Numerical Simulation

Sparse Grids

> Stefan Jerg (jerg@ma.tum.de)
> Zentrum Mathematik
> Technische Universität München (TUM)

JASS 06, Saint Petersburg / Russia

$$
\text { Apr. } 02 \text { - Apr. 12, } 2006
$$

Course 2: Numerical Simulation - From Models to Visualizations

Outline

(1) Introduction

(2) Hierarchical Basis

- In 1 dimension
- In 2 or more dimensions
- Sparse grids
(3) Conclusion

Some Example Problems

- PDE: $\triangle u=f$ in Ω and $\left.u\right|_{\partial \Omega}=0$

find $u \in V$ with $\left.u\right|_{\partial \Omega}=0$

Some Example Problems

- PDE: $\triangle u=f$ in Ω and $\left.u\right|_{\partial \Omega}=0$

find $u \in V$ with $\left.u\right|_{\partial \Omega}=0$
- numerical quadrature

Motivation

What is the main problem we have to solve ?

Motivation

What is the main problem we have to solve ?

- given a multivariate function $f: \Omega \rightarrow \mathbb{R}$
- want to construct a function $u: \Omega \rightarrow \mathbb{R}$ with special properties
- only an approximation u_{S} to u is possible
- quality of u_{S} depends on the number of evaluations of f

Motivation

What is the main problem we have to solve ?

- given a multivariate function $f: \Omega \rightarrow \mathbb{R}$
- want to construct a function $u: \Omega \rightarrow \mathbb{R}$ with special properties
- only an approximation u_{S} to u is possible
- quality of u_{S} depends on the number of evaluations of f

So do what we have to do ?

Motivation

What is the main problem we have to solve ?

- given a multivariate function $f: \Omega \rightarrow \mathbb{R}$
- want to construct a function $u: \Omega \rightarrow \mathbb{R}$ with special properties
- only an approximation u_{S} to u is possible
- quality of u_{S} depends on the number of evaluations of f

So do what we have to do ?

- evaluate $f(x)$ for many different states $x \in \Omega$
- but: evaluation of f is expensive

Motivation

Example

With a naive approach (n sample points in each dimension):

- 1-dim: n evaluations of f
- d-dim: n^{d} evaluations of f

Motivation

Example

With a naive approach (n sample points in each dimension):

- 1-dim: n evaluations of f
- d-dim: n^{d} evaluations of f
- in high dimensional problems d is very large
- $n^{d} f$ evaluations is too expensive

Motivation

Example

With a naive approach (n sample points in each dimension):

- 1-dim: n evaluations of f
- d-dim: n^{d} evaluations of f
- in high dimensional problems d is very large
- $n^{d} f$ evaluations is too expensive

Challenge

- reduce the number of f evaluations

Motivation

Example

With a naive approach (n sample points in each dimension):

- 1-dim: n evaluations of f
- d-dim: n^{d} evaluations of f
- in high dimensional problems d is very large
- $n^{d} f$ evaluations is too expensive

Challenge

- reduce the number of f evaluations
- keep quality of u_{S} still as high as possible

Main Goal

a little be more in detail:

Main Goal

a little be more in detail:

- want to find a function $u \in V$ with special properties

Main Goal

a little be more in detail:

- want to find a function $u \in V$ with special properties
- V is often a Sobolev Space, particularly $\operatorname{dim}(V)=\infty$

Main Goal

a little be more in detail:

- want to find a function $u \in V$ with special properties
- V is often a Sobolev Space, particularly $\operatorname{dim}(V)=\infty$

What to do

- take a finite n-dimensional subspace $S \subset V$ with

$$
S=\operatorname{span}\left\{\phi_{i}: 1 \leq i \leq n\right\}
$$

Main Goal

a little be more in detail:

- want to find a function $u \in V$ with special properties
- V is often a Sobolev Space, particularly $\operatorname{dim}(V)=\infty$

What to do

- take a finite n-dimensional subspace $S \subset V$ with

$$
S=\operatorname{span}\left\{\phi_{i}: 1 \leq i \leq n\right\}
$$

- \Rightarrow get an approximative u_{S} as linear combination of basis functions:

$$
u_{S}=\sum_{i=1}^{n} \alpha_{i} \cdot \phi_{i}
$$

Outline

(1) Introduction

(2) Hierarchical Basis

- In 1 dimension
- In 2 or more dimensions
- Sparse grids

(3) Conclusion

Outline

(1) Introduction

(2) Hierarchical Basis

- In 1 dimension
- In 2 or more dimensions
- Sparse grids

(3) Conclusion

How to get Basis Functions

First of all we start in 1 dimension

How to get Basis Functions

First of all we start in 1 dimension

$$
\begin{gathered}
S=\operatorname{span}\left\{\phi_{i}: 1 \leq i \leq n\right\} \\
u_{S}=\sum_{i=1}^{n} \alpha_{i} \cdot \phi_{i}
\end{gathered}
$$

How to get Basis Functions

First of all we start in 1 dimension

$$
\begin{gathered}
S=\operatorname{span}\left\{\phi_{i}: 1 \leq i \leq n\right\} \\
u_{S}=\sum_{i=1}^{n} \alpha_{i} \cdot \phi_{i}
\end{gathered}
$$

