Corporate Technology

Joint Advanced Student School (JASS 2004) State University St. Petersburg – Technische Universität München

Helmuth Benesch, Siemens AG, Corporate Technology, Software and Engineering Otto-Hahn-Ring 6, 81739 München, tel.: 0049-89-63646666

CORPORATE TE

CHNOLOGY

Project Management Overview

≻ Э

- Objectives not clearly defined when project begun
- Methods/operations still being planned
- High innovation level
- Frequent changes
- Tight deadlines
- Predefined resource capacities
- Cross-functional collaboration
- Creative flexibility required

- Responsibilities, information paths and decision process not sufficiently defined
- No clear-cut definition of the work to be done
- Requirements not sufficiently investigated
- New demands change / endanger the original project goals
- Illusive deadlines (wishful thinking)
- Rough cost estimates
- Deviations (results, deadlines, costs) from project objectives perceived too late
- Problems solved when they occur: People react when it is too late
- Slip-ups "caused" by "unforeseeable" technical constraints

(Source: Reschke, Svoboda, 1983)

The "Magic Triangle"

- Achieve project objectives
- Minimize risks
- Attain level of quality required
- Reduce turnaround time
- Stay within budgeted costs
- Continuous transparency
- Dependable information

How can these goals be attained? <u>Project management</u>

Project Management

Integrate:

Management tasks	– Define goals – Maintain goals – Make decisions
Management functions	 Project planning and coordination Project monitoring
Management techniques	 Motivation techniques Discussion methods Presentation methods Decision-making techniques
Management methods	 Product / project structure planning systems Time / Resource / Cost analysis

and controlling systems

Definition of Project Management (DIN 69 901)

Structural Organization - Project Functions - Project Organization - Project Committees **Procedural Organization** - Milestones and Phases - Phase Organization - Configuration Management **Defining Project Goals** - Project Goals - Requirements Planning - Structure Planning - Effort Estimation - Sequence Planning - Scheduling **Project Monitoring and Controlling**

- Project Reporting
- Project Review
- Control Measures

Components of Project Management

Mastering the complexity!

Life-cycle Costs for Software Projects

- 0 Clear-cut, acceptable and realistic project objectives 0 N H Tailor-made project organization for specific project RQ \odot ш ⊢ Personal responsibility ш ⊢ Subdivide tasks into discrete manageable packages \triangleleft
 - Intensive communication between all project participants •
 - Maintain flexibility in task
 - Motivated and goal-conscious staff
 - Sufficient know-how

Organization 1 Project Functions 2 Organizational Structures

Project Organization Chart (Project Functions)

Project Management

- Clarify project objectives and marginal conditions; define internal objectives for the project,
- · Control over achievement of objectives,
- Definition of the structural and procedural organization,
- Delegate tasks; award sub-contracts,
- · Coordinate all departments involved in project,
- Procurement (Resources, personnel),
- · Personnel management,
- · Decisions concerning alternative solutions / methods,
- · Set priorities for development activities,
- Define release process (planning and development),
- Management information,
- Communication with the customer,
- External representation (project representative, promotion & marketing).

Project Manager

- is personally responsible for attaining project objectives by
 - Fulfilling technical objectives
 - Adhering to deadlines
 - Maintaining planned costs
- must be vested with adequate rights and authority in respect to:
 - Authority to make decisions, give orders, and monitor activities within the project
 - Control of the project's budget
 - Right to delegate assignments or tasks
 - Authority to access all information necessary for carrying out the project

System Planning and Controlling

- Analyze the technical requirements (Requirements Engineering),
- Define and analyze the technical problems to be solved and break them down into sub-problems (work packages),
- · Formulate and assess alternative ways of accomplishing objectives,
- Perform a feasibility study,
- Draft a comprehensive system design,
- Specify internal and external system interfaces,
- Define product hierarchy (structure charts),
- Plan configurations, components to be delivered, and versions (strictly coordinated with configuration management),
- Define detailed development plan (organization, scheduling, etc.),
- Select the development tools to be used,
- Specify the project control plan (QA and test plans),
- Specify technical guidelines for design, implementation, tests, documentation, administration, etc.,
- Monitor staff compliance to standards (guidelines, interfaces, etc.),
- Define sub-tasks in detail.

