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We discuss a computer implementation of the known algorithm of finding separation coordinates for a special class of
orthogonal separable systems called L-systems or Benenti systems.
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1. Introduction

Let Q be a n-dimensional Riemannian manifold with generic local coordinates q = (q1, q2, . . . , qn) and
positive-definite metric tensor G.

On the cotangent bundle T ∗Q ofQ with canonical coordinates (p, q) we consider dynamical system
with the natural Hamilton function

H = T (p, q) + V (q) = 1
2

n∑

i,j=1

gij(q)pipj + V (q). (1.1)

Here gij(q) are the components of the metric tensor G and V (q) is the potential energy, a smooth
function on Q canonically lifted to a function on T ∗Q.

One of the most effective ways to solve the corresponding equations of motion is to apply sepa-
ration of variables in the Hamilton–Jacobi equation

H(p, q) = E. (1.2)
A coordinate system Q = (Q1, . . . , Qn) is called separable if the Hamilton–Jacobi equation admits
a complete solution of the form

S(Q,α) =
n∑

i=1

Si(Qi, α), det

[
∂2S

∂Qi∂αj

]
6= 0 .

Here α = (α1, . . . , αn) is a set of separation constants. The corresponding Jacobi equations

Pi ≡ ∂iS =
∂Si(Qi, α)

∂Qi
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are called the separated equations. In a similar manner, we will call a natural Hamiltonian or a
potential separable if such a separable coordinate system exists.

For a given Hamilton function H(p, q) the problem of finding canonical transformation from
initial variables (p, q) to separation coordinates (P, Q) is very non-trivial. The problem was originally
formulated by Jacobi when he invented elliptic coordinates and successfully applied them to solve
several important mechanical problems, such as the problem of geodesic motion on an ellipsoid, the
Euler problem of planar motion in a force field of two attracting centers and the problem of the motion
of three particles, which interact due to forces depending on their relative distances [1].

Up to now the search of separation coordinates for a given integrable system has been more of an
art than a science. However, for a special class of the natural Hamiltonians we have a complete and
algorithmic solution of this problem [4], [5], [6], [7]. The algorithm is sufficiently straightforward to
be implemented on a computer and thus has turned into a practical tool.

In this note we present an implementation of this algorithm by means of the computer algebra
system Maple 9.5.

2. Algorithm of the point separation of variables

According to [4], [6] we confine ourselves to the search of a point canonical transformations Q = f(q)
and P = g(q, p) only.

In this case from Stäckel (1893), Levi-Civita (1904), Eisenhart (1934), Kalnins & Miller (1980)
and Benenti (1993) we have

Proposition 1. The Hamilton–Jacobi equation (1.2) is separable in orthogonal coordinates if
and only if there exists a Killing 2-tensor K with simple eigenvalues and normal eigenvectors such
that

d(KdV ) = 0, (2.1)

where d denotes the exterior derivative.

Such a tensor K is called characteristic and its existence is completely determined by the kinetic
energy T . It means that the equation T +V = E is separable only if the geodesic equation is separable.
The equation d(KdV ) = 0 is an integrability condition for the existence of the potential V (q) that
may be added to T .

In 1992 Benenti suggested a simple recurrence procedure to construct a special family of Killing
tensors K obeying the assumptions of this theorem. He considered a special class of Riemannian
manifolds Q endowed with the L-tensor.

Following Benenti let us call an L-tensor a conformal Killing tensor L with vanishing torsion and
pointwise simple eigenvalues Qi. Under these conditions the tensors

Kj =
j∑

k=0

(−1)kσj−kLk, or Kj = σjG−Kj−1L , (2.2)

with σa being the elementary symmetric polynomials of degree a in the eigenvalues of L are the Killing
tensors with simple eigenvalues and normal eigenvectors.

As noticed in [8], a tensor L is an L-tensor with respect to the usual Riemannian metric G if

d(LXT
θ − Tdσ1) = 0, (2.3)

where L is the Lie derivative along the geodesic vector field XT , σ1 = trL is a symmetric polynomial
and

θ =
n∑

i,j=1

Li
j pidqj (2.4)

is the L-deformation of the standard Liouville 1-form θ0 =
∑

pjdqj for any set of fibered coordi-
nates (p, q).