- search for 'good' basis functions ϕ_{i} to approximate any given $u: \Omega \rightarrow \mathbb{R}$

How to get Basis Functions

First of all we start in 1 dimension

$$
\begin{gathered}
S=\operatorname{span}\left\{\phi_{i}: 1 \leq i \leq n\right\} \\
u_{S}=\sum_{i=1}^{n} \alpha_{i} \cdot \phi_{i}
\end{gathered}
$$

- search for 'good' basis functions ϕ_{i} to approximate any given $u: \Omega \rightarrow \mathbb{R}$
- the ϕ_{i} should be inexpensive to evaluate

How to get Basis Functions

First of all we start in 1 dimension

$$
\begin{gathered}
S=\operatorname{span}\left\{\phi_{i}: 1 \leq i \leq n\right\} \\
u_{S}=\sum_{i=1}^{n} \alpha_{i} \cdot \phi_{i}
\end{gathered}
$$

- search for 'good' basis functions ϕ_{i} to approximate any given $u: \Omega \rightarrow \mathbb{R}$
- the ϕ_{i} should be inexpensive to evaluate
- $\operatorname{dim}(S)$ should be small for an optimal approximation

How to get Basis Functions

First of all we start in 1 dimension

$$
\begin{gathered}
S=\operatorname{span}\left\{\phi_{i}: 1 \leq i \leq n\right\} \\
u_{S}=\sum_{i=1}^{n} \alpha_{i} \cdot \phi_{i}
\end{gathered}
$$

- search for 'good' basis functions ϕ_{i} to approximate any given $u: \Omega \rightarrow \mathbb{R}$
- the ϕ_{i} should be inexpensive to evaluate
- $\operatorname{dim}(S)$ should be small for an optimal approximation
- w.l.o.g. we set $\Omega:=[0,1], \quad u(0)=u(1)=0$

Piecewise Linear Approach

- consider $n=2^{\ell}-1$ equidistant (inner) knots

$$
x_{\ell, i}=i \cdot h_{\ell} \quad \text { with } h_{\ell}=2^{-\ell} \text { and } 1 \leq i \leq 2^{\ell}-1
$$

Piecewise Linear Approach

- consider $n=2^{\ell}-1$ equidistant (inner) knots

$$
x_{\ell, i}=i \cdot h_{\ell} \quad \text { with } h_{\ell}=2^{-\ell} \text { and } 1 \leq i \leq 2^{\ell}-1
$$

- piecewise linear approach with ordinary hat function

$$
\phi(x)=\max \{1-|x|, 0\}
$$

Piecewise Linear Approach

- consider $n=2^{\ell}-1$ equidistant (inner) knots

$$
x_{\ell, i}=i \cdot h_{\ell} \quad \text { with } h_{\ell}=2^{-\ell} \text { and } 1 \leq i \leq 2^{\ell}-1
$$

- piecewise linear approach with ordinary hat function

$$
\phi(x)=\max \{1-|x|, 0\}
$$

- for every point $x_{\ell, i}$ we construct a function $\phi_{\ell, i}(x): \Omega \rightarrow \mathbb{R}$

$$
\phi_{\ell, i}(x)=\phi\left(\frac{x-x_{\ell, i}}{h_{\ell}}\right), \quad T_{\ell, i}:=\operatorname{supp}\left(\phi_{\ell, i}\right)=\left[x_{\ell, i-1}, x_{\ell, i+1}\right]
$$

Piecewise Linear Approach

- consider $n=2^{\ell}-1$ equidistant (inner) knots

$$
x_{\ell, i}=i \cdot h_{\ell} \quad \text { with } h_{\ell}=2^{-\ell} \text { and } 1 \leq i \leq 2^{\ell}-1
$$

- piecewise linear approach with ordinary hat function

$$
\phi(x)=\max \{1-|x|, 0\}
$$

- for every point $x_{\ell, i}$ we construct a function $\phi_{\ell, i}(x): \Omega \rightarrow \mathbb{R}$

$$
\phi_{\ell, i}(x)=\phi\left(\frac{x-x_{\ell, i}}{h_{\ell}}\right), \quad T_{\ell, i}:=\operatorname{supp}\left(\phi_{\ell, i}\right)=\left[x_{\ell, i-1}, x_{\ell, i+1}\right]
$$

Nodal Point Basis

- the nodal point basis

$$
\Phi_{\ell}:=\left\{\phi_{\ell, i}, i=1, \ldots, 2^{\ell}-1\right\}
$$

Nodal Point Basis

- the nodal point basis

$$
\Phi_{\ell}:=\left\{\phi_{\ell, i}, i=1, \ldots, 2^{\ell}-1\right\}
$$

- the resulting subspace of V :

$$
S_{\ell}:=\operatorname{span}\left(\Phi_{\ell}\right), \quad \operatorname{dim}\left(S_{\ell}\right)=2^{\ell}-1
$$

