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� Error convergence
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Model Problem 1D

� Differential Equation in 1D
–u’’(x) + au(x) = f(x)
for 0 < x < 1 , a > 0

Boundary: u(0) = u(1) = 0
� Partition continuous problem into n subintervals by 

“sampling” it at the grid points xj = jh, with h = 1/n
� Grid Ωh:

u0 u1 u2 u3 u4 u5[ ] ← Vector u / v

u
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Model Problem 1D

� Second order finite difference approximation

v0 = vn = 0; with v being the approximate solution to u
� Written in Matrix-Vector form

� Written compactly: Av = f
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Model Problem 2D

� (Elliptic) Partial Differential Equation
–uxx – uyy + au = f(x,y)
for 0 < x,y < 1 , a > 0

Boundary: “Frame = 0”
� Sampled with a two-dimensional grid

(n-1,m-1 interior grid points)

Ωh

y

x

u3,2
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Model Problem 2D

� Sampling results in difference approximation

� Written in Matrix-Vector form
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Model Problem 2D

� Example: System for a=0, n=4, h=1

� Again, written compactly: Av = f
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Relaxation Methods

� To solve the PDE, u = A-1f is too complicated

� Based on an estimated solution v(0) → find better 
solution v(1) in next step

� Reduces norm of the error e = u – v
� Use residual r = f – Av as a measure

Relationship error / residual: Ae = r
For exact solution v = u ⇒ r = 0

� For the following, split matrix A = D – L – U
D: diagonal of A; L/U: lower/upper triangular part of A
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Relaxation Methods

� General approximation: 
• Try to find a B “close” to A-1, as u – v = A-1r

� Jacobi scheme / Simultaneous displacement
• jth component of v is calculated using the two 

neighbours from previous step

• Solves the PDE locally
(compare original problem: –uj-1 + 2uj – uj+1 = h2fj)
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Relaxation Methods

� Weighted or damped Jacobi method
• Weighting factor 0 < ω < 1

� Gauss-Seidel
• Like Jacobi, but components updated immediately
• Reduces storage requirements
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Error convergence

� Simplified problem: Au = 0
⇒ v should converge to 0, and e = v

� In what way does weighted Jacobi decrease the error?
⇒ Analyse eigenvectors of iteration matrix

� Eigenvectors wk of matrices A and R
ω

• Vector wk is also the kth Fourier mode
� Eigen values λk of matrix R

ω
(generally: R

ω
wk = λkwk)

• For 0 ≤ ω < 1 ⇒ |λk| < 1, iteration converges
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Error convergence

� Eigen values
� Smooth, low-frequency Fourier modes of e: 1 ≤ k ≤ ½n

• |λk| is close to 1 ⇒ no satisfactory damping
� Oscillatory, high-frequency modes: ½n ≤ k ≤ n-1

• For the right ω, |λk| is close to 0 ⇒ good damping
• Optimal damping for ω = ⅔
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Error convergence

� Damping diagram for the weighted Jacobi method

� Oscillatory modes of the error are removed quite well
� Smooth modes are hardly damped.
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Error convergence

� Example code in MATLAB
• Grid n = 64
• Initial error modes 2 and 16
• Solves –u’’(x) = 0

n = 64;
% components of A
D = 2 * diag(ones(n-1,1),0); U = diag(ones(n-2,1),1); L = diag(ones(n-2,1),-1);
% iteration matrices
w=2/3;  RJ = inv(D) * (L+U);  RW = (1-w).*eye(n-1) + w.*RJ;
% init f=0, v with modes 2 and 16
f = zeros(n-1,1);
v = transpose(sin((1:n-1) * 2 * pi / n) + sin((1:n-1) * 16 * pi / n));
plot(v); hold on
% do 10 iterations
for i = 1:10

v = RW*v + 0; end
plot(v);
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Multiple Grids

� Fundamental idea of multigrid
• Make smooth modes look oscillatory!
• Smooth mode on Ωh looks oscillatory on grid Ωnh

• A “hierarchy of discretizations” is used to solve the 
problem of small damping for smooth modes
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Multiple Grids

� Intergrid Transfer coarse → fine: Interpolation
• Ω2h → Ωh, “Upsampling”
• Linear interpolation is effective
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Multiple Grids

� Intergrid Transfer fine → coarse: Restriction
• Ωh → Ω2h, “Downsampling”
• Simplest method: Injection
• Better: Full weighting

• Restriction operator:

• Transfer Operations Ωh ↔ Ω2h sufficient
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Multiple Grids

� Aliasing: Oscillatory modes on Ωh will be represented 
as smooth modes on Ω2h

� A basic two-grid correction scheme
• On grid Ωh, relax υ1 times on Ahvh = 0 with initial guess v(0)h

- Restrict fine-grid residual rh to the coarse grid
- On grid Ω2h, relax υ2 times on A2he2h = r2h with initial guess 

e(0)h = 0
- Interpolate the coarse-grid error

• Correct the fine-grid approximation: vh ← vh + eh

• On grid Ωh, relax υ1 times on Ahvh = 0 with initial guess vh
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Multiple Grids

� Multigrid strategies
• Nested iteration: Use coarse grids to generate 

improved initial guesses
• Coarse grid correction: Approximate the error by 

relaxing on the residual equation on a course grid 

V-cycle W-cycle FMG scheme
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Multiple Grids

� The V-Cycle Scheme (Coarse Grid Correction)
• V-Cycle(vh, fh)

- Relax υ1 times on Ahvh = 0 with initial guess vh

- If (current grid = coarsest grid) goto last point
- Else: f2h = Restrict(fh – Ahvh)
- v2h = 0
- Call v2h = V-Cycle(v2h, f2h)

- Correct vh += Interpolate(v2h)
- Relax υ2 times on Ahvh = 0 with initial guess vh

• Recursive algorithm
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Performance

� Storage requirements
• Vectors v and f for n = 16 with boundary values

• For d = 1, memory requirement is less then twice 
that of the fine-grid problem alone
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Performance

� Computational costs
• 1 work unit (WU): one relaxation sweep on Ωh

• O(WU) = O(N), with N: Total number of grid points
• Intergrid transfer is neglected
• One relaxation sweep per level (υi = 1)

• 1D problem: Single V-Cycle costs ~4WU,
Complete FMG cycle ~8WU
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Performance

� Diagnostic Tools
• Help to debug your implementation
• Methodical Plan for testing modules
• Starting Simply with small, simple problems 
• Exposing Trouble – difficulties might be hidden
• Fixed Point Property – relaxation may not change 

exact solution
• Homogenous Problem: norm of error and residual 

should decrease to zero
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Theory

� The Impact of Intergrid Transfer and the iterative 
method may be expressed and proven in a formal way

� Two-grid correction TG consists of matrices for 
Interpolation, Restriction and Relaxation

� Spectral picture of multigrid
• Relaxation damps oscillator modes
• Interpolation & Restriction damp smooth modes

� Algebraic picture of multigrid

• Decompose Space of the error: Ωh = R ⊕ N
•
• L similar to R, H similar to N
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Theory

� Operations of multigrid, visualized
• Plane represents Ωh

• Error eh is successively projected on one of the axes
- Relaxations on the fine grid (1)
- Two-grid correction (2)
- Again, relaxation on the fine grid (3)
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End of Presentation

� Thanks for your attention
� Any questions?