414 REGULAR AND CHAOTIC DYNAMICS, V. 10, №4, 2005



SYMBOLIC SOFTWARE FOR SEPARATION OF VARIABLES

The equation d(KdV ) = 0 with the Killing tensor K1 (2.2) may be rewritten in the similar form

d(LXV
θ − V dσ1) = 0 , (2.5)

see for instance [10].
Below we will use the following well-known expression for the Lie derivative L along the vector

field X
LX = iX d + d iX .

Here iX is a hook operator and d is an exterior derivative. Since d2 = 0, the amount of intermediate
calculations can be reduced and we get

dLX = d iX d + d2 iX = d iX d.

In this notation equations (2.3) and (2.5) read as

d(iXT
d θ − Tdσ1) = 0, (2.6)

d(iXV
d θ − V dσ1) = 0 . (2.7)

We will call any separable orthogonal system whose Killing tensor K in (2.1) is generated by
L-tensor according to (2.2) an L-system or a Benenti system. To construct the separation coordinates
Q for the L-system we have to solve equations (2.6) and (2.7) for the functions Li

j(q) and find the
eigenvalues of the tensor L.

In the next section we present a computer program for search of L-tensors and the associated
separation coordinates for L-systems.

Remark 1. The 1-form θ may be used to construct the second Poisson structure on T ∗Q [9], [10]. In this
case the recursion operator N will be a complete lifting of the L-tensor L from the configuration space to the
whole phase space. Therefore, the coordinate separation of variables can be treated as a particular case of the
bi-Hamiltonian theory of separation of variables.

3. The program for calculation of separation variables

In this section we realize the algorithm discussed above using the symbolic computational system
Maple v.9.5.

We will use the standard Maple package liesymm, which was designed for construction of differen-
tial forms from partial differential equations. In fact, we are doing the inverse procedure, i. e. starting
with the differential forms (2.6)–(2.7) we have to get a system of partial differential equations.

Let us start with the following command

> with(liesymm):

to be able to use short names to access the procedures of this Maple package at the interactive level.
As the first step we need to determine the dimension of a given configuration space Q and to

assume that the phase space T ∗Q is equipped with some canonical coordinates q = (q1, . . . , qn) and
p = (p1, . . . , pn):

> n := 2; n := 2

> q:=seq(q||i,i=1..n): p:=seq(p||i,i=1..n): var:=q,p:
> setup(var); [q1, q2, p1, p2]

Now we can define the first symmetric polynomial σ1 on the eigenvalues of L and L-deformation θ (2.4)
of the standard Liouville form
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> sigma:=add(L[i,i](q),i=1..n);
σ := L1, 1(q1, q2) + L2, 2(q1, q2)

> theta:=add(add(L[i,j](q)*p||i*d(q||j),i=1..n),j=1..n);

θ := L1, 1(q1, q2) p1 d(q1) + L2, 1(q1, q2) p2 d(q1)+
+ L1, 2(q1, q2) p1 d(q2) + L2, 2(q1, q2) p2 d(q2)

Here the components of the L-tensor Li
j(q) are unknown functions on the configuration space Q.

At the second step we introduce the canonical Poisson tensor P

> ed:=array(identity, 1..n,1..n): u:=array(sparse,1..n,1..n):
> P:=linalg[stackmatrix](linalg[augment](u,ed),

linalg[augment](-ed,u));

P :=




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0




and calculate the vector fields XT = PdT (p, q) and XV = PdV (q), that is,

> dT:=array(1..2*n):
> for i from 1 to 2*n do dT[i]:=diff(T(var),var[i]): end do:
> X_T:=evalm(P&*dT);

XT : =
[

∂
∂p1

T(q1 , q2 , p1 , p2 ), ∂
∂p2

T(q1 , q2 , p1 , p2 )−

− ( ∂
∂q1

T(q1 , q2 , p1 , p2 )), −( ∂
∂q2

T(q1 , q2 , p1 , p2 ))
]

and

> dV:=array(1..2*n):
> for i from 1 to 2*n do dV[i]:=diff(V(q),var[i]): end do:
> X_V:=evalm(P&*dV);