Project Planning and Controlling *

- Plan Project's Work Breakdown Structure,
- Define work packages,
- Detailed development plan (detailed development of milestones & work packages, network chart),
- Define development contract with sub-contracts,
- Plan and monitor the following:
 - Technical performance (final results and intermediate results) to be strictly coordinated with system planning and quality assurance,
 - Resources (personnel, computer time, etc.),
 - Deadlines,
 - Costs,
- Documentation / reports (results, costs, deadlines),
- Contract management.

* In small projects these tasks are usually performed by the project manager

System Development

- Define and analyze requirements placed on the sub-systems,
- Project planning and design of sub-systems / components,
- Develop and test models, prototypes,
- Perform simulations, trial runs, experiments,
- Detailed specification,
- Implement components (modules, module groups) with technical descriptions and affiliated documentation,
- Test the components,
- Make necessary changes and corrections,
- Develop manuals (user documentation).

System Integration and Testing

- Test plans (test drivers, test procedures, test tools, test data, test cases)
- Plan and complete the test systems for integration test, system test and regression test,
- System integration: Integrate the sub-systems into the overall system,
- Integration test: Test if the integrated system functions properly,
- System test: Verify if the integrated system satisfies the system requirements,
- Regression test: Test the previously verified system for effects caused by correcting errors, extensions and changes.

Configuration Management

- Administrate the development results (systems, sub-systems, elements, structures, documents, etc.) and project data in a project library
- Error message and change control: Account for and control change requests and diagnostics,
- Define necessary controls or limitations for changes to system,
- Maintain and assemble components for system integration and system test,
- Release and distribute completed systems,
- Analyze the project library, status accounting.

Quality Assurance

- Define quality objectives and requirements,
- Strategic quality planning:
 - Objects: Documents, code, tools, etc.
 - Procedures: Development Document Control (DDC) Structured Walk Through (SWT) Code Review, etc.
 - Criteria: Functional performance (requirements), reliability, Customer satisfaction (user friendly), performance, etc.
 Dates: End of phase, milestones, etc.
- Perform quality audit,
- Quality control reports:
 Document effects of quality assurance improvement measures.

 Projects in a line-staff	 Project within one specific (project) line No / very few cross-departmental tasks;
organization	little interface between organizational units Project manager usually team / laboratory supervisor Application areas: small, isolated projects or sub-projects
• Matrix organization form	 Cooperative project made up of several groups within a product line and / or temporary groups; several sub-projects Cross-functional (groups / laboratory) effort; numerous interfaces between organizational units Project manager: (project) line manager or member of a group not connected with the project line Application areas: middle-size or large projects
 Pure project	 Project within a specially-created, independent organizational unit (a division within a division) made up of one or more temporary project groups Clear-cut, well-defined tasks;
organization	little interface between organizational units Project manager is also the manager of the organizational unit Application areas: small, middle-size or large projects; often used in highrisk projects

Comparison of Organizational Structures

Project Goals

1. Objectives 1.1 Define target product **1.2 Targeted market** 1.3 Competition 1.4 System environment 1.4.1 Hardware environment 1.4.2 Software environment 2. Product Requirements 2.1 Design methods 2.2 **Process operations** 2.3 Technical functions 2.3.1 **Cell components** 2.3.2 Gate arrays 2.3.4 User interface ... 2.4 Quality 2.4.1 Reliability 2.4.2 Time factors 2.4.3 Performance factors 2.4.4 Serviceability 2.4.5 **Portability** 2.5 Documentation 3. Project implementation 3.1 Deadlines 3.2 Costs, expenditures 3.3 Project organization

Structure of a Requirements Catalogue (Example)

Requirements

- are the demands placed on the product / project / process from the user's / customer's standpoint
- form the basis for agreements with the customer
- are dealt with by the customer and the development department
- formal responsibility for them borne by the development department
- content, controls or limitations accepted by customer and development department
- are handled in the beginning phases of the project
- constitute initial basis for development efforts

- Changes to development results cannot be avoided
 Changes to originally formulated concept
 - New considerations in product development
 - Errors during product development
 - The objective of formalized change control (Change Requests) is to maintain consistency in the developed system
 - Changes apply to defined development results (Baselines) and affect
 - Present process-phase
 - Previous baseline results (backtracking)
 - Subsequent baseline results
 - Changes are made as single solutions or are added as components in new (or revised) versions

