Computing separation variables on a computer

Yury Grigoryev

Orthogonal coordinate systems

Different coordinate systems are convenient for different problems. For example, spherical coordinate system is convenient for a problem of a particle in a central force field, while oblate spheroidal system can be convenient for the Jacobi-Calogero inverse square model.

spherical

oblate spheroidal

Using separation variables in numerical simulations

- Reduces computation time
- Easier parallelizing
- Easier control of the correctness through integrals of motion

Theoretical overview

\mathcal{Q} - riemannian manifold with local coordinates $q=\left(q^{1}, q^{2}, \ldots, q^{n}\right)$ and positive definite metric tensor G.

Examples:

sphere

ellipsoid

Natural Hamilton function

$$
H=T(p, q)+V(q)=\sum_{i, j=1}^{n} \mathrm{~g}^{i j}(q) p_{i} p_{j}+V(q)
$$

Separation of variables for the Hamilton-Jacobi equation

Hamilton-Jacobi equation
Additive Action

Conjugated momenta

Separated equations

$$
\begin{gathered}
H(p, q)=E \\
\mathcal{S}\left(Q, \alpha_{1}, \ldots, \alpha_{n}\right) \equiv \sum_{i=1}^{n} \mathcal{S}_{i}\left(Q_{i}, \alpha_{1}, \ldots, \alpha_{n}\right) \\
P_{i}=\frac{\partial \mathcal{S}_{i}\left(Q_{i}, \alpha_{1}, \ldots, \alpha_{n}\right)}{\partial Q_{i}} \\
\Phi_{i}\left(Q_{i}, P_{i}, \alpha_{1}, \ldots, \alpha_{n}\right)=0
\end{gathered}
$$

Levi-Civita criteria

The Hamilton-Jacobi equation admits separation of variables if the Hamilton function $H(P, Q)$ satisfies the following $n(n-1) / 2$ equations with $i \neq j$

$$
\begin{aligned}
& \frac{\partial H}{\partial P_{j}} \frac{\partial H}{\partial P_{i}} \frac{\partial^{2} H}{\partial Q_{j} \partial Q_{i}}-\frac{\partial H}{\partial P_{j}} \frac{\partial H}{\partial Q_{i}} \frac{\partial^{2} H}{\partial Q_{j} \partial P_{i}} \\
& \quad-\frac{\partial H}{\partial Q_{j}} \frac{\partial H}{\partial P_{i}} \frac{\partial^{2} H}{\partial P_{j} \partial Q_{i}}+\frac{\partial H}{\partial Q_{j}} \frac{\partial H}{\partial Q_{i}} \frac{\partial^{2} H}{\partial P_{j} \partial P_{i}}=0 .
\end{aligned}
$$

Separating variables with coordinate transformations

Point transformations:

$$
Q=f(q), \quad P=f^{\prime}(q) p, \quad f=\left(f_{1}, \ldots, f_{n}\right)
$$

The Hamiltonian is covariant w.r.t point transformations

$$
H=T(P, Q)+V(Q)=\sum_{i, j=1}^{n} \mathrm{~g}^{i j}(Q) P_{i} P_{j}+V(Q)
$$

Killing Tensors

\mathcal{Q} - riemannian manifold with a metric tensor

$$
\mathbf{G}=\mathrm{g}^{i j} \partial_{i} \otimes \partial_{j}, \quad \partial_{k} \equiv \frac{\partial}{\partial q^{k}}
$$

The correspondence between tensor \mathbf{K} and polynomial P_{K} :

$$
\mathbf{K}=\left(K^{i \ldots j}\right) \quad \longleftrightarrow \quad P_{K}=K^{i \ldots j} p_{i} \cdots p_{j}
$$

Definition 1 Killing Tensor \mathbf{K} of rank ℓ is a symmetric ($\ell, 0$) tensor in the space \mathcal{Q} satisfying tensor Killing equation

$$
[\mathbf{K}, \mathbf{G}]=0 \quad \Longleftrightarrow \quad\left\{P_{K}, P_{G}\right\}=0
$$

L-tensors

Definition 2 Conformal Killing Tensor L of rank ℓ is a symmetric
$(\ell, 0)$ tensor in the space \mathcal{Q}, satisfying tensor equation

$$
\left\{P_{L}, P_{G}\right\}=c P_{G}
$$

Definition 3 Conformal tensor L with simple eigenvalues and zero Nijenhuis torsion

$$
T_{i j}^{m} \equiv 2 L_{i}^{\alpha} \partial_{\alpha} L_{j}^{m}-2 L_{\alpha}^{m} \partial_{i} L_{j}^{\alpha}=0
$$

is called L-tensor, or Benenti tensor.