Nodal Point Basis

- $u_{\ell} \in S_{\ell}$ can be written as:

$$
u_{\ell}(x)=\sum_{i=1}^{2^{\ell}-1} \alpha_{i} \cdot \phi_{\ell, i}(x)
$$

Nodal Point Basis

- $u_{\ell} \in S_{\ell}$ can be written as:

$$
u_{\ell}(x)=\sum_{i=1}^{2^{\ell}-1} \alpha_{i} \cdot \phi_{\ell, i}(x)
$$

- the coefficients can be computed very fast

$$
\alpha_{i}=u_{\ell}\left(x_{\ell, i}\right)=u\left(x_{\ell, i}\right)
$$

Nodal Point Basis

- $u_{\ell} \in S_{\ell}$ can be written as:

$$
u_{\ell}(x)=\sum_{i=1}^{2^{\ell}-1} \alpha_{i} \cdot \phi_{\ell, i}(x)
$$

- the coefficients can be computed very fast

$$
\alpha_{i}=u_{\ell}\left(x_{\ell, i}\right)=u\left(x_{\ell, i}\right)
$$

- example for an arbitrary function $u_{\ell} \in S_{\ell}$

Nodal Point Basis

Example

For the function $u(x)=4 x(1-x)$ we have the following coefficients:

	$\alpha_{i}=u_{\ell}\left(x_{\ell, i}\right)$					
$\ell=1$		1				
$\ell=2$		$3 / 4$	1		$3 / 4$	
$\ell=3$	$7 / 16$	$3 / 4$	$15 / 16$	1	$15 / 16$	$3 / 4$

Nodal Point Basis

Example

For the function $u(x)=4 x(1-x)$ we have the following coefficients:

	$\alpha_{i}=u_{\ell}\left(x_{\ell, i}\right)$					
$\ell=1$		1				
$\ell=2$		$3 / 4$	1		$3 / 4$	
$\ell=3$	$7 / 16$	$3 / 4$	$15 / 16$	1	$15 / 16$	$3 / 4$

Nodal Point Basis

Example

For the function $u(x)=4 x(1-x)$ we have the following coefficients:

	$\alpha_{i}=u_{\ell}\left(x_{\ell, i}\right)$					
$\ell=1$			1			
$\ell=2$		$3 / 4$	1		$3 / 4$	
$\ell=3$	$7 / 16$	$3 / 4$	$15 / 16$	1	$15 / 16$	$3 / 4$

Nodal Point Basis

Example

For the function $u(x)=4 x(1-x)$ we have the following coefficients:

	$\alpha_{i}=u_{\ell}\left(x_{\ell, i}\right)$					
$\ell=1$		1				
$\ell=2$		$3 / 4$	1	$3 / 4$		
$\ell=3$	$7 / 16$	$3 / 4$	$15 / 16$	1	$15 / 16$	$3 / 4$

Alternative Basis

What do we have so far ?

$$
V=\bigcup_{\ell=1}^{\infty} S_{\ell}=\operatorname{span}(\Phi)
$$

$$
\text { with } \Phi:=\bigcup_{\ell=1}^{\infty} \Phi_{\ell}
$$

Alternative Basis

What do we have so far ?

$$
V=\bigcup_{\ell=1}^{\infty} S_{\ell}=\operatorname{span}(\Phi) \quad \text { with } \Phi:=\bigcup_{\ell=1}^{\infty} \Phi_{\ell}
$$

But still big problems remain:

- Φ is not a basis
- the coefficients remain large for increasing ℓ

Alternative Basis

What do we have so far ?

$$
V=\bigcup_{\ell=1}^{\infty} S_{\ell}=\operatorname{span}(\Phi) \quad \text { with } \Phi:=\bigcup_{\ell=1}^{\infty} \Phi_{\ell}
$$

But still big problems remain:

- Φ is not a basis
- the coefficients remain large for increasing ℓ

$$
\text { Search for an alternative basis for } S_{\ell} \text { ! }
$$

Hierarchical Increments

- we define the hierarchical increments

$$
W_{\ell}:=\operatorname{span}\left\{\phi_{\ell, i}: i \in I_{\ell}\right\} \quad I_{\ell}:=\left\{i: 1 \leq i \leq 2^{\ell}-1, i \text { odd }\right\}
$$

Hierarchical Increments

- we define the hierarchical increments

$$
W_{\ell}:=\operatorname{span}\left\{\phi_{\ell, i}: i \in I_{\ell}\right\} \quad I_{\ell}:=\left\{i: 1 \leq i \leq 2^{\ell}-1, i \text { odd }\right\}
$$

- the basis functions for the hierarchical increments W_{1}, W_{2}, W_{3} :

Hierarchical Basis and Hierarchical Surpluses

- we get a new view of S_{ℓ} and V

$$
S_{\ell}=\bigoplus_{k=1}^{\ell} W_{k} \quad \text { and } \quad V=\bigoplus_{k=1}^{\infty} W_{k}
$$

Hierarchical Basis and Hierarchical Surpluses

- we get a new view of S_{ℓ} and V

$$
S_{\ell}=\bigoplus_{k=1}^{\ell} W_{k} \quad \text { and } \quad V=\bigoplus_{k=1}^{\infty} W_{k}
$$