Change Request (CR)

Change Request Procedure

Phase Organization

- Milestones specify
 - Controlled (intermediate) results and
 - Completion dates

- A milestone should be:
 - essential
 - checkable
 - transferable
 - deliverable
 - fixed
 - predefined

Milestones are specified during the planning stage of the project

- What is the problem?
- What are the objectives?
- What are the possible solutions?
- Which solution should be selected?
- How can the solution be implemented?
- Design and develop the components
- Component integration
- Overall system testing
- System installation
- System operations and maintenance

Sequence of Design Documentation
CORPORATE TECHNOLOGY

 \succ

- A phase organization defines a sequence of successive milestones which are logically dependent.
- The phases are composed of all of the activities which take place between the milestones.
- Product size and project size are important in every distinct phase organization.
- A phase organization aims at reducing technical, economic and scheduling risks by:
 - using a step-by-step methodology
 - stipulating and monitoring intermediate results (milestones)
 - increasing transparency in regard to the status of the project.
- The use of a phase organization is standard practice in modern product development.

Elements of the Phase Organization

9. Marginal conditions

Definition of Phase Activities / Results

 \succ ഠ 0 0 Z т \mathbf{O} LT L ⊢ ш ⊢ \triangleleft С \bigcirc ٩ С \bigcirc \odot

- 1. Overview
- 1.1 Changes made to product deviating from func. specs.
- 1.2 Changes made to project deviating from func. specs.
- 1.3 Product development phase
- 1.4 Classification of the product in a system environment
- 2. Detailed technical design
- 2.1 Overview
- 2.1.1 Complete system solution
- 2.1.2 Functional structure
- 2.1.3 Sequence of functions
- 2.2 Individual functions (Rep. dep. on subject matter)
- 2.3 Data
- 2.3.1 Data library
- 2.3.2 Data structure
- 2.3.3 Data streams
- 3. User interface
- 3.1 General controls
- 3.2 Masks
- 3.3 Specialist / beginner mode
- 3.4 Lists
- 3.5 User guidance
- 3.6 Help function
- 3.7 Error diagnostics
- 4. System design (DP rough draft)
- 4.1 System base (HW, SW)
- 4.2 External interfaces
- 4.3 Product structure

- 4.4 Component specification, including component / function matrix
- 4.5 Internal interfaces
- 4.6 Operating mode
- 4.7 System operations, system control
- 4.8 Error handling
- 4.9 Restart capability
- 4.10 Data integrity
- 4.11 Data protection
- 4.12 Storage technology design
- 5. Quality characteristics
- 5.1 Reliability
- 5.2 Time factors
- 5.3 Performance factors
- 5.4 Maintainability
- 5.5 Portability
- 5.6 User-friendliness
- .. etc.
- 6. Implementation specification
- 6.1 Version planning
- 6.2 Implementation procedure
- 6.3 Risk analysis
- 7. Additional specifications
- 7.1 Tools
- 7.2 Production guidelines
- 7.3 etc.

Appendix: List of associated documents

Those taking part in formal phase reviews

- Each phase is concluded by an explicit decision.
- Risks are considered and then decisions made about:
 - Technical alternatives
 - Releasing results
 - Continuing the project.
- The project manager relies upon test results provided by quality assurance and business integrity controlling (when available).
- The decision is binding for all those taking part in the project.

Ч С

010

Cost Distribution in Software Projects

Configuration Management and Phase Organization

Phase	Study		Design		Implementation		System Integration and Testing		Maintenance
Goals	Define system requirements & marginal conditions		Define detailed system & test structure		Complete system components and test system		Make product ready to go into operation		Assure product functions properly
Formal Phase Review	۲ ۲	1		2 V	7	3		4	
Milestones	٦) T	[20		120		126		150)M90
Sub-processes									
Product	 Functional RQ specifications 		 Performance specification Design spec- ification 		Components		 Integrated and Tested product 		 Product protocol
Documents	Rough drafts				 Manuscript 		 Printed manuals 		
• Testing	 Acceptance specification 		• Test plan		Component test report		 System test report 		Test report
• Planning	• Project plan QA plan		 Project plan revised QA plan 				Project report		Maintenance plan

Phase Organization for Small Projects

Quality Assurance throughout the Life-cycle Phases

Project Planning Structure Charts

In the middle of the project life-cycle software projects are usually estimated as already being 95% complete!