Separating variables for L-systems

Theorem 1 [Benenti] Eigenvalues Q_{i} of tensor \mathbf{L} are separation variables for the integrable system.

Integrable systems admitting separation in such variables are called L-systems, or Benenti systems.

For given \mathbf{L} we can define a recursion operator \mathbf{N}, i.e. canonical lifting of tensor \mathbf{L} on a cotangent bundle $T^{*} \mathcal{Q}$ according to the rule

$$
\begin{aligned}
\mathbf{N} \frac{\partial}{\partial q^{k}} & =\sum_{i=1}^{n} L_{k}^{i} \frac{\partial}{\partial q^{i}}+\sum_{i j} p_{j}\left(\frac{\partial L_{i}^{j}}{\partial q^{k}}-\frac{\partial L_{k}^{j}}{\partial q^{i}}\right) \frac{\partial}{\partial p_{i}} \\
\mathbf{N} \frac{\partial}{\partial p_{k}} & =\sum_{i=1}^{n} L_{i}^{k} \frac{\partial}{\partial p_{i}}
\end{aligned}
$$

Recurrent equations for the integrals of motion H_{m} :

$$
d H_{m+1}=\mathbf{N}^{*} d H_{m}+\sigma_{m+1} d H, \quad m=1, \ldots, n-1, \quad H_{n} \equiv 0
$$

Here σ_{m} are the coefficients of the characteristic polynomial of
$\mathbf{L}: \operatorname{det}(\lambda I-\mathbf{L})=\sum_{m=0}^{n} \sigma_{m} \lambda^{n-m}$

Algorithm of calculating separation variables

1. Build and solve equations for L

$$
\begin{aligned}
& d\left(i_{X_{T}} d \theta-T d \sigma_{1}\right)=0 \\
& d\left(i_{X_{V}} d \theta-V d \sigma_{1}\right)=0
\end{aligned}
$$

Here i is a hook operator, $\sigma_{1}=\operatorname{tr} \mathrm{L}$ and $\theta=\sum_{i, j=1}^{n} L_{j}^{i} p_{i} d q^{j}$ is an L-deformation of standard Liouville 1-form $\theta_{0}=\Sigma p_{j} d q^{j}$.
2. Calculate eigenvalues of L - separation variables
3. Solve a chain of equations $d H_{m+1}=\mathbf{N}^{*} d H_{m}+\sigma_{m+1} d H$ for the integrals of motion.

Implementation (Maple worksheet)

Applying the programme to some integrable systems

1. Neumann system The Neumann system describes the motion of a particle on a sphere under the influence of a quadratic potential $V(x)=\frac{1}{2} \sum_{i=1}^{N+1} \alpha_{i} x_{i}^{2}$, where $\alpha_{i} \neq \alpha_{j}$

Spheroconical coordinates: $\sum_{i=1}^{N+1} \frac{x_{i}^{2}}{\lambda-\alpha_{i}}=0$
Manual transformation of variables

$$
\begin{gathered}
X_{i}=x_{i}^{2}, i=1, . ., N \\
T=2 \sum_{a} X_{a}\left(1-X_{a}\right) Y_{a}^{2}-4 \sum_{a<b} X_{a} X_{b} Y_{a} Y_{b} \\
V=\frac{1}{2} \sum_{a}\left(\alpha_{a}-\alpha_{N+1}\right) X_{a}
\end{gathered}
$$

2. Holt system

$$
H(x)=\frac{1}{2}\left(p_{X}^{2}+p_{Y}^{2}\right)+a X^{-\frac{2}{3}}\left(\frac{3 b}{4} X^{2}+Y^{2}+c\right)
$$

Manual transformation of variables

$$
\begin{gathered}
a \rightarrow 4\left(\frac{3}{2}\right)^{1 / 3} a, \quad c \rightarrow \frac{c}{3 a} \\
X=\frac{2}{3} x^{3 / 2}, \quad p_{X}=p_{x} / \sqrt{x} \\
Y=-\frac{1}{2 \sqrt{3 a}} p_{y} \quad p_{Y}=2 \sqrt{3 a} y \\
H=\frac{p_{x}^{2}+p_{y}^{2}}{2 x}+2 a\left(b x^{2}+3 y^{2}\right)+\frac{2 c}{x}
\end{gathered}
$$

Ways of improving the performance of the programme

- Watching after and modifying the intermediate results of the programme
- Using special PDE solvers for overdetermined systems

Ways of broadening the class of systems separable by the programme

- Performing manual transformations of variables
- Solving the systems for \mathbf{N} instead of those for \mathbf{L}
- Adding typical non-point transformations of variables with arbitrary parameters to the equations for L