- we find a new basis for S_{ℓ} : hierarchical basis

$$
\Psi_{\ell}:=\bigcup_{k=1}^{\ell} \bigcup_{i \in I_{k}} \phi_{k, i}
$$

Hierarchical Basis and Hierarchical Surpluses

- we get a new view of S_{ℓ} and V

$$
S_{\ell}=\bigoplus_{k=1}^{\ell} W_{k} \quad \text { and } \quad V=\bigoplus_{k=1}^{\infty} W_{k}
$$

- we find a new basis for S_{ℓ} : hierarchical basis

$$
\Psi_{\ell}:=\bigcup_{k=1}^{\ell} \bigcup_{i \in I_{k}} \phi_{k, i}
$$

- with the hierarchical surpluses w_{ℓ}

$$
\begin{gathered}
u(x)=\sum_{\ell=1}^{\infty} w_{\ell}(x), \quad w_{\ell}=\sum_{i \in I_{\ell}} v_{\ell, i} \cdot \phi_{\ell, i} \in W_{\ell} \\
v_{\ell, i}=u\left(x_{\ell, i}\right)-\frac{u\left(x_{\ell, i-1}\right)+u\left(x_{\ell, i+1}\right)}{2}
\end{gathered}
$$

Hierarchical Basis

Example

Again given the function $u(x)=4 x(1-x)$ but different coefficients:

	v_{i}						
$\ell=1$				1			
$\ell=2$		$1 / 4$		1		$1 / 4$	
$\ell=3$	$1 / 16$	$1 / 4$	$1 / 16$	1	$1 / 16$	$1 / 4$	$1 / 16$

Hierarchical Basis

Example

Again given the function $u(x)=4 x(1-x)$ but different coefficients:

	v_{i}						
$\ell=1$				1			
$\ell=2$		$1 / 4$		1		$1 / 4$	
$\ell=3$	$1 / 16$	$1 / 4$	$1 / 16$	1	$1 / 16$	$1 / 4$	$1 / 16$

Hierarchical Basis

Example

Again given the function $u(x)=4 x(1-x)$ but different coefficients:

	v_{i}						
$\ell=1$				1			
$\ell=2$		$1 / 4$		1		$1 / 4$	
$\ell=3$	$1 / 16$	$1 / 4$	$1 / 16$	1	$1 / 16$	$1 / 4$	$1 / 16$

Hierarchical Basis

Example

Again given the function $u(x)=4 x(1-x)$ but different coefficients:

	v_{i}						
$\ell=1$				1			
$\ell=2$		$1 / 4$		1		$1 / 4$	
$\ell=3$	$1 / 16$	$1 / 4$	$1 / 16$	1	$1 / 16$	$1 / 4$	$1 / 16$

Convergence

We have

$$
u(x)=\sum_{\ell=1}^{\infty} w_{\ell}(x) \quad \text { and } \quad w_{\ell}=\sum_{i \in I_{\ell}} v_{\ell, i} \cdot \phi_{\ell, i}
$$

Convergence

We have

$$
u(x)=\sum_{\ell=1}^{\infty} w_{\ell}(x) \quad \text { and } \quad w_{\ell}=\sum_{i \in I_{\ell}} v_{\ell, i} \cdot \phi_{\ell, i}
$$

- it seems that the $v_{\ell, i}$ decrease very fast with increasing ℓ

Convergence

We have

$$
u(x)=\sum_{\ell=1}^{\infty} w_{\ell}(x) \quad \text { and } \quad w_{\ell}=\sum_{i \in I_{\ell}} v_{\ell, i} \cdot \phi_{\ell, i}
$$

- it seems that the $v_{\ell, i}$ decrease very fast with increasing ℓ
- are the w_{ℓ} really less important for large ℓ ?

Convergence

We have

$$
u(x)=\sum_{\ell=1}^{\infty} w_{\ell}(x) \quad \text { and } \quad w_{\ell}=\sum_{i \in I_{\ell}} v_{\ell, i} \cdot \phi_{\ell, i}
$$

- it seems that the $v_{\ell, i}$ decrease very fast with increasing ℓ
- are the w_{ℓ} really less important for large ℓ ?
- to decide about the importance of each w_{ℓ} : define some norms

Norms

There are different possibilities to define norms in V Important norms in our applications:
maximum norm:

$$
\left\|\phi_{\ell, i}\right\|_{\infty}:=\max _{x \in \Omega}\left\{\phi_{\ell, i}(x)\right\}=1
$$

Norms

There are different possibilities to define norms in V
Important norms in our applications:
maximum norm:

$$
\left\|\phi_{\ell, i}\right\|_{\infty}:=\max _{x \in \Omega}\left\{\phi_{\ell, i}(x)\right\}=1
$$

L_{2} norm:

$$
\left\|\phi_{\ell, i}\right\|_{2}:=\sqrt{\int_{\Omega} \phi_{\ell, i}^{2}(x) d x}=\sqrt{\frac{2 h_{\ell}}{3}}
$$

Norms

There are different possibilities to define norms in V Important norms in our applications: maximum norm:

$$
\left\|\phi_{\ell, i}\right\|_{\infty}:=\max _{x \in \Omega}\left\{\phi_{\ell, i}(x)\right\}=1
$$

