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Introduction  
The purpose of this work was to define the basic characteristics and features of Monte Carlo 

codes, to define bases of carrying out of computational experiments with them, to perform 
experiments on Fluka and to compare with Geant4. Therefore the given work has survey character.  

 
Actuality  
Programs on the basis of Monte Carlo simulation allow to perform computer experiments in 

various areas of modern physics, such as: nuclear physics, high-energy physics, cosmic rays, 
neutrino physics. Such experiments are necessary to better understand the nature of processes, to 
make forecasts concerning real experiments. But also application of these packages of interest  
increases in medicine, for example: by means of similar programs it is possible to investigate 
influence of radioactive radiation on tissues of the person. It is used at treatment of cancer. Thus 
Monte Carlo codes have a great importance.  

 
Gamma-rays 
We shall consider physics of processes. For concreteness we shall consider gamma-rays. 
Gamma-radiation, i.e. high-frequency electromagnetic oscillations 12010 −≈ sω , arises either in a 

nuclear transformation (radioactive decay, nuclear reactions, nuclear fission) or with charged 
particles slowdown in environment (bremsstrahlung) or with an annihilation of particles and 
antiparticles (for example: electron with positron). 

Gamma-radiation may be considered as a particle totality (for example: quantum or photon), 

moving with light speed s
cmc 10103 ⋅= , energy ωη=E  and momentum/impulse 

c
p ωη
= , 

serg ⋅⋅= −2710054.1η . This approximation exists because corpuscular properties of 
electromagnetic oscillations become apparent at high-frequency electromagnetic oscillations.  

Gamma-quanta which are emitted by majority of natural and artificial radiation isotopes, have 
their energy belongs to the interval from 0.01 to 10 MeV. ( )MeVEq 10;01.0∈  

One more important value characterizing gamma-quantum is a quantum wave length equal to 

E
cm0=λ . 

At passage through a substance the gamma-quanta energy transfers mainly to electrons. There 
are more than ten types of elementary processes of gamma-rays interactions with matter. But as for 
concerned energies only three processes have a place with visible probability, this is 
photoelectrical absorption, Compton scattering and pair production process. 

As a result of each of this process either whole gamma-quantum energy or its portion transfers to 
electrons: photoelectron, Compton electron or electron-positron couple, respectively. Received 
energy is transmitted to the matter by electrons and positrons as a result of complicated processes.  

Portion of energy transferred by quanta as a result of interaction with matter may be emitted as 
radiation (fluorescence, annihilation radiation, slowing-down radiation of electrons and positrons). 
But its intensity is much less than primary emanation, therefore it can be neglected. 

 
Scattering cross-section 
For the quantitative characteristic of dissipation and absorption probabilities the quantity of 

dissipation and absorption cross-section are introduced. Cross-section may be defined as 



following. Let’s suppose that electron is located in point O and homogeneous and parallel to z axis 
beam of gamma-quanta infinite in x and y directions falls on it. Let gamma-quanta flux density, 
i.e. number of quanta, passing through unit of surface in a unit of time, be equal to 0N and number 
of scattered quanta in unit of time be equal to N , i.e. scattered flux. Then cross-section is defined 

as following ratio: 
0N

N
s =σ , which has dimension of a squared length. It’s clear that if 0n  

dispersive electrons are located in unit of volume, then number of scattered gamma-quanta passing 
volume υd  is equal to υσ dnNdN s 00= . Then probability of quantum to scatter at unit of length 
dl  is dlndw s 0σ= .  

Thus cross-section is numerically equal to the probability of quantum dispersion per unit of 
length in substance containing one electron in unit of volume. 

Certainly arguments described above can be realized for processes of absorption and pair 
production in the same manner. 

 
Photoelectrical effect 
Photoelectrical effect is a process of gamma-quantum absorption by atom of substance. Quantum 

energy is transmitted to one electron of atom. After that this electron is ejected from the atom with 
energy eE  equals to the difference bqe EEE −=  of quantum energy qE  and binding energy of 
electron and atom bE . 

Photoelectric cross-section has strong dependence on charge of atomic nucleus Z and quantum 
energy. With increasing nucleus charge photoelectric cross-section arises as Z in n-th degree where 
n depends on quantum energy and belongs to the interval from 4 to 5.  Moreover with energy 
increase photo-effect cross-section falls down as 3

1
E  with low energy, and with high energy – as 

E
1 . Thus it is important to take into consideration photoelectric effect for heavy matters and low 

quantum energy. Note that cross-section has jumps when quantum energy becomes equal to the 
atom binding energy.  

