This makes that
the matrix of algebraic eq system has a regular structure. There is a
large number of efficient solvers applicable only to structured grids.
Disadvantages: only for geometrically simple domains. Difficult to
control distribution of grid points.

• unstructured grid: For very complex geometries, can fit arbitrary
boundaries. Grids made of triangles or quadrilaterals in 2D, and tetra-
hedra or hexahedra in 3D are the most often used. Such grids can be
generated automatically by existing algorithms. Disadvantage: irreg-
ularity of the data structure. The solvers for the algebraic equation
system are usually slower than those for structured grids.

• block-structured grid: Structured grid inside each block, but the order
of blocks is irregular.

3.2 Properties of numerical methods

Consistency The discretization should become exact as the grid spacing
tends to zero. The difference between the discretized equation and the
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exact one is called truncation error. For a method to be consistent,
the truncation error must become zero when the mesh spacing ∆t → 0
and/or ∆xi → 0. If the most important term of the truncation error
is proportional to (∆x)n or (∆t)n the method is of n-th order. n > 0
is required for consistency.

Even if the approximations are consistent, it does not necessarily mean
that the approximated solution will become the exact solution in the
limit of small step size. For this to happen, the method has to be
stable also.

Stability A numerical method is stable if does not magnify the errors that
appear during the process. For temporal problems, stability guaran-
tees that the method produces a bounded solution whenever the exact
solution is also bounded.

Convergence A numerical method is convergent if the discrete solution
tends to the exact one as the grid spacing tends to zero.

For linear initial value problems, the Lax equivalence theorem states:

Consistency + Stability ⇐⇒ Convergence

For non-linear problems the stability and convergence of a method are
difficult to demonstrate. Therefore convergence is ususally checked
using numerical experiments, i.e. repeating the calculation on a series
of successively refined grids. If the method is stable and if all approx-
imations used in the discretization process are consistent, we usually
find that the solution does converge to a grid-independent solution.

Conservation Since the equations to be solved are conservation laws, the
numerical scheme should also respect these laws. This means that, at
steady state and in the absence of sources, the amount of a conserved
quantity leaving a closed volume is equal to the amount entering that
volume.
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If the strong conservation form of equations and a finite volume method
are used, this is guaranteed for each individual control volume and for
the domain as a whole.

Accuracy Numerical solutions of fluid flow are only approximate solutions.
In addition to the errors that might be introduced in the development
of the solution algorithm, in programming or setting up the boundary
conditions, numerical solutions always include three kinds of system-
atic errors:

• Modeling errors: difference between the actual flow and the exact
solution of the mathematical model

• Discretization errors: difference between the exact solution of the
conservation equations and the exact solution of the algebraic
system of equations obtained by discretizing these equations

• Iteration errors: difference between the iterative and exact solu-
tions of the algebraic equation systems.

4 Mathematical description of flows

The governing equations of fluid flow represent mathematical statements of
the conservation laws of physics:

• The mass of fluid is conserved.

• The rate of change of momentum equals the sum of the forces applied
on a fluid particle (Newton’s second law).

• The rate of change of energy is equal to the sum of the rate of heat
addition and to the rate of work done on a fluid particle (first law of
thermodynamics).

The fluid will be regarded as a continuum and the behaviour of the
fluid will be described in terms of macroscopic properties, such as velocity,
pressure, density and temperature.

The Reynolds transport theorem establishes a relationship between the
Lagrangian (fluid particle tracking) description and the Eulerian (fluid ele-
ment control) description. This relationship is necessary for developing con-
servation laws in fluid mechanics, where the latter description is the most
natural, because Newton’s second law and the laws of thermodynamics are
formulated from a Lagrangian point of view.
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Transport theorem. For a differentiable scalar function f : Ωt×[0, tend] →
R, it holds that

d

dt

∫

Ωt

f(~x, t) d~x =
∫

CV

[
∂f

∂t
+ div(f~u)

]
d~x,

where CV = Ωt at time t and Ωt is the volume of fluid that moves with the
flow and consists permanently of the same fluid particles.