L_{2} norm:

$$
\left\|\phi_{\ell, i}\right\|_{2}:=\sqrt{\int_{\Omega} \phi_{\ell, i}^{2}(x) d x}=\sqrt{\frac{2 h_{\ell}}{3}}
$$

energy norm:

$$
\left\|\phi_{\ell, i}\right\|_{E}:=\sqrt{\int_{\Omega}\left(\phi_{\ell, i}^{\prime}(x)\right)^{2} d x}=\sqrt{\frac{2}{h_{\ell}}}
$$

Norms

We have norms now, but we don't know u

Norms

We have norms now, but we don't know u

- we need another representation of $v_{\ell, i}$:

$$
v_{\ell, i}=\int_{0}^{1}-\frac{h_{\ell}}{2} \cdot \phi_{\ell, i} \cdot u^{\prime \prime}(x) d x
$$

Norms

We have norms now, but we don't know u

- we need another representation of $v_{\ell, i}$:

$$
v_{\ell, i}=\int_{0}^{1}-\frac{h_{\ell}}{2} \cdot \phi_{\ell, i} \cdot u^{\prime \prime}(x) d x
$$

- now we can find some upper bounds for the $v_{\ell, i}$

$$
\begin{aligned}
& \left|v_{\ell, i}\right| \leq \frac{h_{\ell}^{2}}{2} \cdot\left\|\left.u^{\prime \prime}\right|_{T_{\ell, i}}\right\|_{\infty} \\
& \left|v_{\ell, i}\right| \leq \frac{h_{\ell}^{3}}{6} \cdot\left\|\left.u^{\prime \prime}\right|_{T_{\ell, i}}\right\|_{2}
\end{aligned}
$$

Norms

And what we originally wanted to quantify:

$$
\begin{aligned}
\left\|w_{\ell}\right\|_{\infty} & \leq \frac{h_{\ell}^{2}}{2} \cdot\left\|u^{\prime \prime}\right\|_{\infty} \\
\left\|w_{\ell}\right\|_{2} & \leq \frac{h_{\ell}^{2}}{3} \cdot\left\|u^{\prime \prime}\right\|_{2} \\
\left\|w_{\ell}\right\|_{W} & \leq \frac{h_{\ell}}{2} \cdot\left\|u^{\prime \prime}\right\|_{\infty}
\end{aligned}
$$

Approximation Error

With these results it is possible to quantify the approximation error:

approximation error

$$
\left\|u-u_{n}\right\|_{\infty} \leq \frac{\left\|u^{\prime \prime}\right\|_{\infty}}{6} . \quad h_{n}^{2}=\mathcal{O}\left(h_{n}^{2}\right)
$$

Approximation Error

With these results it is possible to quantify the approximation error:

approximation error

$$
\begin{aligned}
& \left\|u-u_{n}\right\|_{\infty} \leq \frac{\left\|u^{\prime \prime}\right\|_{\infty}}{6} \cdot h_{n}^{2}=\mathcal{O}\left(h_{n}^{2}\right) \\
& \left\|u-u_{n}\right\|_{2} \leq \frac{\left\|u^{\prime \prime}\right\|_{2}}{9} . h_{n}^{2}=\mathcal{O}\left(h_{n}^{2}\right)
\end{aligned}
$$

Approximation Error

With these results it is possible to quantify the approximation error:

approximation error

$$
\begin{gathered}
\left\|u-u_{n}\right\|_{\infty} \leq \frac{\left\|u^{\prime \prime}\right\|_{\infty}}{6} . \quad h_{n}^{2}=\mathcal{O}\left(h_{n}^{2}\right) \\
\left\|u-u_{n}\right\|_{2} \leq \frac{\left\|u^{\prime \prime}\right\|_{2}}{9} . \quad h_{n}^{2}=\mathcal{O}\left(h_{n}^{2}\right) \\
\left\|u-u_{n}\right\|_{E} \leq \frac{\left\|u^{\prime \prime}\right\|_{\infty}}{2} . h_{n}=\mathcal{O}\left(h_{n}\right) \\
(\text { with } d=1: n=\ell)
\end{gathered}
$$

Approximation Error

With these results it is possible to quantify the approximation error:

approximation error

$$
\begin{gathered}
\left\|u-u_{n}\right\|_{\infty} \leq \frac{\left\|u^{\prime \prime}\right\|_{\infty}}{6} \cdot h_{n}^{2}=\mathcal{O}\left(h_{n}^{2}\right) \\
\left\|u-u_{n}\right\|_{2} \leq \frac{\left\|u^{\prime \prime}\right\|_{2}}{9} \cdot h_{n}^{2}=\mathcal{O}\left(h_{n}^{2}\right) \\
\left\|u-u_{n}\right\|_{E} \leq \frac{\left\|u^{\prime \prime}\right\|_{\infty}}{2} \cdot h_{n}=\mathcal{O}\left(h_{n}\right) \\
(\text { with } d=1: n=\ell)
\end{gathered}
$$

Often an estimation of the error is possible:

- e.g. finite elements $u^{\prime \prime}=f$

$$
\Rightarrow \quad\left\|u^{\prime \prime}\right\|_{*}=\|f\|_{*}
$$

Outline

(1) Introduction

(2) Hierarchical Basis

- In 1 dimension
- In 2 or more dimensions
- Sparse grids
(3) Conclusion

Some Definitions

- w.l.o.g. $\Omega=[0,1]^{d},\left.u\right|_{\partial \Omega}=0$ and $u(x)=u\left(x_{1}, \ldots, x_{d}\right)$
- now ℓ is a grid vector:

$$
\ell=\left(\ell_{1}, \ldots, \ell_{d}\right) \in \mathbb{N}^{d}
$$

Some Definitions

- w.l.o.g. $\Omega=[0,1]^{d},\left.u\right|_{\partial \Omega}=0$ and $u(x)=u\left(x_{1}, \ldots, x_{d}\right)$
- now ℓ is a grid vector:

$$
\ell=\left(\ell_{1}, \ldots, \ell_{d}\right) \in \mathbb{N}^{d}
$$

- 2 norms used to shorten the syntax:

$$
|\ell|_{1}:=\ell_{1}+\cdots+\ell_{d} \quad|\ell|_{\infty}:=\max \left\{\ell_{1}, \ldots, \ell_{d}\right\}
$$

Some Definitions

- w.l.o.g. $\Omega=[0,1]^{d},\left.u\right|_{\partial \Omega}=0$ and $u(x)=u\left(x_{1}, \ldots, x_{d}\right)$
- now ℓ is a grid vector:

$$
\ell=\left(\ell_{1}, \ldots, \ell_{d}\right) \in \mathbb{N}^{d}
$$

- 2 norms used to shorten the syntax:

$$
|\ell|_{1}:=\ell_{1}+\cdots+\ell_{d} \quad|\ell|_{\infty}:=\max \left\{\ell_{1}, \ldots, \ell_{d}\right\}
$$

- as the grid is not necessarily quadratic:

$$
h_{\ell}=\left(h_{\ell_{1}}, \ldots, h_{\ell_{d}}\right)=\left(2^{-\ell_{1}}, \ldots, 2^{-\ell_{d}}\right)
$$

Some Definitions

- w.l.o.g. $\Omega=[0,1]^{d},\left.u\right|_{\partial \Omega}=0$ and $u(x)=u\left(x_{1}, \ldots, x_{d}\right)$
- now ℓ is a grid vector:

$$
\ell=\left(\ell_{1}, \ldots, \ell_{d}\right) \in \mathbb{N}^{d}
$$

- 2 norms used to shorten the syntax:

$$
|\ell|_{1}:=\ell_{1}+\cdots+\ell_{d} \quad|\ell|_{\infty}:=\max \left\{\ell_{1}, \ldots, \ell_{d}\right\}
$$

- as the grid is not necessarily quadratic:

$$
h_{\ell}=\left(h_{\ell_{1}}, \ldots, h_{\ell_{d}}\right)=\left(2^{-\ell_{1}}, \ldots, 2^{-\ell_{d}}\right)
$$

- the grid points:

$$
\begin{aligned}
& x_{\ell, i}:=\left(i_{1} \cdot h_{\ell_{1}}, \ldots, i_{d} \cdot h_{\ell_{d}}\right) \text { with } 1 \leq i<2^{\ell} \\
& \text { (the } \leq \text { is componentwise, i.e. } \forall j: 1 \leq i_{j} \leq 2^{\ell_{j}}-1 \text {) }
\end{aligned}
$$

Some Definitions

Here are the first grid points for $d=2 \quad(\ell$ up to $(3,3))$:

$$
x_{\ell, i}:=\left(i_{1} \cdot h_{\ell_{1}}, \ldots, i_{d} \cdot h_{\ell_{d}}\right) \text { with } 1 \leq i<2^{\ell}
$$

d-linear Functions

We have to construct some basis functions:

d-linear Functions

We have to construct some basis functions:

- multiply one dimensional hats for each coordinate:

$$
\begin{aligned}
\phi_{\ell_{j}, i_{j}}\left(x_{j}\right) & =\phi\left(\frac{x_{j}-x_{\ell_{j}, i_{j}}}{h_{\ell_{j}}}\right) \\
\phi_{\ell, i}(x) & =\prod_{j=1}^{d} \phi_{\ell_{j}, i_{j}}\left(x_{j}\right)
\end{aligned}
$$

d-linear Functions

We have to construct some basis functions:

- multiply one dimensional hats for each coordinate:

$$
\begin{aligned}
\phi_{\ell_{j}, i_{j}}\left(x_{j}\right) & =\phi\left(\frac{x_{j}-x_{\ell_{j}, i_{j}}}{h_{\ell_{j}}}\right) \\
\phi_{\ell, i}(x) & =\prod_{j=1}^{d} \phi_{\ell_{j}, i_{j}}\left(x_{j}\right)
\end{aligned}
$$

- get d-linear basis functions
(i.e. for fixed $(d-1)$ coordinates, function is linear in the remaining variable)