 
Compton effect 
At interaction with electron gamma-quantum has probability of scattering at some angle ϑ  and 

this process passes with transmission gamma-quantum energy to the electron. Such process is 
called Compton scattering. As electron binding energy in atom is little in comparison with gamma-
quantum energy and atom electron velocity is less then light speed so electron before interaction 
may be considered as free and rest. Such assumption and energy and momentum conservation laws 
lead to following association of scattering angle and quantum energies before and after interaction: 

( )ϑcos11
'

0
−⋅+

=
cm

E
EE , where E  – falling quantum energy and 'E - scattered one, cm0  - 

electron rest-energy. This equality may be rewritten in terms of wave length: ϑλλ cos1' −+=  
where λ  and 'λ  are a wave length before and after interaction, respectively. On the basis of 
energy conservation law Compton electron has energy: 'EEEe −= . It appears from this 
expressions that scattered radiation energy decreases with scattering angel growing under fixed 

falling quantum energy. It reaches minimal value equals to
cm

E
EE

0
21

'
+

=  with scattering angel 

equals to πϑ = .With high energy of initial quanta backward scattered quantum energy tends to 
minimal value equal to MeV25.0  and with low energy – to energy of initial quanta EE →' . Thus 
at backward scattering low-energy quanta don’t almost modify their energy.  When cmE 0>  
backward scattered quantum energy depends little on initial quantum energy: when initial energy 



E  changes from one to infinity back scattered quantum energy ( )πϑ ='E  changes from 0.17 to 
0.25 MeV. MeV17.0  MeV25.0  

At forward quantum scattering 0=ϑ  its energy doesn’t change EE =' . Moreover on a basis of 

expression 
( )ϑcos11

'

0
−⋅+

=
cm

E
EE  scattered energy can’t be null. Hence at Compton scattering 

gamma-quantum can’t disappear.  
At Compton interaction process quanta can be scattered at any angel πϑ ≤≤0  ( )πϑ ;0∈ . But 

Compton electrons can have only such velocities that direction amounts to acute angel with 
direction of initial quantum ψ  ( )2;0 πψ ∈ . Electron receives maximum energy when quantum 

scatters back: ( )
E

cm
EEe

21 0+
== πϑ  In that case electron is ejected “forward” 0=ψ . At little 

scattering angel quanta transmit to electrons only insignificant portions of energy and the latest 
depart in direction close to perpendicular to movement direction of initial quantum. 

 
Pair production 
Gamma-quantum can generate electron-positron couple either in nucleus field or atom electron 

field. At the same time gamma-quantum disappears. For pair production gamma-quantum has to 
have energy equal or more than sum of electron and positron binding energy 

MeVcmE 022.12 0 == . Therefore pair production cross-section is equal to zero when this 
condition is not fulfilled cmE 02<  and it is growing droningly otherwise. Pair production cross-
section arises as 2Z  with nucleus charge growing. Thus pair production effect has considerable 
influence under high-energy quanta in heavy elements.  

 
Total linear coefficient of radiation interaction with matter 
If parallel gamma-quant beam passes through a substance than anyone of above described 

processes leads to quanta leaving from the beam. At photo-effect and pair production these quant 
leaving results from their disappearing and at Compton process – because of them scattering. On a 
basis of expression dlndw s 0σ=  it can be concluded that number of leaved from the beam quanta 
at path dl  is ( )ndlSNdN ppfCs σσσ ++= 0 , where Csσ fσ ppσ  – are cross-sections calculated per 
one atom of matter,  n  – is atom number per unit of volume, 0N  - flux density and S  – beam 
cross-section. Thus quantitative characteristic of gamma-radiation interaction with matter is given 
by total interaction cross-section per one atom of matter: ppfCs σσσσ ++=  equals to the sum of 
cross-sections of elementary processes. Quantity, equal to the composition of whole/total cross-
section by atom concentration, is called linear absorption factor n⋅= σμ . It represents probability 
that quantum interacts with matter per unit of path. Linear absorption factor has dimension of CGS 
– 1−cm . Note that quantity, contrary to the linear absorption factor, represents mean free 

path/length. Sometimes it is effective to use mass absorption factor that equals to ρ
μ , where ρ  - 

density of concerned matter. It has dimension of g
cm2

 and equals to the probability of quantum 

interaction with column of matter with cross-section equal one squared 2cm cm and mass equals to 
one gram g1 . 