We consider a small element of fluid. The six faces are labelled N (North),
S (South), E (East), W (West), T (Top) and B (Bottom).

A systematic account of changes in the mass, momentum and energy
of the fluid element due to fluid flow across its boundaries and due to the
action of sources inside the element, leads to the fluid flow equations.

4.1 Rates of change following a fluid particle and for a fluid

element

Let φ be a fluid property. The total (or substantive) derivative of φ
with respect to time following a fluid particle is

Dφ

Dt
=

∂φ

∂t
+

∂φ

∂x

dx

dt
+

∂φ

∂y

dy

dt
+

∂φ

∂z

dz

dt

=
∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z

=
∂φ

∂t
+ ~u · gradφ

The most usefull forms of conservation laws for fluid flow computation
are concerned with changes of a flow property for a fluid element which is
fixed in space.
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The relationship between the total derivative of ρφ, which follows a fluid
particle, and the rate of change of ρφ for a fluid element is, by transport
theorem:

ρ
Dφ

Dt
= ρ

[
∂φ

∂t
+ ~u · gradφ

]
= ρ

[
∂φ

∂t
+ div(φ~u)

]
− φ

[
∂ρ

∂t
+ div(ρ~u)

]

=
∂ρφ

∂t
+ div(ρφ~u)

The term ∂ρ
∂t + div(ρ~u) is equal zero by conservation of mass.

Rate of increase of φ for a fluid particle = Rate of increase of φ of fluid
element + Net rate of flow of φ out of fluid element

4.2 Navier-Stokes equations. Conservative form of the gov-

erning equations. Transport equation.

The conservative (or divergence) form of the governing equations of the
time-dependent 3d fluid flow and heat transfer of a compressible newtonian
fluid is:

Mass (continuity eq) ∂ρ
∂t + div(ρ~u) = 0

x-momentum ∂ρu
∂t + div(ρu~u) = − ∂p

∂x + div(µgradu) + qx

y-momentum ∂ρv
∂t + div(ρv~u) = −∂p

∂y + div(µgradv) + qy

z-momentum ∂ρw
∂t + div(ρw~u) = −∂p

∂z + div(µgradw) + qz

Internal energy ∂ρi
∂t + div(ρi~u) = −pdiv~u + div(kgradT ) + Φ + qi

where i is the internal energy, ~q is the momentum source and Φ the dissipa-
tion function.

These equations are non-linear, coupled and difficult to solve. It is dif-
ficult to prove by the existing mathematical tools that a unique solution
exists for particular boundary conditions.

There are significant commonalities between the various equations. The
general conservative form of all fluid flow equations for the variable φ can
be written as:

∂ρφ

∂t
+ div(ρφ~u) = div(Γgradφ) + qφ (1)

where Γ is a diffusion coefficient.
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Rate of increase of φ of fluid element + Net rate of flow of φ out of
fluid element (convection) = Rate of increase of φ due to diffusion + Rate
of increase of φ due to sources

Equation (1) is the transport equation for property φ and is used
as starting point in the finite volume method. By setting φ equal to 1, u, v,
w and i, and selecting appropiate values for the coefficient Γ and the source
terms we obtain the partial differential equations for mass, momentum and
energy conservation.

Integration of equation (1) over a control volume CV yields
∫

CV

∂ρφ

∂t
dV +

∫

CV
div(ρφ~u) dV =

∫

CV
div(Γgradφ) dV +

∫

CV
qφ dV (2)

The volume integrals in the convective term (second on the left hand
side) and in the diffusion term (first on the right hand side) are rewritten
as integrals over the bounding surface of the control volume by using Gauss
divergence theorem:

∫

CV
div(~a) dV =

∫

S
~a · ~n dS

Then∫

CV

∂ρφ

∂t
dV +

∫

S
(ρφ~u) · ~n dS =

∫

S
(Γgradφ) · ~n dS +

∫

CV
qφ dV (3)

In steady state problems ∂( )
∂t = 0. This leads to the integrated form of

the steady transport equation
∫

S
(ρφ~u) · ~n dS =

∫

S
(Γgradφ) · ~n dS +

∫

CV
qφ dV

4.3 Boundary conditions

Possible boundary conditions:

• Wall: No fluid penetrates the boundary, i.e. convective flux is zero.
There are two types of wall condition: no-slip (fluid is at rest at the
wall) or free-slip (no frictional loses at the boundary).