Basis Functions in 2 Dimensions

Example

the functions $\phi_{(1,1),(1,1)}$ and $\phi_{(2,3),(3,5)}$

Basis and Subspaces

Now we have to make some definitions, analog to the 1 dimensional case for a fixed $\ell \in \mathbb{N}^{d}$ we define:

Basis and Subspaces

Now we have to make some definitions, analog to the 1 dimensional case for a fixed $\ell \in \mathbb{N}^{d}$ we define:

- we get the subspace

$$
S_{\ell}:=\operatorname{span}\left\{\Phi_{\ell}\right\}=\operatorname{span}\left\{\psi_{\ell}\right\}=\bigoplus_{k \leq \ell} W_{k}
$$

- the dimension of S_{ℓ}

$$
\operatorname{dim}\left(S_{\ell}\right)=\left(2^{\ell_{1}}-1\right) \cdots\left(2^{\ell_{d}}-1\right)=\mathcal{O}\left(2^{|\ell|_{1}}\right)
$$

- the whole space can be represented by the W_{k}

$$
V=S_{\infty}=\bigoplus_{k \in \mathbb{N}^{d}} W_{k}
$$

Basis and Subspaces

Now we have to make some definitions, analog to the 1 dimensional case for a fixed $\ell \in \mathbb{N}^{d}$ we define:

- the hierarchical surpluses of $u \in V$

$$
u(x)=\sum_{\ell \in \mathbb{N}^{d}} w_{\ell}(x), \quad w_{\ell}=\sum_{i \in I_{\ell}} v_{\ell, i} \cdot \phi_{\ell, i} \in W_{\ell}
$$

- and the $v_{\ell, i}$, same as in 1 dimension (maybe a litte more complicated ;-))

$$
v_{\ell, i}=\left(\begin{array}{lll}
\prod_{j=1}^{d}\left[\begin{array}{lll}
-\frac{1}{2} & 1 & -\frac{1}{2}
\end{array}\right]_{x_{\ell_{j}, i_{j}}, \ell_{j}}
\end{array}\right) u
$$

Hierarchical Surpluses

Example

for 2 dimensions, $v_{\ell,\left(i_{1}, i_{2}\right)}$ is as follows:

$$
\begin{aligned}
v_{\ell,\left(i_{1}, i_{2}\right)}= & \frac{u\left(x_{\ell,\left(i_{1}-1, i_{2}-1\right)}\right)-2 u\left(x_{\ell,\left(i_{1}, i_{2}-1\right)}\right)+u\left(x_{\ell,\left(i_{1}+1, i_{2}-1\right)}\right)}{4} \\
& +\frac{-2 u\left(x_{\ell,\left(i_{1}-1, i_{2}\right)}\right)+4 u\left(x_{\ell,\left(i_{1}, i_{2}\right)}\right)-2 u\left(x_{\ell,\left(i_{1}+1, i_{2}\right)}\right)}{4} \\
& +\frac{u\left(x_{\ell,\left(i_{1}-1, i_{2}+1\right)}\right)-2 u\left(x_{\ell,\left(i_{1}, i_{2}+1\right)}\right)+u\left(x_{\ell,\left(i_{1}+1, i_{2}+1\right)}\right)}{4}
\end{aligned}
$$

$v_{\ell, i}$ - Another Representation

There is an integral representation for $v_{\ell, i}$, analogious to 1 -dim

$v_{\ell, i}$ - Another Representation

There is an integral representation for $v_{\ell, i}$, analogious to 1 -dim

- first of all, a different definition for $u^{\prime \prime}$:

$$
u^{\prime \prime}:=\frac{\partial^{2 d} u}{\partial x_{1}^{2} \cdots \partial x_{d}^{2}}
$$

$v_{\ell, i}$ - Another Representation

There is an integral representation for $v_{\ell, i}$, analogious to 1 -dim

- first of all, a different definition for $u^{\prime \prime}$:

$$
u^{\prime \prime}:=\frac{\partial^{2 d} u}{\partial x_{1}^{2} \cdots \partial x_{d}^{2}}
$$

- the new representation:

$$
v_{\ell, i}=\int_{\Omega}\left(\prod_{j=1}^{d}-\frac{h_{\ell_{j}}}{2} \cdot \phi_{\ell_{j}, i_{j}}\left(x_{j}\right)\right) u^{\prime \prime}(x) d x
$$

Norms - d Dimensions

for the basis functions we have:

$$
\begin{array}{rlcl}
\left\|\phi_{\ell, i}\right\|_{\infty} & = & 1 \\
\left\|\phi_{\ell, i}\right\|_{2} & = & \left(\frac{2}{3}\right)^{\frac{d}{2}} \cdot & 2^{-\mid \ell_{1} / 2} \\
\left\|\phi_{\ell, i}\right\|_{E} & = & \sqrt{2} \cdot\left(\frac{2}{3}\right)^{\frac{d-1}{2}} \cdot & 2^{-\mid \ell_{1} / 2} \\
\left(\sum_{j=1}^{d} 2^{2 \ell_{j}}\right)^{\frac{1}{2}}
\end{array}
$$