The 90 % Syndrome in Software Projects (from B. W. Böhm)

What are the reasons for making estimation errors?

- The problem is too complex for the developer to handle He has no / little understanding of inter-dependencies
- Inaccurate estimates of time and manpower required for completing the "additional" work
- Poorly defined or overly optimistic planning

Common Estimation Pitfalls

Project planning can be described as:

- Defining a predetermined course of action (activities)
- to achieve the fixed goals of the project
- taking into account certain basic constraints (time, costs, resources, etc.)

Definition of Project Planning

Prediction Range

Sequence of Planning Operations

- The product structure contains the elements of the product to be developed.
 Each element is then subdivided into components.
- The product structure is arranged hierarchically according to product components.
- The product structure is usually presented in diagram form.
- The product structure provides a basis for
 - Defining goals with the customer
 - Formulating the detailed project design specification

Object Structure Chart

CORPORATE TECHNOL

ΟGΥ

- The object structure chart specifies all of the results and intermediate results to be developed in the course of the project. It incorporates the final result (product structure), design documents, plans, reports, etc.
- The object structure chart is arranged hierarchically.
- The object structure chart is usually presented in diagram form.

ശ 0 ____ 0 Z H \odot ш ⊢ ш ⊢- \triangleleft С 0 Δ С 0 \mathbf{O} \succ

- The Work Breakdown Structure (WBS) contains all the work packages which are to be developed in the course of the project.
- The WBS provides a basis for
 - -estimating costs
 - developing a network chart
 - issuing internal orders
- The WBS is arranged hierarchically according to
 - Objects
 - Project functions
 - Phases
- The WBS is usually presented in diagram form.

Responsibility

<u>Input</u>

- The work package describes discrete tasks with definable end results
- The objective of defining work packages is to
 - obtain a survey of the effort (volume of work)
 - to be accomplished
 - support individual responsibility in completing assignments
 - monitor and control progress of work.
- The work package is performed by one and only one specific organizational unit (or person).

Project Planning Effort Estimation

Sequence of Planning Operations

Analogy Method

reasoning by analogy using one or more completed objects (projects) similar to the new project to relate actual costs to estimated costs

Approximation Method

formalized analogy method using approximation criteria prorated from previous projects similar in scope and capacity

Percentage Method

Based on: "Standard" cost distribution in the various phases of a project, derived from past projects

One phase analyzed in detail for base estimations,

Other costs projected for remaining phases based on distribution factors

Multiplicative Method

uses a set of product cost coefficients applied to cost variables

Weighted Sum Method uses weighted cost-effect variables for estimating

Parametric method

based on statistical data which considers the strength of various cost-effect factors (using regression analysis data derived from previous projects)

<u>Direct Product Expenditures (DPE)</u> Example: Determine DPE contingency based on 1 MW = 40 MH (5 x 8 hrs.)

Activities	Estimate of MH pro week
1 x team meeting 1 x weekly planning activities (personal) technical literature (state-of-the-art)	~ 1.5 MH ~ 0.5 MH ~ 2.0 MH ~ 4 MH / week
DPE Factor x =	~ 10 %

Indirect Project Expenditures (IPE)

	Standard ZT calculat	ion					
	work-day ~8 MH	МН	%	work-day ~ Std.	Std.	%	"IPE factor" = total work time
Contractual hours of work p.A. Non-productive man-hours: -Vacation -Sickness -Misc. activities -Act.+pass. further education	250 30 8 5 7	2000	100 12 % » 3 % 2 % » 3 %				reduced by 20 % Estimated 25 % additiona time required for project MH
IPE Sum	50	400	20				
Productive Project MH	200	1600	80]

Customary activities associated with a standard work package:	 A work package includes Taking on new task Familiarization time Implementation Validation / Quality Assurance Maintenance / Refinement Acceptance Documentation Working agreements (interfaces) 					
Working hours:	1 MD = 8 MH 1 MW = 40 MH 1 MM = 149 MH 119 net-project MH 1 MY = 1800 MH 1440 net-project MH 1 MY = 10 MM					