• Inflow (inlet)condition: Convective flux is prescribed.

• Outflow (outlet) condition: Convective flux independent of the coor-
dinate normal to the boundary.

• Symmetry bc: ∂φ
∂n = 0

• Periodic bc: φ1 = φ2
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5 Finite Volume Method

We will consider the generic conservation equation for a scalar quantity φ
and assume that the velocity field and all fluid properties are known. The
Finite Volume Method begins with the integral form of this equation:

∫

S
(ρφ~u) · ~n dS =

∫

S
(Γgradφ) · ~n dS +

∫

CV
qφ dV (4)

The domain is subdivided into a finite number of small control volumes
(CV) by a grid which defines the CV boundaries, not the computational
nodes.

P

N

SSW SE

E

NENW

W

nw ne

sesw

w

n

s

e

Dx

Dy

xi-1 xi xi+1xi-2

ne

yj-1

yj

yj+1

Se

x

y
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The equation (4) applies to each CV as well as to the whole domain. If
we sum equations for all CVs, we obtain the global conservation equation,
since surface integrals over internal CV faces cancel out.

To obtain an algebraic equation for each CV, the surface and volume
integrals need to be approximated using quadrature formulae.

5.1 Approximation of volume integrals

The simplest approximation is the midpoint rule:
∫

CV
q dV = q̄ Vol(CV) ≈ qP Vol(CV)

where q̄ is the mean value and qP the value of q at the CV center. This
approximation is exact if q is either constant or varies linearly within the
CV; otherwise is of second order.

An approximation of higher order requires the values of q at more loca-
tions that just the center. These values have to be obtained by interpolating
nodal values.

For example, assuming that q is bi-quadratic (q(x, y) = a0 +a1x+a2y +
a3x

2 + a4y
2 + a5xy + a6x

2y + a7xy2 + a8x
2y2) a fourth-order approximation

can be obtained by analytical integration
∫

CV
q dV ≈ ∆x∆y

36
(16qP + 4qs + 4qn + 4w + 4qe + qse + qsw + qne + qnw)

Since only the value at P is available, interpolation has to be used to
obtain q at the other locations. It has to be a least of fourth order to retain
the accuracy of the integral approximation.

5.2 Approximation of surface integrals

The net flux through the CV boundary is the sum of integrals over the faces:
∫

S
f · ~n dS =

∑

k

∫

Sk

f dS

where f is f conv = (ρφ~u) · ~n or fdiff = (Γgradφ) · ~n.

As the velocity field and the fluid properties are assumed known, the only
unknown is φ. If the velocity field is not known, we have a more complex
problem involving non-linear coupled equations.

In what follows only a typical CV face, the east face, will be considered.
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Approximation methods of the surface integral:

• Midpoint rule: O(∆x2), if fe known

∫
Se

f dS = f̄e · Se ≈ fe · Se
P

nw ne

sesw

w

n

s

n
e

S
e

e

• Trapezoidal rule: O(∆x2), if fne and fse known

∫
Se

f dS ≈ Se
2 (fne + fse) P

nw

sw

w

n

s

e

n
e

S
e

se

ne

• Simpson’s rule: O(∆x4), if fe, fne and fse known

∫
Se

f dS ≈ Se
6 (fne + 4fe + fse) P

nw

sw

w

n

s

n
e

S
e

ne

e

se

Since the values of f are not known at the cell faces, they have to be
obtained by interpolation.

5.3 Interpolation

f in the previous integrals represents the convective flux f conv = (ρφ~u) ·~n or
the diffusive flux fdiff = (Γgradφ) · ~n. Again the velocity field, ρ and Γ are
assumed known at all locations. To calculate the fluxes, we need the value
of φ and its gradient normal to the cell face at some locations on the CV
surface. They have to be expressed in terms of nodal values by interpolation.