For every element whole range of gamma-quantum energy variation can be divided into three 
parts so that one of considered processes has major probability in concrete energy region. At low 
energy quanta interact with matter in general by photo-effect; at medium energy Compton 
scattering prevails; and at last at high energy major interaction process is pair production. 



On a basis of these processes cross-sections quantity of energy lost by quantum per unit of path 
can be introduced. It equals to ndlfSENndlfSENndlfSENdE ppppffCsCs σσσ 000 ++= . First 
component is responsible for photo-effect, second and third – for Compton scattering and pair 
production respectively. Biological effect of gamma-rays is characterized by amount of energy 
absorbed by body. This magnitude is called by absorbed doze. 

 
 
Model  
Now on the basis of the review made above it is possible to describe the physical model 

considered in examples on Fluka and Geant4. We consider cubic volume with an edge equal to one 
meter, filled by air. We irradiate this volume by a gamma-quanta beam, radiated by a point like 
mono energetic source. Gamma-quanta eject in a same direction. When they get to the investigated 
volume, the processes described above start to occur with them, these are a photo effect, Compton 
scattering and pair production. Secondary particles are formed as a result: electrons and positrons 
which according to above told will have a speed component distinct from zero, and having the 
same direction with a initial gamma-quanta beam. Hence, speak, that there is a stream of particles 
which have various energy. We wish to count quantity of a gamma-quanta with the energy laying 
in a certain interval, i.e. energy distribution of particles, and also angular distribution of particles, 
which given particles form at crossing a plane with a normal to a plane. For this purpose in the 
middle of a cube with air we shall put detecting plane which registers the secondary particle 
crossing detecting plane, its energy and a angle. On it the description of model is finished.  

 
Two ways  

In general there are two ways of modelling: deterministic methods and the Monte Carlo method.  
Deterministic methods involve solution of an integral or a differential equation that describes the 
dependence on spatial coordinates or time of some behavioural characteristic of the system in 
question.  The equation is cast in an approximate form that permits calculation of the incremental 
change in the characteristic caused by an incremental change in the variable(s).  The value of the 
characteristic itself is then calculated at each of successive points on a spatial or temporal grid.  
The accuracy of deterministic methods is limited by how well the equation approximates physical 
reality and by the practical necessity of making the spatial or temporal difference between grid 
points finite rather than infinitesimal.  Well-known deterministic methods include the finite-
difference and finite-element methods.  

The Monte Carlo method involves calculating the average or probable behaviour of a system by 
observing the outcomes of a large number of trials at a game of chance that simulates the physical 
events responsible for the behaviour.  Each trial of the game of chance is played out on a computer 
according to the values of a sequence of random numbers.  For that reason a Monte Carlo 
calculation has been defined in general as one that makes explicit use of random numbers.   

 
Model 
Let we consider the problem of estimating of the probability that a gamma-quantum emanating 

from some source passes through some radiation shield. For simplicity suppose that the source is 
anisotropic point source located at the center of the shield, which is a relatively thick spherical 
shell and consists of only one sort of particles or atom. Moreover assume that source emits 
monoenergetic gamma-quanta and three processes of the interaction of gamma-quantum with 
matter are replaced by only two processes: inelastic scattering which changes the direction but not 
the speed (and hence energy) of a gamma-quantum and absorption, such reaction that swallows up, 
or “kills,” a gamma-quantum. In this case a trajectory within the shield consists of a succession of 
straight-line paths whose lengths and directions appear to be random relative to each other.  That 
“random walk” is the result of interactions of the gamma-quantum with atoms within the shield. 
Whether an interaction results in a gamma-quantum’s being absorbed or scattered can be predicted 
only probabilistically, as can the scattering angle if the gamma-quantum is scattered.   



The probabilities of a gamma-quantum’s being absorbed by various atoms have been measured, 
and so have the probabilities of its being scattered through various angles, all as functions of 
gamma-quantum energy.   

Those probabilities, or cross sections, for the shield nuclei are necessary input to solving the 
problem at hand.   

Also needed is the probability density function for the distance a neutron travels in the shield 
without undergoing an interaction with a atom (in other words, the probability density function for 
the lengths of the straight-line paths composing the neutron’s trajectory).  It is known that the 
probability density function for the “free-path” length in any material decreases exponentially.  