Cost drivers

Basic Work time Information

Participants

Moderator

Estimators = Experts from the project team or external assessors

Recording secretary (minutes of meeting)

max. 8 participants

max. 2 days

Work methods

- individual estimates kept hidden
- Group estimation (Decision procedures!)
- Open minutes of meeting
- Documentation / reports explaining the estimation results

Prepare	 Select estimators and issue invitations Provide technical reference documents 				
Implement	 Explain estimation audit procedures Supply basic information Discuss project structure Develop estimation units Record assumptions 				
Individual estimations	 Explain work package Estimate work involved and costs Discuss estimations Record results Estimate risk 				
	 Determine estimation accuracy 				

Follow-up	 Document results Calculate contingencies Net / Gross conversion Plausibility check Send results to and thank appraisers
-----------	---

Scheduling

Sequence of Planning Operations

Scheduling Objectives

WHAT is to be done WHEN in WHAT sequence for HOW LONG by WHOM using WHAT resources

Describe a realistic

project life-cycle

to ensure

project success

General Considerations for Scheduling

 \succ ശ 0 0 N H NC 1 \circ ш \vdash ш ⊢- \triangleleft С 0 <u>а</u> С 0 \mathbf{O}

Scheduling - Network Analysis

Example of a Project Structure Chart ("REQVW")

	Activity	Responsible	Dependency	Effort	Time
1100 1210 1220 1310 1320 1410 1420 2100 2200 2310 2320 2330	Define project organization Project planning Phase plan Cost controls Scheduling End of "Study" End "Project planning" Determine requirements Feasibility study Performance spec.: Functions Performance spec.: System design Performance spec: Interfaces	Responsible	Dependency		
2400 3000 4000 5100 5200 5311 5312 5313 5320 5330 6000	Development Development Integration and Testing Define Quality characteristics Develop QA plan Review Perf. spec.: Functions Review Perf. spec.: System design Review Perf. spec.: Interfaces QA reports / documentation Corrective actions Configuration Management				

Example of an Activity list ("REQVW")

- The Work Breakdown Structure (WBS) provides a comprehensive listing of the work packages and dependencies (I/O interfaces) for a particular project.
- The WBS serves as a basis for the network chart.
- The WBS provides a logical summary of all of the work packages within the project structure chart.
- The WBS is a graphic representation (tree diagram).

Detailed Work Breakdown Structure

- Estimation of time per activity (Effort required in MD, MW, MM)
- Resource allocation (Distributing available resources amongst the activities)
- Determine the duration of each activity
- Consider fixed deadlines

Detailed WBS with time required and deadlines

Practical Recommendation: No person should be responsible for more than 2 activities at the same time Don't forget to add increments for deviation time

Network Chart (NC)

- A NC depicts completion time estimates and interdependent relationships between project work packages
- It displays the planned project activities in a clear-cut manner facilitating project control
- It includes time estimates with:
 - Beginning and end dates for each work package and estimated duration
 - "critical path" and "slack time"

Network Analysis coordinates and expedites project planning and helps projects stay on schedule by monitoring deadlines

Network Charts

Network Verification

- Formal inspection
 - Layout (understandable, clear-cut and well-arranged)
 - Interpretation errors
- Examine scheduling plan
 - Lag time
 - Lead time
 - Deadline discrepancies
 - Interdependencies (absolute, significant, realistic)
- Examine resources
 - Total capacity
 - Individual capacity

Reexamination to Correct Inaccuracies

<u>Network Replanning</u>

Include actual data (expenditures, time, personnel)

Add more details (increases accuracy)

Update network data

Practical recommendation:

Make detailed notes about decisions or situations causing changes or errors

= Experience gained in current projects can provide useful information for future projects

Network Replanning takes place repeatedly throughout a project:

- > To make adjustments due to
 - changes to the objectives (requirements)
 - modifications to the marginal conditions
 - changes to the procedures
- To help handle uncertainties (decrease risk)
- > To add more details to the successive process levels
- To provide a basis for monitoring the progress of the project
 - by regularly comparing planned estimates with actual values

Repeated Replanning Throughout the Project

Activity lies on arrow indicator path

- PERT = Program Evaluation and Review Technique IBM Program name
 - Very similar to CPM (but event-oriented)
 - 3 time estimates:
 - u optimistic u most likely
 - u pessimistic
- MPM = Metra Potential Method Activity node method
- Activity as node

Network Techniques

Conventional Presentation Techniques for Scheduling

Monitoring and Controlling

Project Controlling

Objective: Stay attuned to current situation!