Different methods to approximate φ and its normal derivative at face
east:

Upwind Differencing Scheme (UDS) Approximates φe by ist value at
the node upstream of ’e’. It is equivalent to using a backward or
forward difference approximation for the first derivative (depending
on the flow direction).

φe =

{
φP if (~u · ~n)e > 0
φE if (~u · ~n)e < 0

W P E

f

x

ew

f
e

u

This approximation is of first order (O(∆x)), unconditionally stable (it
will never yield oscillatory solutions) and numerically diffusive (rapid
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variations in the variable are smeared out, very fine grids are required
to obtain accurate solutions).

Central Difference Scheme (CDS) Linear interpolation between the two
nearest nodes.

φe = φEλe + φP (1− λe)

W P E

f

x

ew

f
e

where the linear interpolation factor λe is defined as

λe =
xe − xP

xE − xP

This is the simplest second order scheme. It may produce oscillatory
solutions.

A possible approximation for the gradient (needed for the evaluation
of diffusive fluxes) is (

∂φ

∂x

)

e
≈ φE − φP

xE − xP

When the face ’e’ is midway between P and E (uniform grid), the

approximation is O(∆x2), otherwise it is O(∆x).

Quadratic Upwind Interpolation (QUICK) To construct a parabola
for interpolation three points are necessary: P, E and a third point on
the upstream side (according with the nature of convection).

φe =

{
φP + g1(φE − φP ) + g2(φP − φW ) for ux > 0
φE + g3(φP − φE) + g4(φE − φEE) for ux < 0

W P E

f

x

ew

f
e u

where the coefficients gi can be expressed in terms of the nodal coor-
dinates by:

g1 = (xe−xP )(xe−xW )
(xE−xP )(xE−xW ) g2 = (xe−xP )(xE−xP )

(xP−xW )(xE−xW )

g3 = (xe−xE)(xe−xEE)
(xP−xE)(xP−xEE) g4 = (xe−xE)(xP−xe)

(xE−xEE)(xP−xEE)

This quadratic interpolation is of order O(∆x3).
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5.4 Solution of linear equation systems

By summing all the approximated integrals we produce an algebraic equation
at each control volume:

AP φP +
∑

l

Alφl = QP

where the index l runs over the neighbour nodes involved, and the system
of equations for the whole domain has the matrix form

[A] · [φ] = [Q]

The matrix A is always sparse.

There are mainly two types of methods for solving the system of linear
algebraic equations:

Direct methods

• Gauss elimination

• LU decomposition

• Tridiagonal matrix algorithm (TDMA)

The number of operations for a N × N system is O(N3). It is required to
store all the N2 coefficients.

Indirect or iterative methods

• Jacobi method

• Gauss-Seidel method

• Successive over-relaxation (SOR)

• Conjugate gradient method (CG)

• Multigrid methods

Iterative methods are based on the repeated application of a relatively sim-
ple algorithm leading to a (eventual) convergence after a (sometimes large)
number of repetitions. The total number of operations, typically on the
order of N per iteration cycle, cannot be predicted in advance. It is not pos-
sible to guarantee convergence unless the system of equations satisfies strict
criteria. The main advantage of iterative methods is that only non-zero
coefficients need to be stored.
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In an iterative method one guesses a solution and uses the equation to
systematically improve it. If each iteration is cheap and the number of
iterations is small, an iterative solver may cost less than a direct method.
In CFD problems this is usually the case.

When using iterative solvers, it is important to know when to quit. The
most common convergence criteria is based on the difference between two
succesive iterates. The procedure is stopped when this difference is less than
a pre-selected value.

The convergence behaviour of traditional iterative methods deteriorates
as the grid is refined, more and more iteration steps are required to reduce
the iteration error below a given tolerance. Multigrid methods is a new class
of iterative methods for solving discrete elliptic equations. The number
of iteration steps is independent of the number of unknowns, thus finer
discretization no longer leads to an increase in the number of iteration steps.