In particular, the probability density that a gamma-quantum will travel a distance x  before 
undergoing an interaction is given by dxe xρσρσ − , where ρ  is the density of atoms and σ  is the 
total cross section(here the sum of the scattering cross section integrated over scattering angle and 
the absorption cross section).  

Application of the Monte Carlo method to the problem above involves using a sequence of 
numbers uniformly distributed on the interval (0, 1) to construct a hypothetical (but realistic) 
history for each of many gamma-quanta as it travels through the shield.  (To say that a sequence of 
numbers is uniformly distributed on (0, 1) means that any number between 0 and 1 has an equal 
probability of occurring in the sequence.  Such numbers, when generated by a computer, are called 
pseudorandom numbers.)  The ratio of the number of neutrons that escape from the shield to the 
number of neutrons whose histories have been constructed is an estimate of the answer to the 
problem, an estimate whose statistical accuracy increases as the number of gamma-quanta histories 
increases. Details of the process can be illustrated by following the construction of a single neutron 
history.  

 
Simulation steps 
Constructing the first step of a neutron history involves deciding on a value for its first free-path 

length 1x .As pointed out above, the sequence of pseudorandom numbers generated by the 
computer is uniformly distributed on (0, 1), whereas the free-path lengths are distributed according 
to xe ρσ−  on (0,infinity). ( ) ( )∞⇔ ;01;0   How can the sequence of uniformly distributed numbers iξ  
be used to produce a sequence of numbers ix  whose distribution mirrors the experimentally 
observed distribution of free-path lengths?  It can be shown that the transformation 

( ) ( )iix ξρσ −−= 1ln1  yields a sequence of numbers that have the desired inverse exponential 
distribution.  So the first free-path length is obtained by setting ( ) ( )11 1ln1 ξρσ −−=x .   

The second step in the quantum history involves deciding whether the quantum’s first interaction 
with an electron scatters or kills the gamma-quantum.  Suppose it is known from the cross sections 
for the shield electrons that scattering is nine times more likely than absorption. The interval (0, 1) 
is then divided into two intervals, (0, 0.1) and [0.1, 1).  Assume that 2x , the second pseudorandom 
number generated by the computer, is 0.2.  Because 0.2 lies within the larger subinterval, the 
quantum is scattered rather than absorbed.  ( ) ( ) [ )1;1.01.0;01;0 ⊗⇒  

The third step in the gamma-quantum history involves deciding through what angle it is 
scattered. Again some transformation must be performed on the third pseudorandom number, a 
transformation that changes the uniform distribution of the iξ  into a distribution that mirrors the 
observed distribution of scattering angles (the scattering cross section as a function of scattering 
angle). ϑξ ⇒i  

Further steps in the history are generated until the gamma-quantum is absorbed or until the radial 
distance it has travelled within the shield exceeds the thickness of the shield.  The histories of 
many more gamma-quanta are generated in the same manner.  

Assume that N  gamma-quanta histories are generated and that n  of the histories terminate in 
escape of the neutron from the shield.  To calculate an estimate for the probability that any single 



gamma-quantum escapes, assign a “score” is  to each quantum as follows:  0=is  if the quantum is 
absorbed within the shield, and 1=is  if the gamma-quantum escapes.  Then the estimated 

probability of escape is given by the mean score s , that is, by ( ) NnsNs i == ∑1 . The relative 
error (relative statistical uncertainty) in that probability estimate is related to the so-called variance 
of the is , ( )isVar , which can be approximated, when N  is large, by the difference between the 
mean of the squares of the scores and the square of the mean score: 

( ) ( )
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−≈ ∑ ∑ . The relative error in the probability estimate is then 

given by 
( ) ( )

Nn
nN

s
NsVar i −

= . For example, if 100=N  and 47=n ,the probability of escape 

is estimated as 47.0  and the relative error is a little less than 11 percent.  
The simplifying assumptions invoked in the above example of a Monte Carlo radiation-transport 

calculation do not of course hold in general.  The radiation may consist of particles other than 
gamma-quanta (or of more than one type of particle), and other types of interactions may be 
involved (Compton scattering, pair production photo-effect).  The radiation may not be mono 
energetic, and it may emanate from a source that is neither point-like nor isotropic.  The material 
through which the radiation travels may be non uniform in composition and intricate in geometry.  
All those additional complexities can be handled provided the necessary input data are available.  

