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Abstract

In this talk we present the method of numerical investigating of
discret dynamical systems called symbolic analisys. Consider a finite
covering of the space and identify points lying in same cells of this
covering. Such point of view fully corresponds with a situation in real
measurings — devices show us only finite number of digits. Under this
assumption we consider a graph, which vertecies corresponds cells of
covering and edges shows that point from first cell can go to second
cell. Paths in this graph correspond to trajectories of initial dynamical
system. In this talk presented some theorems and algorithms based
on this conception. An example of calculation of topological entropy
is considered .
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1 Introduction

I’d like to tell you about Dynamical Systems and one of the methods of
their investigation. Why are these systems so important for us? Why
is it worth knowing about such systems? Such systems can be found
everywhere around us. Any object, for which the notion of state and
the law of evolution are determined, can constitute an example of a
dynamical system. Pendulum, “prey-predator” system, three bodies’
problem and many others are all examples of such systems.

Let us introduce the notion of a dynamical system. Consider a
homeomorphism f of some space M . It defines a dynamical system
on M .

Definition 1. For a point x ∈ M its trajectory is the set . . . x−1 =
f−1(x), x0 = x, x1 = f(x), x2 = f2(x), . . . .

Trajectories may be of one of three types.

1. Fixed points. When all points in the trajectory are the same.
They are corresponding to the constant processes.

2. Periodical points. If for some n holds f 0(x) = fn(x). Then
fk(x) = fn+k(x). These points are corresponding to the period-
ical nature processes

3. All the other points.

2 Symbolic Image

We’d consider a dynamical system on a compact manifold M ,
generated by a homeomorphism f and a finite covering of space
M by closed sets C = {M(1), . . . ,M(n)}. Let us determine a
graph G which vetecies “i” corresponds to an element of the
covering M(i). Let’s then connect vertices “i” and “j” by a
directed edge if there exists a point in M(i), the image of which
lies in M(j) or, in a more formal language, f(M(i))

⋂

M(j) 6= 0.
This graph is called the symbolic image of the dynamical system.
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Sequence of vertices (finite or infinite) . . . , i0, . . . , in . . . such that
for any k vertices ik and ik+1 are connected by an edge is called a
path in the graph. Note that to each trajectory of dynamical system
corresponds a path in a symbolic image (but not conversely).

3 Periodic points

In the dynamical systems theory an important role is played by pe-
riodic points. They correspond to periodic nature processes. We’ll
describe the method of searching the periodical points by the meth-
ods of symbolic analisys.

A path i1, . . . , ik in graph G is called periodic if i1 = ik. Each
periodic point of the dynamical system corresponds to a periodic path
in the symbolic image. So the periodic points may lie only in such cells
M(i) that the vertex “i” in the symbolic image lies in some periodic
path.

Below we present an algorithm based on this fact. It allows finding
of all p-periodic points.

1. Consider any starting covering C. Construct its symbolic image
G. Let the maximum diameter of cell be d0.

2. Find all periodical points of the graph G with period p. Consider
the union of elements of the fragmentation P =

⋃

M(ik), such
that ik is a p-periodic point of the graph G (i.e. point that lies in
some periodic path, length p). This union is a close neighborhood
of the set of p-periodic points.

3. Consider a subdivision of cells from P . Make their diameters
smaller at least in 2 times. By this way we create a new covering.

4. Construct the symbolic image f of the new covering. It is easy
to see that we need the symbolic image only for cells from P ,
because other cells don’t contain periodic points.
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5. Go to step 2.

It is simple to show that following statement holds [1]

Theorem 1. In terms of above algorithm
⋂

∞

k=1 Pk = Per(p), where

Per(p) is the set of p-periodic points of the dynamical system.

So, by increasing the number of iterations we may get an approx-
imation of the set of the p-periodic points with any given precision.
But at each step we can’t guarantee the existence of p-periodic points
in cells from Pk. In real problems the symbolic dynamics is usually
applied to get starting approximations for more precise algorithms.
For example, the Newton Method is applied [1], [2]

4 Entropy

Now, when we presented a basic example of symbolic dynamics appli-
cation, let’s consider a more difficult case.

Why are dynamical systems, so simply defined, being studied so
intensively and still have open problems? The reason is that even
very simple dynamical systems may have very complex structure of
trajectories.

Let’s look at one of the notions employed to estimate the complex-
ity of this structure numerically.

