
Efficient FEM implementation 
 
The finite element method (FEM) is used to solve partial differential equations (PDE). The 
key element in this method is that it uses a variational problem over a domain of the PDE.  
The weak form of a PDE has a test and a shape function which enables to discretize the 
system. The evaluation of the integrand produces a system of equations. For the purpose of 
this document only the efficiency of linear systems of equations, obtained from FEM, is 
treated. Approaches for linearizing non-linear system of equations can be done with other 
numerical methods.  
FEM produces a linear system of equations in the form  

A · u = b      (0) 
where 
A is the system matrix,  
u is a vector with the unknowns representing vertices in a Cartesian grid and  
b is a vector containing the right hand side values. 
 
The system matrix A is typically sparse and has a regular structure. The structure of the rows 
of A corresponds to the stencil of the nodes in a Cartesian grid.  
 
Cartesian grids usually need high resolution in specific areas. The need for the use of an 
adaptive grid arises with: 

• Complex geometry boundaries: detailed observation of the solution of geometric 
features. 

• Singularities: very local and relatively high changes in the solution of a PDE.  
Adaptivity is related to discretization error. The refinement may done during runtime 
and not a priori. 

• Multi-scale phenomena: local changes or small scale effects are of interest in the 
solution of a PDE. 

The refinement is done in sub domains (where high resolution is needed) in a recursive way, 
by splitting a cell into sub grids. 
 
The element wise view of a stencil is done by separating each vertex into cells. Instead of 
looking at the vertices we examine the elements considering partial values of the vertices.  
For example the stencil: 

 
Can be represented in the element wise view as follows: 

 
 
We can profit from the element-wise view when applying space filling curves in adaptive 
grids. We use data structures like stacks that are processed faster than other accesses to data 
structures, thus improving computing time. 
 
An implicit solver like the Jacobi’s iterative method may be used to solve a large system of 
equations. This document focuses on the Jacobi’s solver, but other methods may be used. 
Others widely used are Gauss-Seidel and Conjugate Gradient. Multigrid method is also used 
combined to increase the efficiency of a given solver. 



The general formulation of the Jacobi solver is as follows: 
 

 
 
Where 
Index i is the iterative step 
A is the system matrix,  
u is a vector with the unknowns representing vertices in a Cartesian grid and  
b is a vector containing the right hand side values 
diag(A) is a vector containing the main diagonal of A. 
 
Jacobi basic algorithm visits all “k” unknowns as follows: 
 
Do while residual is sufficiently small: 

              

       
 End While. 
 
A common problem encountered in high performance computing is how to profit from cache 
efficiency. Cache misses are expensive in terms of time and we require algorithms to 
minimize them. The goal is to ensure that the information referenced at one point in time will 
be referenced in the near future. A second aim is to benefit from the temporal locality. When 
visiting all the elements on a grid the processor will load vertex data that was already loaded 
into the cache line. 
 
The Peano curve will traverse the grid in a characteristic order, which reduces the cache 
misses. The grid will be traversed only once and the cells visited in a succession will be 
neighbouring cells. Other space filling curves may be used, e.g. Hilbert curve and Sierpinsky 
curve. 
 



 
Figure 1: Peano Curve with different levels of resolution 

 
The space filling curve now needs to be represented with a scheme suitable for a computer 
program. This representation as a data structure can be done with a tree. The data of a cell will 
be stored at the corresponding node. The root represents the lowest level of resolution and the 
leaves the high resolution levels. Thus, the grid is traversed in a top-down-depth order. 
 

 
Figure 2: Simple adaptive grid with numbering 



 
Figure 3: Tree structure that represents the grid in figure 2. 

 
Notice in figure 3 that every element will contain one refinement bit attached to it. If the 
element‘s refinement bit is set, the node has children and these are visited. 
 
If it is possible to parallelize the process to pursue a faster computing time, we should 
consider the following: communication between processors is slow and therefore sub 
boundary domains should be minimized. This leads to form compact domains with a low 
ration communication surface and volume. The balancing of domains in adaptive grids is not 
straight forward. When adaptivity occurs during runtime, the parallel adaptive grid control 
needs dynamic load balancing. The amount of workload per processor should be roughly the 
total amount of elements divided by the number of processors. 
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