XV :=
[
0, 0, −( ∂

∂q1
V(q1, q2)), −( ∂

∂q2
V(q1, q2))

]

Since some components of the vector field XV are zero, the corresponding equations are simpler than
those for XT . Therefore, we start with the second equation (2.7) in order to explain some features of
the Maple procedures. Namely, substituting the vector field XV and 1-form θ into the iXV

dθ , one
gets

> idT:=wcollect(hook(d(theta),X_V)):

idT :=
(

− L2, 1(q1, q2) ( ∂
∂q2

V(q1, q2))(q1, q2, p1, p2)−

− L1, 1(q1, q2) ( ∂
∂q1

V(q1, q2))(q1, q2, p1, p2)
)
d(q1) +

+
(

− L2, 2(q1, q2) ( ∂
∂q2

V(q1, q2))(q1, q2, p1, p2)−

− L1, 2(q1, q2) ( ∂
∂q1

V(q1, q2))(q1, q2, p1, p2)
)
d(q2)

It is easy to see that this expression contains derivatives of the potential V (q), which formally depend
on all of the variables (q, p). In fact these derivatives depend on q only. It is an unpleasant feature of
the Maple procedure hook from the package liesymm.

In order to get the correct expression for iXV
dθ we have to use the special substitution
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> Trans:={seq(diff(V(q),q||i)(var)=diff(V(q),q||i),i=1..n)}:
> idT:=subs(Trans,idT);

idT :=
(

− L2, 1(q1, q2) ∂
∂q2

V(q1, q2)− L1, 1(q1, q2) ∂
∂q1

V(q1, q2)
)
d(q1) +

+
(

− L2, 2(q1, q2) ∂
∂q2

V(q1, q2)− L1, 2(q1, q2) ∂
∂q1

V(q1, q2)
)
d(q2)

Equation (2.7) is satisfied identically and the coefficients for the independent 2-forms in (2.7) vanish.
It gives rise to the following system of equations

> SysEq:=annul(d(idT-V(q)*d(sigma)), [var] ): nops(SysEq);

At n = 2 equation (2.7) generates just one partial differential equation, while at n = 3 the system
SysEq consists of three equations and so on.

We keep these equations in a special list

> ListEq:=NULL:
> for i from 1 to nops(SysEq) do
> ListEq:=ListEq,lhs(SysEq[i]);
> end do:

Now we proceed with the remaining equation (2.6). As above we have to simplify this equation through
the additional substitution for derivatives after the application of the hook operator

> Eq:=wcollect(d(hook(d(theta),X_T)-T(var)*d(sigma))):
> Trans:={seq( diff(T(var),var[i])(var)=diff(T(var),var[i]),i=1..2*n)}:

Expanding equation (2.6) in the basis of 2-forms one gets one more system of equations

> SysEq:=annul(subs(Trans,Eq),[var]): nops(SysEq);

At n = 2, 3 equation (2.7) gives rise to six and fifteen equations respectively.
By adding these equations to the list of equations ListEq one gets a complete set of algebraic

and partial differential equations on the components of L-tensor.

> for i from 1 to nops(SysEq) do ListEq:=ListEq,lhs(SysEq[i]); end do:
> NumEq:=nops([ListEq]);

NumEq := 7

At n = 2, 3 one gets seven and eighteen equations in four and nine functions Li
j(q) respectively.