 
Variance Reduction  
The result of a Monte Carlo calculation has associated with it a statistical uncertainty. How can 

that uncertainty be reduced and the result thereby be made more accurate? One obvious way to do 
so is to increase the number of neutron histories generated. But that “brute-force” approach is 
costly in terms of computer time. More sophisticated techniques are available to achieve a lower 
uncertainty without increasing the number of histories or to achieve the same uncertainty from a 
smaller number of histories. Four types of such “variance-reduction” techniques are available: 
truncation, population control, probability modification, and pseudodeterministic methods.  

Truncation involves ignoring aspects of the problem that are irrelevant or inconsequential. For 
example, the source-and-shield assembly described above may include structural elements that 
position the source at the center of the shield. Because the electrons in the structural elements, like 
the electrons in the shield, interact with the gamma-quanta, the structural elements should be in-
cluded in the simulation. Suppose, however, that the structural elements are very fine rods and 
hence are considerably less massive than the shield itself. Then truncating the problem by ignoring 
the existence of the structural elements would have little effect on the results.  

Population control involves sampling more important portions of the sampled population more 
often or less important portions less often. For example, suppose the gamma-quanta that escape 
from the left half of the spherical-shell shield are of greater interest (for eample, because some-
one’s office is located there, whereas a little-used stairwell is located to the right) and that the left 
half of the spherical shell is composed of a material more effective at absorbing gamma-quanta. 
Each quantum that has a possibility of reaching the region of greater interest (any neutron that is 
emitted toward the left) is “split” into m neutrons (m > 1) and assigned a “weight” of 1/m. The 
scores of the histories of the split neutrons are multiplied by their weight so that the splitting 
stratagem does not alter the physical situation but does allow the sampling of more of the more 
important gamma-quanta. The corresponding technique for sampling fewer of the less important 
neutrons is referred to as Russian roulette. Applied to the same example, Russian roulette involves 
specifying that the gamma-quantum emitted to the right have a probability of (1-1/m) of being 
terminated immediately upon entering the shield. A quantum whose history begins with immediate 
death is of course tracked no further. Those gamma-quanta that do not suffer immediate death, 



(1/m) of the neutrons emitted to the right (in the limit of large N), are assigned a weight of m. Thus 
the simulation of the real physical situation is unaltered.  

Probability modification involves sampling from a fictitious but convenient distribution rather 
than the true distribution and weighting the results accordingly. For example, instead of applying 
splitting and Russian roulette to the gamma-quanta emitted to the left and right, respectively, by 
the isotropic neutron source, the spatially uniform neutron distribution is replaced, for the purpose 
of constructing histories, by a distribution such that more neutrons are emitted to the left. The 
“bias” that such a strategy would introduce into the result is removed by appropriately weighting 
the scores of the gamma-quantum histories.  

Pseudodeterministic methods are among the most complicated variance-reduction techniques. 
They involve replacing a portion (or portions) of the random walk by deterministic or expected 
value results. Suppose, for example, that the spherical shell is surrounded by further shielding 
material with complex geometry. Instead of transporting each gamma-quantum via a random walk 
through the spherical shell to the more complex region of the shield, the quantum may simply be 
put at the interface between the two shield components and assigned a weight equal to the 
(presumably known) probability of its arriving there. The difficulties encountered when using 
pseudodeterministic methods arise in assigning the probabilities.  

The use of modern variance-reduction methods has allowed Monte Carlo calculations to be 
carried out many orders of magnitude faster and yet maintain the same statistical accuracy. In fact, 
many calculations that once would have required prohibitive amounts of computer time are now 
routine.  

 
Geometry description 
Perhaps the greatest advantage of using the Monte Carlo method to simulate radiation transport 

is its ability to handle complicated geometries.  That ability rests on the fact that, even though the 
geometry in question maybe complicated in its entirety, only the geometry in the vicinity of the 
particle for which a random walk is being constructed need be considered at any point in the 
construction.  A given geometry can be modelled in its entirety in two ways:  as a “combinatorial” 
object or as a “surface-sense” object.  As its name implies, a combinatorial object is constructed by 
combining relatively simple geometric entities, such as rectangular parallelepipeds, ellipsoids, 
cylinders, cones, and so on.  Combinatorial objects are easy to construct. A surface-sense object is 
constructed by combining bounding surfaces, each of which is assigned one of two sense values to 
indicate on which side of the bounding surface the object lies.  Any combination of linear, 
quadratic, or toroidal surfaces in any orientation or even skew can be accessed by users. 