What should be reported?

- Time, deadlines
- Cost
- Performance, Quality
- Resources
- Hard Data

Types of Reports

- Milestone Trend Analysis
- Project reports / review meetings
- Work package acceptance
- Formal phase review
- Team reports
- Quality Assurance reports
- CM controlling report

- Problems
- Motivation
- Expected Risks
- Customer characteristics
- Soft Data

• Oral Communication (continuous)

Reporting

Objective: Detect irregularities as early as possible

Typical problem areas

- Results incomplete
- Quality
- Deadlines
- Costs
- Productivity
- Resources
- Management goals

How can they be identified?

- Official Reports
 - Milestone Trend Analysis (MTA)
 - Monthly Reports
 - Quality Assurance Reports
 - Formal Phase Review
- Observations
 - Atmosphere in the Project
 - Personal or Group Discussions
 - Work attitude
 - Rumors
- Reviews

- 0 ___ 0 N H \circ ш ⊢ш ⊢- \triangleleft С
 - The MTA is set up with milestone dates on the vertical axis and report dates on the horizontal axis, each having months of the year as the measurement unit.
 - The milestones are taken from the project structure chart and represented by symbols in the MTA (refer to previous foil).

The deadlines for each milestone are taken from the scheduling chart. The appropriate milestone symbol is entered at the particular deadline date on the vertical axis. The first report date on the horizontal axis represents the date the scheduling chart was created.

- At regular intervals (i.e., every 4 weeks) the actual project situation is analyzed by the project team and the expected (possibly revised) milestone deadlines are determined. These estimated deadlines are entered at the appropriate report date.
- * If there are any significant differences between the estimates and the actuals, the reasons are explained in a supplementary report.
- * The trend line provides a clear and understandable measure of the changes in the deadlines

- Initial state based on planning information
- Private project meeting with deadline control after one month
- Second project meeting with deadline control after two months
- Third project meeting with deadline control after three months

- Milestone Trend Analysis has proved to be most reliable for monitoring project deadlines. It is quite easy to use and involves minimum effort.
- For the Milestone Trend Analysis the expected deadline dates for planned milestones are entered at the report date. This data produces a trend line in the MTA chart, which shows the expected deadline dates. If the line goes up a milestone will most likely be finished later than planned; if the line goes down the milestone will most likely be finished early.
- Milestone Trend Analysis can be used in all situations where a project plan has been defined containing milestones for activities or components with their deadlines.

Milestone Trend Analysis

Milestone trends can be quickly recognized by simply inspecting the trend line produced by the MTA. Four typical situations are shown here:

- 1 In this example the milestone deadlines are delayed at every report date. This indicates inadequate scheduling. Scheduling must be improved.
- 2 In this example, despite delays in the first milestone, the subsequent milestone was not delayed. Milestones are usually logically dependant upon one another. This situation indicates that the effects of the delay were not sufficiently considered.
- 3 This example displays a relatively stable evolution of deadlines in which the milestones were only delayed direct before the finish date. Evidently scheduling was not accurate for the beginning report dates. The entire control system should be reevaluated.
- 4 This example displays a typical situation in which there was a delay in the first milestone. But subsequent control measures rectified the situation so that later deadlines proceeded with little or no delay.

Milestone Trend Analysis: Typical Milestone Evolution

Objective: Meet deadlines!

- Performance
- Scale down
- Create versions
- Purchase product parts (make or buy)
- Cost Technical alternatives
 - Development process
 - **Re-use** techniques
- Resources
- Expand \succ
- \triangleright Distribute
- External contracts for work packages
- **Productivity**
- Training
- Information, Communication
 Motivation
- **Guard against interruptions**

 \succ ശ

Learn from experience

• If we could organize this project again

- what would we do exactly the same way?
- what would we change?
- what should we change immediately?

Purpose

- learn from successes and failures in the project
- warn others about possible sources of error

Contents

- Life-cycle phase plan, WBS
- Detailed information (size, deadlines, costs)
- Comparison of estimates with actuals
- Cost / effort estimation analysis
- Deadline analysis
- Report about experience gained (know-how, problems, etc.)
- Recommendations (future R&D, management)

≻ Э

Final Report