At the third step we have to define the Hamilton function. As an example we consider the
Hénon-Heiles integrable model with the Hamiltonian

H = p2
1 + p2

2 + 1
2(q2

1 + q2
2) + q2

1q2 + 2q3
2 . (3.1)

In this case the kinetic energy T and potential V (q) are given by

> Tn:=add(p||i^2,i=1..n);
> Vn:=1/2*(q1^2+q2^2)+q1^2*q2+2*q2^3;

Substituting these parts of the Hamilton function into the prepared above list of equations ListEq one
gets a set of polynomial equations of the second degree in the momenta p, which must be identically
satisfied for all admissible values of variables p. It means that coefficients of the second, first and
zeroth power of pi vanish. All these coefficients form a new system of algebraic and partial differential
equations in the functions Li

j(q).
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> System:= NULL:
> for i from 1 to NumEq do
> u:=expand(dvalue(subs({ T(var)=Tn, V(z)=Vn },ListEq[i]))):
> System:=System,coeffs(u,{p}):
> end do:
> NumSys:=nops({System});\vspace{-1em}NumSys := 13

At n = 2, 3, 4 the resulting system of equation consists of 13, 51 and 136 equations. Even though some
of these equations may be dependent, it is convenient to use all of them simultaneously. Of course,
for a generic potential this system is heavily overdetermined and has only the trivial solution, which
means that the Hamilton function is non-separable.

In the case of polynomial potentials we can easily solve this system by means of the standard
Maple procedure pdsolve

> Ans:=pdsolve( {System}, {seq(seq(L[i,j](z), i=1..n),j=1..n)} );

which allows us to get the following answer

Ans := {L1, 1(q1 , q2 ) =
3C1

4 + C2, L1, 2(q1 , q2 ) =
C1 q1

2 ,

L2, 2(q1 , q2 ) = C1 q2 + C2, L2, 1(q1 , q2 ) =
C1 q1

2 }

depending on two arbitrary constants C1,2.
Substituting this answer into the L-tensor one gets

> Trans:={seq(seq(L[i,j](q)=L[i,j],i=1..n),j=1..n)}:
> Ans:=simplify(map2(subs,Trans,Ans)):
> L:=array(1..n,1..n):
> L:=map2(subs,Ans,evalm(L));

L :=




3
4 C1 + C2

C1 q1
2

C1 q1
2 C1 q2 + C2




The eigenvalues of this L-tensor are the separation coordinates

> e:=collect(det(L-ed*lambda),lambda,factor):
> Q1:=solve(e,lambda)[1]; Q2:=solve(e,lambda)[2];

Q1 :=
3C1

8 + C2 +
C1 q2

2 +

√
9C2

1 − 24 C2
1 q2 + 16C2

1 q2 2 + 16C2
1 q1 2

8 ,

Q2 :=
3C1

8 + C2 +
C1 q2

2 −

√
9C2

1 − 24C2
1 q2 + 16C2

1 q2 2 + 16 C2
1 q1 2

8 ..

Thus one gets translated parabolic coordinates, which are the separation coordinates for the Hénon-
Heiles model [7]. It takes less than a minute of the computer time.

More explicitly, we obtain a family of equivalent separable coordinate systems labeled by C1,2.
Recall, that two separable systems are called equivalent if the corresponding separated solutions of
the Hamilton–Jacobi equation generate the same Lagrangian foliation of T ∗Q.

Remark 2. Using a standard personal computer, for n 6 10 and for the polynomial potentials we can
solve the overdetermined system of equations System with the standard procedure pdsolve in a reasonable
time. For n > 10 we have to use special computers or special packages for solving heavily overdetermined
systems of equations.
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4. Examples

In this section we present some examples which illustrate various aspects of the proposed code.

The anharmonic oscillator. The configuration space Q is the n-dimensional Euclidean space
Rn with Cartesian coordinates q and metric ds2 =

∑
gijdqidqj =

∑
dqi

2. Let us consider the anhar-
monic oscillator with the Hamiltonian

H =
n∑

i=1

p2
i +

n∑

i=1

aiq
2
i +

(
n∑

i=1

q2
i

)2

.

We have to substitute this Hamiltonian for (3.1) using the commands

> Tn:=add(p||i^2,i=1..n);
> Vn:=add(a||i*q||i^2,i=1..n)+(add(q||i^2,i=1..n))^2;

It is easy to calculate the solution of the complete system of equations System obtained from equa-
tions (2.6) and (2.7)

Li
j(q) = (C1 + ai − an)δij + C2 qiqj

Here the solution found by Maple is presented without any further simplification.
For C1 = an and C2 = 1 the eigenvalues Qi of the corresponding tensor L are defined by the

equation
det(L− λ)∏n
i=1(λ− ai)

≡ −1 +
n∑

i=1

qi
2

λ− ai
=

n∏

i=1

λ−Qi

λ− ai
. (4.1)

This well-known relation defines standard elliptic coordinates in Rn.
These coordinates were introduced by Jacobi in a note in Crelle’s Journal [11]. A thorough

discussion of their general properties as well as of their use for separation of variables in the Hamilton–
Jacobi equation can be found in his lecture notes [1].