 
Monte Carlo codes  
Now it is possible to bring some result, concerning codes of modelling on the basis of a Monte-

Carlo method. In any code it is possible to allocate following basic elements, features: a database 
(library), theoretical base, the generator of random numbers, the mechanism of the description of 
geometry. The database represents sets of the experimental data received as a result of real 
experiments, in the example considered above, this is a scattering cross-section necessary for an 
estimation of probability of one or another kind of interaction. The theoretical base is a set of 
theoretical data which is used for definition of conformity between parameter of system and a 
random number, in an example above it is the probability density function for free path length. The 
generator of random numbers - the mechanism which allows to receive sequences of the pseudo-
random numbers with regular distribution in an interval from zero up to one, thus the period of the 
generator should be big enough to allow to model huge number of histories of particles transport 
And mechanisms of the description of geometry is either the combinatory mechanism, or the 
description by means of planes and curves of the second order. 

 Thus it is obvious that to have and hold in a head for each problem the code, for example: for 
modelling transport of electromagnetic radiation one code, and for designing mechanisms of 
protection - another, it at least is not convenient, including because there is an overlapping various 



areas of physics and consequently requirements to a package increase. Therefore all can be 
characterized modern codes a wide spectrum of appendices which is caused by the expanded 
opportunities of the task of data for experiment. Thus the software should simple enough in use as 
possible. According to the above there is a set of packages with various characteristics and 
opportunities which realizing Monte Carlo method . Further I would like to give the brief 
characteristic of software packages with which there is a work at the department.  

 
Geant4: status 
So, Geant4. As its developers define Geant4 is a toolkit for the description of detectors and 

modelling. Thus, it is initially defined as a code intended for modelling of particles carrying out 
through a substance. First version of Geant has appeared in 1974. In 1982 has appeared Geant3 
written on Fortran. The idea to create a new code with use modern technologies has appeared in 
1993 and already in 1998 there was the first Gant4 release. The modern version of this software 
product has a wide scope: high-energy physics, nuclear experiments, studying in areas of 
medicine, accelerators and space physics.  

Now, Geant4 is a free software package made of tools which can be downloaded from its web-
site. And toolkit Geant4 is accessible to following platforms: flavours of Unix, Linux and 
Windows systems.  

 
Main features 
The toolkit includes: user interfaces, the built-in steering routines and command interpreters. In 

basis of Geant4 the big set of physical models for processing interaction of particles with substance 
in very wide power range lays. Geant4 it is written in C++. Thus modern technologies which were 
mentioned above, consists in that Geant4 is the object-oriented environment based on C++.  

The user can create own independent applications. Thus during a writing of the program the user 
consistently passes all stages of carrying out of real experiment. At first the user "collects" 
detecting device. At this stage the geometry of the detector in a basis of combinatory technique is 
defined, and after that these objects are a filled up by substance. Then the user designs a radiation 
source. Here parameters of radiated particles are set: their kind, energy, direction of distribution, 
position of a source in space and other. After that particles and physical processes which occur to 
these particles inside the detector are set. At the same stage some restrictions on parameters of 
particles are established.  

Each stage of statement of experiment in terms of the programming language represents some 
class. From the view point of program model all classes are united in a single whole and form a 
uniform program code.  

The user can define a format of an output for the subsequent processing results which is carried 
out either with the built-in tools, allowing to make statistical processing and visualization, or 
external, for example program complex Root. Thus there is a modelling experiment on the basis of 
language Geant4.  

 
Fluka: status 
Now we shall consider carrying out of experiment by means of Monte-Carlo of code Fluka. 

Fluka is a general purpose tool for calculations of particle transport and interactions with matter, 
covering an extended range of applications spanning from proton and electron accelerator 
shielding to target design, calorimetry, activation, dosimetry, detectordesign, 
AcceleratorDrivenSystems, cosmicrays, neutrino physics, radiotherapy etc.  

The history of Fluka goes back to1962-1967. During that period, Johannes Ranft was at CERN 
doing work on hadron cascades under the guide of Hans Geibeland Lothar Homann, and wrote the 
first highenergy Monte Carlo transport codes.  