4.1 Definition of topological entropy

Let M be a compact metric space. Consider a discrete dynami-
cal system generated by homeomorphism f : M → M . And let
C = {M(1), . . . ,M(n)} – be a finite open covering of M . Consider
a trajectory of point x of length N : xk = fk(x), k = 0, . . . , N − 1
and its code, i.e. the sequence ξ(x) = {ik, k = 0, . . . , N − 1}, where
xk ∈ M(ik). Terms of this sequence are corresponding to the cells in
which the trajectory of x lies. In this case we will say that the se-
quence ξ = {ik} is an admissible code. It is easy to see that not all of
sequences with {ik} indices are admissible codes. For measuring the
growth number of admissible paths, depending from the length of path
N one usually uses the value h = limN→∞

log
a

K(N)
N

, where K(N) is the
number of different admissible codes of length N . Base of logarithm
may be any digit greater than 1, usually a = 2 or a = e. It was found
that h = 0 for simple systems and h > 0 for systems with chaotic
behavior. In the second case we may approximate K(N) = BahN ,
where B is a constant, i.e. the number of admissible paths, growing
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like the exponent with index h. The value h is considered as a measure
of a chaos degree within the system.

Why exactly is this character accepted as a measure of chaos?
Assume that we know the trajectory’s code of length N and we
want to know, which code will have the next p trajectory’s elements.
How many different possibilities of such a prolongation are there?
In average, this number will equal to K(N + p)/K(N). Assume
h > 0. Then K(N) grows exponentially, i.e. K(N) = BahN , so
K(N + p)/K(N) ≈ ahp i.e. for any large N it will be separated
from 1. It means that we can’t find an approximated prolongation
for any longer part of trajectory’s code. We would not have such an
effect in case of polynomial dependency, where K(N) = AN α, then
K(N + p)/K(N) ≈ (1 + p/N)α, that tends to 1 as N →∞.

Let’s introduce the exact mathematical notion of topological en-
tropy.

Let a homeomorphism f : M → M be given and let C =
{M(1), . . . ,M(n)} be a finite open covering of M . For any M(i0),
let’s find the cell M(i1) of covering C, for which its intersection with
preimage of M(i0) isn’t empty: M(i0)

⋂

f−1(M(i1)) 6= 0. Further,
find M(i2), such that M(i0)

⋂

f−1(M(i1))
⋂

f−2(M(i2)) 6= 0 and
so on. In other words, consider such cell of covering M(ik), where
0 < ik < n, for which

⋂N−1
k=0 f−k(M(ik)) 6= 0.

Denote this set by M(i0i1 . . . iN−1), and their aggregate by CN .
It is easy to see that for x ∈

⋂N−1
k=0 f−k(M(ik)), holds fk ∈ M(ik)

for k = 0, . . . , N − 1. So, for each x from M(i0i1 . . . iN−1) its N − 1
iteration passes the set

⋃

M(ik), k = 0, 1, 2, . . . , N − 1. The sets
CN form a finite covering of M too. Since the sets M(i) may intersect
each other, the elements of CN may intersect each other too. Denote
by ρ(CN ) the number of sets of minimal subcovering that may be
chosen from CN . We may say that ρ(CN ) is number of different codes
of trajectories of length N . Suppose

h(C) = lim
N→+∞

log ρ(CN )

N
.

Definition 2. The value h(f) = supC h(C) where supremum is taken
over all open coverings, is called the topological entropy of the mapping
f .

Now let’s show difference between these two definitions. Consider
the real line and the dynamical system, generated by the identical
mapping. Cover real line with intervals. All trajectories will be fixed
points. Look at points lying in the intersection of neighbour intervals.
By the first definition any sequence of these two intervals will be an
admissible code. So there will be at least n ∗ 2N admissible codes of
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length N where n is a number of intervals. This means that entropy
will be 1 or higher. By the second definition M(i0i1 . . . iN−1) may be
only an interval or intersection of 2 intervals. So the initial covering
will be a subcovering of CN it means that ρ(CN ) ≤ n and the entropy
will be 0.

Unfortunately, this exact mathematical definition isn’t construc-
tive. Let’s introduce two new notions.

Definition 3. We will say that covering D is inscribed into covering
C and write D � C if each element of covering D is contained in some
element of covering C

Definition 4. Call a sequence of coverings Cn exhaustive if for each
covering B there exists n∗ such that Cn � B for any n > n∗

Theorem 2. If Cn is exhaustive then h(f) = limn→∞ h(Cn).

This theorem opens a constructive way for calculation of entropy.

4.2 Calculation of topological entropy

Definitions

Let’s start this section with some definitions and theorems.

Definition 5. Let M be a compact space. Let’s call C =
{M(1), . . . ,M(n)} a closed finite covering for M if the following re-
quirements hold:

1.
⋃

M(i) = M ;

2. each cell is the closure of its interior M(i) = Cl(Int(M(i)));

3. cells intersect by their boundaries only: M(i)
⋂

M(j) =
∂M(i)

⋂

∂M(j) for i 6= j.