The Euler problem. Let us consider the Euler problem of planar motion in a force field of
two attracting centers with the Hamiltonian

H = p2
1 + p2

2 −
(

a1√
(q1 − c)2 + q2

2

+
a2√

(q1 + c)2 + q2
2

)
.

In contrast with the previous examples the potential V (q) is not a polynomial but an algebraic function.
The solution of the overdetermined system of equations obtained from (2.6) and (2.7) is as follows:

L =
[

(q2
1 − c2)C2 + C1 q1q2C2

q1q2C2 q2
2C2 + C1

]

For C1 = 1/2 c2 and C2 = 1 the eigenvalues of the matrix L coincide with the standard elliptic
coordinates

1− q2
1

λ + c2/2
− q2

2

λ− c2/2
=

(λ−Q1)(λ−Q2)
(λ− c2/2)(λ + c2/2)

The Toda lattice. As above, the configuration space Q is the n-dimensional Euclidean space
Rn with Cartesian coordinates q. The Hamiltonian of the periodic Toda lattice is given by

H = 1
2

n∑

i=1

pi
2 +

n∑

i=1

exp(qi − qi+1) , qn+1 ≡ q1 . (4.2)
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For n = 2 the unique solution of the complete system of equations System is

L =
[

C1 C2

C2 C1

]

Of course, the eigenvalues of this matrix are not the separation variables. However, in this case the
number of free parameters is equal to the dimension of the Riemannian manifold Q. It allows us to
construct the separation coordinates (see [7]). Namely, let us diagonalize the matrix L

L = V −1diag(C1 + C2, C1 − C1)V, V =
(

1 1
−1 1

)
.

It is easy to see that the separation coordinates Q are the following Cartesian coordinates

Q = V q, ⇒ Q1 = q1 + q2, Q2 = q1 + q2 .

At n = 3 solution of the equations System is trivial

L =




C1 C2 C2

C2 C1 C2

C2 C2 C1




The number of free parameters is less than the dimension of the Riemannian manifold. It means that
this Hamiltonian is not separable through point transformations. However, we have to underline that
this Hamiltonian admits separation of variables in a wider class of canonical transformations of the
whole phase space.

The Neumann system. The unit sphere Sn is the Riemannian subspace of Rn+1 whose points
have Cartesian coordinates x = (x1, . . . , xn+1) satisfying |x| =

√
(x, x) = 1.

The Neumann system is a well-known and profoundly studied mechanical system, which describes
the motion of a particle on a sphere under the influence of a quadratic potential V = 1

2
∑

aix
2
i . Due to

the form of the constraint and the potential, it is quite natural to perform all the computations using
the local coordinates qi = x2

i , i = 1, . . . , n. In these coordinates the Hamiltonian of the Neumann
system is given by H = T + V where

T = 2
n∑

i=1

qi(1− qi)p2
i − 4

n∑

i<j

qiqjpipj , V = 1
2

n∑

i=1

(ai − an+1)qi .

Here pi are momenta conjugate to qi and a1, . . . , an+1 are arbitrary parameters [10]. We can insert
this Hamiltonian into the Maple code with the commands

> Tn:=2*add(q||i*(1-q||i)*p||i^2,i=1..n)
> -4*add(add(q||i*q||j*p||i*p||j,j=i+1..n),i=1..n);
> Vn:=1/2*add((a||i-a||(N+1))*q||i,i=1..n);

For n = 2 the unique solution of the complete system of equations System looks like