5.5 Unsteady problems: Time discretization

Up to now we have discussed the discretization of the convective and diffusive
fluxes and source terms for steady problems. For the unsteady (initial value)
problem we rewrite the conservation equation in the form

∂ρφ

∂t
= −div(ρφ~u) + div(Γgradφ) + qφ = f(t, φ(t)), φ(t0) = φ0

The convective, diffusive and source terms represented by f(t, φ(t)) are
discretized using finite volume method. For time integration we can use
similar methods than for Initial Value problems in ODE.

∫ tn+1

tn

∂ρφ

∂t
dt = ρ(φn+1 − φn) =

∫ tn+1

tn
f(t, φ(t)) dt

The right hand side integral is evaluated numerically.

Examples of methods for time integration:

• Explicit or forward Euler method: order O(∆t),

φn+1 = φn + f(tn, φn) ·∆t

• Implicit or backward Euler method: order O(∆t),

φn+1 = φn + f(tn+1, φ
n+1) ·∆t

• Leapfrog method (midpoint rule): explicit, order O(∆t2),

φn+1 = φn−1 + f(tn, φn) · 2∆t
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• Crank-Nicolson method (trapezoidal rule): implicit, order O(∆t2),

φn+1 = φn + 1
2

[
f(tn, φn) + f(tn+1, φ

n+1)
] ·∆t

Time integration methods are classified in:

• Explicit: solution values at time tn+1 are computed from the values
of f at time tn, i.e. all fluxes and source terms are evaluated using
known values at time tn.

Advantages:

– direct computation without solving a system of equations

– easy to programm and parallelize

– few number of operations per time step

Disadvantage: strong conditions on the time step for stability

• Implicit: f is evaluated at time tn+1, i.e. all fluxes and source terms
are evaluated in terms of the unknown variable values at the new time
tn+1.

Advantage: much larger time steps possible, always stable.

Disadvantages:

– every time step require the solution of a system of equations

– more number of operations

– difficult to programm and parallelize

5.6 Coupling of pressure and velocity

Up to now we have assumed that the velocity field was known. This is in
general not the case.

Transport equations for each velocity component (momentum equation)
can be derived from the general transport equation by replacing φ by u, v
and w. The velocity field must also satisfy the continuity equation.

x-momentum equation

∂

∂x
(ρuu) +

∂

∂y
(ρvu) =

∂

∂x

(
µ

∂u

∂x

)
+

∂

∂y

(
µ

∂u

∂y

)
− ∂p

∂x
+ qu

y-momentum equation

∂

∂x
(ρuv) +

∂

∂y
(ρvv) =

∂

∂x

(
µ

∂v

∂x

)
+

∂

∂y

(
µ

∂v

∂y

)
− ∂p

∂y
+ qv
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Continuity equation

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0

The convective terms of the momentum equation are non-linear. All
three equation are coupled because every velocity component appears in
each momentum equation and the continuity equation. The most complex
issue to be solved is the role played by the pressure. It appears in both
moment equation but there is no equation for the pressure.

If the flow is compressible, the continuity equation may be used as a
transport equation for density and the energy equation for the temperature.
The pressure may than be obtained from the density and temperature by
using the equation of state p = p(ρ, t). If the flow is incompressible, the
density is constant and not related with the pressure. In this case coupling
between pressure and velocity introduces a constraint on the solution of the
flow field: if the correct pressure field is applied in the momentum equation
the resulting velocity field should satisfy continuity.

Different variable arrangements can be chosen on the grid:

• Colocated grid

– Node for pressure and velocity components at the CV center.
– Same CV for all variables.
– Possible oscillations of pressure.

• Staggered grid
Advantages:

– The different unknown variables are located at different grid nodes.
Pressure located in the cell centers, velocities at cell faces.

– Strong coupling between the velocities and pressure helps to avoid
oscillations.