Starting from those early attempts it is possible to distinguish three different generation of 
"Fluka" codes along the years, which can be roughly identified as the Fluka of the ' 70s (main 



authors J.Ranftand J.Routti), theFluka of the ' 80s (P.Aarnio, A.Fass ` o, H.-J.Mohring, J.Ranft, 
G.R.Stevenson), and the Fluka of today (A.Fass ` o, A.Ferrari, J.Ranftand P.R.Sala).  

These codes stem from the same root and of course every new “generation” originated from the 
previous one. However, each new “generation” represented not only an improvement of the 
existing program, but rather a quantum jump in the code physics, design and goals. The same name 
“Fluka” has been preserved as a reminder of this historical development — mainly as a homage to 
J.Ranft who has been involved in it as an author and mentor from the beginning until the present 
days — but the present code is completely dierent from the versions which were released before 
1990, and far more powerful than them. 

Fluka of the first generation was used as the tool for shielding designing of high energy proton 
accelerators. Purpose Fluka of the second generation was to make Fluka a more user friendly 
hadron cascade code with flexible geometry and with a modern formulation of the hadron 
interaction model. And at last the third generation: at about the time when the last version was 
frozen (1987), a new generation of proton colliders, with large luminosities and energies of the 
order of several TeV, started to be planned. Because of its superior high-energy hadron generator, 
Fluka became the object of a great interest and began to be employed for shielding calculations 
and especially to predict radiation damage to the components of the machines and of the 
experiments. But soon many limitations of the code became evident: the design of the new 
accelerators (SSCandLHC) and associated experiments needed a capability to handle large 
multiplicities, strongm agnetic fields, energy deposition in very small volumes, high-energy 
effects, low-energy neutron interactions, which the code was lacking. A.Ferrari (INFN) and A.Fass 
` o set up a plan to transform Fluka from a high-energy code mostly devoted to radiation shielding 
and beam heating into a code which could handle most particles of practical interest and their 
interactions over the widest possible energy range.  

Modern Fluka is distributed as a tar file under the license. It can be downloaded from an official 
site.  

Thus Fluka supports following platforms:  
- Hewlett-Packard 9000 Series 700/800 running HP-UX  
- Sun running SunOS  
- DEC computers running Digital UNIX> 4.0  
- Intel PCs running LINUX:  
- RedHat 7.3  
- RedHat 9.0  
- Scientific Linux 4.1  
- Fedora  
 
Main features 
In contrast to Geant4 Fluka it is written in Fortran. At that package consists of compiled libraries, 

user routing in source form, INCLUDE files, various unformatted and formatted data and a 
number of scripts for compiling, linking and running the program. 

Carrying out of experiment by means of Fluka consists in the following. The user according to 
the certain rules in the fixed form fills a input file. According to Fluka terminology a line of an 
input file refer to cards or options. Each card consists of the name, one line parameter and from 
one up to six numerical parameters. By means of cards the user defines a particle source with 
corresponding parameters (a particles kind, their energy, its position), geometry, materials, 
thresholds and detectors. Also in an input file the number of particles which are necessary for 
simulating is set. On it the description of experiment comes to an end. The ready input file is 
transferred a starting script as parameter. As a result of work the formatted and not formatted files 
with the purpose of their subsequent processing by internal scripts or external applications are 
created. 

 
 



Comparison main features 
Though software packages Fluka and Geant4 differ by the principles incorporated in a basis (one 

of them object-oriented, and another is not), but apparently from following comparison they 
possess similar parameters of transport of electromagnetic radiation:  

                                         Geant4  Fluka  
- photoelectric effect:       10keV 1keV  
- Compton effect:             10keV 1keV  
- Bremsstrahlung:               1keV 1keV  
- multiple scattering:           1keV 1keV.  
And at the same time for Fluka it is not recommended to set up the lower value for energy but to 

set up its order 5-10 keV.  
 
Whether but there is still a question they will yield identical results at the fixed parameters for 

modelling experiment. Unfortunately, at present I managed to make only preliminary processing of 
the result, therefore I cannot present any results of comparison.  

 
Conclusion 
Therefore at present it is possible to give only preliminary conclusions:  
Both of a package give to the user ample opportunities on carrying out of computer experiment, 

formation of target data, their processing, both of a package have opportunities of graphic 
representation of results. At present I cannot allocate any of these packages  