L =




C2 −
q1(a3 − a1) + a1 − a2

a2 − a3
C1 q1 C1

q2 (a1 − a3)
a2 − a3

C1 q2 C1 + C2




Recall, that Li
j(q) are the components of the tensor L, which is symmetric with respect to the metric

G. For the non-flat metrics the L-matrices obtained in Maple are non-symmetric.
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If C1 = a3 − a2 and C2 = a2 the eigenvalues Q1,2 of this L-tensor are zeroes of the following
function

e(λ) =
det(L− λ)∏n
i=1(λ− ai)

=
q1

λ− a1
+

q2

λ− a2
+

1− q1 − q2

λ− a3

In terms of the redundant coordinates xi the separation coordinates read

n+1∑

j=1

x2
j

λ− aj
=

∏n
i=1(λ−Qi)∏n+1
j=1 (λ− aj)

, with
n+1∑

i=1

x2
j = 1 .

These relations are known to define the spheroconical or elliptic-spherical coordinates. For n > 2 one
gets the same relations.

For n = 2, 3 all the computation takes about one and eight minutes respectively.

Remark 3. In contrast with [10] we directly solve equations (2.3)–(2.5) without any additional assump-
tions about the affine structure of the solutions. It allows us to prove the uniqueness of a solution.

The Jacobi-Calogero inverse-square model. The configuration space Q is 3-dimensional
Euclidean space R3 with Cartesian coordinates q = (q1, q2, q3). The Hamilton function is given by

H =
3∑

i=1

p2
i + (q1 − q2)−2 + (q2 − q3)−2 + (q3 − q1)−2 .

For this Hamiltonian the solution of the complete system of equations System depends on four arbitrary
parameters

L =




q2
1C1 + 2q1C2 + C3 q1q2C1 + (q1 + q2)C2 + C4 q1q3C1 + (q1 + q3)C2 + C4

q1q2C1 + (q1 + q2)C2 + C4 q2
2C1 + 2q2C2 + C3 q2q3C1 + (q2 + q3)C2 + C4

q1q3C1 + (q1 + q3)C2 + C4 q2q3C1 + (q2 + q3)C2 + C4 q2
3C1 + 2q3C2 + C3




The number of free parameters exceeds the dimension of the Riemannian manifold. It means that
this integrable system is a degenerate or superintegrable system, which is separable in some different
coordinate systems. Namely, at the different values of the parameters C1, . . . , C4 the eigenvalues of
the tensor L are oblate spheroidal, prolate spheroidal, spherical, rotational parabolic and circular
cylindrical coordinates. The detailed discussion may be found in [7], [12].

An elliptic egg. Let us consider the Hamiltonian with rational potential

H =
n∑

i=1

p2
i + c(

1−
n∑

i=1

q2
i

a2
i

) , c, ai ∈ R .

In contrast with the previous examples with polynomial potentials, the potential V (q) is a rational
function. This potential has a singular surface, which is an ellipsoid

n∑

i=1

q2
i

a2
i

= 1.

For c > 0 , this singular surface is repelling inwards so that a trajectory initiated within the ellipsoid
will remain there forever.

For n > 2 the Maple procedure pdsolve cannot solve the system of equations System obtained
from equations (2.6) and (2.7) in a reasonable time.
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In this case we have to solve the equation for the geodesic motion (2.6) and then the equation in
potential (2.7). For n 6 10 it takes just a few minutes.

In our case the solution of the system of equations generated by the geodesic equation (2.6) is

Li
j(q) = αqiqj + Aijqi + Bijqj + Cij .

Here the coefficients α, Aij , Bij and Cij are arbitrary constants, Aij = Bji and Cij = Cji.
Substituting this solution into the system of equations obtained from (2.7) one gets a system of

algebraic equations in the coefficients Aij , Bij and Cij . The standard Maple program solve easily
solves this system of algebraic equations in few seconds. The eigenvalues of the corresponding tensor
L are the standard elliptic coordinates (4.1).

5. Conclusion

We present the first part of the symbolic software which builds separation coordinates for the
Hamilton–Jacobi equation of the L-systems using methods from the differential geometry. The second
part of this software is intended to build and solve the corresponding separated equations. We leave
this part to subsequent publications.
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