Other staggering method is the Arbitrary Lagrangian-Eulerian (ALE).
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5.7 Summary

The Finite Volume Method uses the integral form of the conservation equa-
tions as starting point. The domain is subdivided into a finite number of
contiguous control volumes (CV) and the conservation equations are applied
to each CV. At the centroid of each CV lies a computational node a which
the variable values are to be calculated. Interpolation is used to express
variable values at the CV surface in terms of the nodal values. Surface
and volume integrals are approximated using quadrature formulae. As a
result, one obtains an algebraic equation for each CV, in which a number of
neighbour nodal values appear.

The FVM can use any type of grid, so it is suitable for complex ge-
ometries. The method is conservative by construction. But FV methods of
higher order than second are very difficult to develop in 3D.

The FVM satisfies conservation automatically.
Some examples of commercial CFD codes are: CFX, Phoenics, Fluent

and Flow3d.

6 Turbulent flows

Most flow encountered in practice are turbulent. In contrast to laminar flow
problems, numerical simulation of turbulent flows cannot be carried out by
simply discretizing the governing equations and solving them in certain grid.
This is caused by the fact that turbulence is essentially three dimensional
and contains many length scales simultaneously. With increasing Reynolds
number the length scales of the smallest eddies in the flow become smaller
and smaller. Consequently, the amount of computational ressources neces-
sary to describe all the length scales that occur, increases with the Reynolds
number. Even the largest supercomputer do not have (yet) the require speed
and memory capacity to handle this amount of data, except for turbulent
flow with relative low Re.

In order to compute all significant structures (motions) of a turbulent
flow, the domain on which the computation is performed must be at least as
large as the largest eddy, and the grid must be as fine as the smallest eddy.

Computational methods to simulate turbulent flows:

• Direct Numerical Simulation (DNS)

• Large Eddy Simulation (LES)

• Reynolds Averaged Navier-Stokes Models (RANS)
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6.1 Direct Numerical Simulation (DNS)

The most accurate approach to turbulence simulation is to solve the NS eq
without averaging. This so-called direct simulation does not assume any
modelling, it discretize and solve de NS eq on a grid sufficiently fine for
resolving all motions occurring in the turbulent flow. The computed flow
field obtained is equivalent to a laboratory experiment. The characteristic
length scale for the smallest eddies is given by the Kolmogorov scale η. The
relation between η and the length scale L of the largest eddies is given by:

L

η
∼ (ReL)

3
4

where ReL is the Reynolds number with respect to L. If the dimensions of
the mean flow field are of the order L3 and the sizes h of the grid elements
are about equal to η, then the number of elements nelem needed to discretize
the flow field is

nelem ∼ (ReL)
9
4

In industrial applications such as aerodynamic investigations of auto-
mobiles or aircraft, typical Reynolds numbers are 106 and above. Hence,
solving these type of problems properly using DNS would require over 1013
grid points. Neither existing parallel computers nor computers of the near
future can supply the storage space or the necessary CPU performance de-
manded by such a simulation.

6.2 Large Eddy Simulation (LES)

Only the large eddies (or resolvable scale motions) are calculated, whereas
the small eddies (subgrid-scale motions) are modelled by a closure assump-
tion.
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Properties of the large eddies: Properties of small eddies:
- produced from the mean flow - produced by large eddies
- transport mass, momentum, energy - dissipative
- flow dependent - almost universal
- anisotropic - nearly isotropic
- hard to model - easier to model

The flow dependent large eddies are directly affected by the boundary
conditions. They are therefore the most difficult ones to model. LES avoids
this problem by explicit computation of these motions. Since the small
eddies dissipate energy from the large ones, a so-called subgrid-scale (SGS)
model is needed that take into account this physical energy cascade process.
The sizes of the grid elements, and thereby the distinction between large
and small eddies, has to be chosen to be small enough for the unresolved
subgrid-scale motions to behave statistically in a nearly isotropic manner.
If this is the case, the SGS motions can be modelled independently of the
flow geometry.

6.3 Reynolds Averaged Navier-Stokes Models (RANS)

Each unknown variable is decomposed in a mean and a fluctuation part,
φ = φ̄ + φ′. This decomposition is substituted in the NS eqs and then the
eqs are averaged over time. The nonlinearity of these eqs gives rise to new
terms, the set of eqs is not closed, turbulence models are necessary.
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