The following theorem shows that such coverings may be useful in
estimation of entropy.

Theorem 3. If Ck is a sequence of closed finite coverings of M such

that Ck+1 � Ck and diam(Ck)→ 0 than

1. h(Ck) ≤ h(Ck+1),

2. h(f) ≤ lim h(Ck).

Now let’s introduce the defininition that will be useful in future.

Definition 6. Consider a finite number of symbols a1, . . . , an and
some set P of sequences of these symbols. Define the entropy of this
set h(P ) by h(P ) = lim log K(N)/N , where K(N) is the number of
sequences with length N into P .
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Subdivision process

Describe subdivision process. Let C = {M(i)} be a closed finite cov-
ering of M and let G1 be its symbolic image. Let D be a subdivision
of C and G2 its symbolic image. Denote by m(i, k) cells of D, corre-
sponding to the cell M(i) of C, and (i, k) vertices of G2. Determine
mapping s : G2 → G1

that will map vertices (i, k) into vertex i. It is easy to see that this
mapping maps edges into edges. Thus the graph G2 is mapped into
subgraph of G1.

Let’s define the space of vertices of graph G as a set of sequences
of vertices, such that every two neighbouring vertices are connected
by the edge.

PG = {ξ = {vi} : vi connected to vi+1}

For the sake of simplicity such sequences will be further referred to as
paths.

Given such definition, we may extend a map s to P2 and P1 spaces.
Denote s(P2) = P 2

1 . It is easy to see that P 2
1 ⊂ P1 and that no real

trajectory corresponds to any of sequences from P1 \ P 2
1 . Indeed, if

we had a real trajectory xn it would have a representation in P2, such
that the initial path is an image of this representation. Contradiction.

Theorem 4. Following inequations holds

1. h(P 2
1 ) ≤ h(P1),

2. h(P 2
1 ) ≤ h(P2).

Consider sequence of inscribed closed coverings C0, C1, . . . , Ck, . . .
and their corresponding graphs G0, G1, . . . , Gk, . . . . Than it is easy to
see from previous considerations that the diagram is commutative

Here under the term “commutative” we mean that siGi+1(z) ⊂
Gisi(z). In this case we have sequence of admissible paths and map-
pings between them

P0
s0← P1

s1← P2
s2← . . .

s
← {Tf},

Where {Tf} is space of trajectories of f .
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Now we can construct the following sets of paths:

P l+1
l = sl(Pl+1)

P l+2
l = slsl+1(Pl+2)

. . .

P l+r
l = slsl+1 . . . sl+r−1(Pl+r),

. . . .

So we have double sequence of paths P k
l where k > l and corre-

sponding sequence of entropies hk
l = h(P k

l ).
The next theorem shows us the constructive way of calculating the

topological entropy.

Theorem 5. Let C1, C2, . . . , Ck, . . . will be as above, a sequence of

embedded closed coverings of M , such that diam(Ck) → 0, then for

each l holds

1. P k
l ⊃ P k+1

l for each k > l and entropy hk
l decreases by k :

h(P k
l ) ≥ h(P k+1

l ).

2. Set of coded trajectories Codl =
⋂

k>l P
k
l .

3. hl = h(Codl) = limk→∞ hk
l and hl grows by l.

4. If f is a Lipshitch’s mapping then sequence hl has a finite limit

h∗ and h(f) ≤ h∗.

Since to estimate the topological entropy we should calculate values
of hl

k. We can construct sets P k
l thus we may calculate these values.

For detailed algorithm we recommend [3].

4.3 Example

Now let’s look at the results of application of this algorithm. Consider
Henon’s mapping

f(x, y) = (1− 1.4x2 + 0.3y, x)

into part of the plane [-1.5, 1.5]x[-1.5, 1.5].
Let’s take a sequence of embedded coverings

Ck =

{[

−1.5 +
3l

2k
,−1.5 +

3(l + 1)

2k

]

×

[

−1.5 +
3p

2k
,−1.5 +

3(p + 1)

2k

]}

,

where k ∈N, l, p = 0, . . . , 2k − 1.
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We may apply the described algorithm for this
mapping. The following table shows the result:

We may see the convergence to h∗ = 0.46 + ε. It is known from
employing other techniques that h(f) = 0.4651 [4]. So our algorithm
allow us to get good results.

5 Conclusion

We have described a method of symbolic analysis of dynamical sys-
tems. The main idea of this method lies in the substitution of a contin-
uous object ”dynamical system” by a discrete object — a graph. The
main problem of this method is that a considerable amount of informa-
tion about the non-local behavior is lost. But we have a methodology
of solving this problem that was described in the second part.

Great thanks to prof. S. Yu. Pilugin and prof. G. S. Osipenko for
their help in the work on the talk.
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