Norms - d Dimensions

for the basis functions we have:

$$
\begin{array}{rlrl}
\left\|\phi_{\ell, i}\right\|_{\infty} & = & 1 \\
\left\|\phi_{\ell, i}\right\|_{2} & = & \left(\frac{2}{3}\right)^{\frac{d}{2}} \cdot & 2^{-\mid \ell \ell_{1} / 2} \\
\left\|\phi_{\ell, i}\right\|_{E} & = & \sqrt{2} \cdot\left(\frac{2}{3}\right)^{\frac{d-1}{2}} \cdot & 2^{-\mid \ell_{1} / 2} \\
\left(\sum_{j=1}^{d} 2^{2 \ell_{j}}\right)^{\frac{1}{2}}
\end{array}
$$

and for the coefficients:

$$
\begin{aligned}
& \left|v_{\ell, i}\right| \leq 2^{-d} \cdot 2^{-2|\ell|_{1}} \cdot\left\|u^{\prime \prime}\right\|_{\infty} \\
& \left|v_{\ell, i}\right| \leq 2^{-d} \cdot\left(\frac{2}{3}\right)^{\frac{d}{2}} 2^{-3 / 2|\ell|_{1}} \cdot\left\|\left.u^{\prime \prime}\right|_{T_{\ell, i}}\right\|_{2}
\end{aligned}
$$

Norms - d Dimensions

we are interested in the surpluses:

$$
\begin{array}{lll}
\left\|w_{\ell}\right\|_{\infty} & \leq & 2^{-d} \cdot 2^{-2|\ell|_{1}} \cdot\left\|u^{\prime \prime}\right\|_{\infty}
\end{array} \quad=\mathcal{O}\left(h_{1}^{2} \cdots h_{d}^{2}\right), ~=3^{-d} \cdot 2^{-2|\ell|_{1}} \cdot\left\|u^{\prime \prime}\right\|_{2} \quad=\mathcal{O}\left(h_{1}^{2} \cdots h_{d}^{2}\right)
$$

Norms - d Dimensions

we are interested in the surpluses:

$$
\begin{array}{llll}
\left\|w_{\ell}\right\|_{\infty} & \leq & 2^{-d} \cdot 2^{-2|\ell|_{1}} \cdot\left\|u^{\prime \prime}\right\|_{\infty} & =\mathcal{O}\left(h_{1}^{2} \cdots h_{d}^{2}\right) \\
\left\|w_{\ell}\right\|_{2} & \leq & 3^{-d} \cdot 2^{-2|\ell|_{1}} \cdot\left\|u^{\prime \prime}\right\|_{2} & =\mathcal{O}\left(h_{1}^{2} \cdots h_{d}^{2}\right)
\end{array}
$$

$$
\begin{aligned}
\left\|w_{\ell}\right\|_{\infty} & \leq \frac{1}{2 \cdot 12^{(d-1) / 2}} \cdot 2^{-2|\ell|_{1}} \cdot\left(\sum_{j=1}^{d} 2^{2 \ell_{j}}\right)^{\frac{1}{2}} \cdot\left\|u^{\prime \prime}\right\|_{\infty} \\
& =\mathcal{O}\left(h_{1}^{2} \cdots h_{d}^{2} \cdot \sqrt{\sum_{j=1}^{d} \frac{1}{h_{j}^{2}}}\right)
\end{aligned}
$$

Approximation Error - d Dimensions

the approximation error depends on the approximation but:

Approximation Error - d Dimensions

the approximation error depends on the approximation but:

$$
\text { approximation in } 2 \text { or more dimensions is not clear }
$$

Approximation Error - d Dimensions

the approximation error depends on the approximation but:

$$
\text { approximation in } 2 \text { or more dimensions is not clear }
$$

approximation error

- take a set $L \subset \mathbb{N}^{d}$
- approximation error with this L :

$$
\left\|u-u_{L}\right\| \leq \sum_{\ell \notin L}\left\|w_{\ell}\right\|
$$

Approximation Error - d Dimensions

the approximation error depends on the approximation but:

$$
\text { approximation in } 2 \text { or more dimensions is not clear }
$$

approximation error

- take a set $L \subset \mathbb{N}^{d}$
- approximation error with this L :

$$
\left\|u-u_{L}\right\| \leq \sum_{\ell \notin L}\left\|w_{\ell}\right\|
$$

$$
\text { which } L \text { is the best to take? }
$$

Outline

(1) Introduction

(2) Hierarchical Basis

- In 1 dimension
- In 2 or more dimensions
- Sparse grids
(3) Conclusion

First Idea

We have to search for an optimal $L \subset \mathbb{N}^{d}$

First Idea

We have to search for an optimal $L \subset \mathbb{N}^{d}$

- first idea: multidimensional equidistant grid

$$
L_{n}^{\infty}:=\left\{\ell \in \mathbb{N}^{d}:|\ell|_{\infty} \leq n\right\}, \quad S_{n}^{\infty}:=\bigoplus_{\ell \in L_{n}^{\infty}} W_{\ell}
$$

First Idea

We have to search for an optimal $L \subset \mathbb{N}^{d}$

- first idea: multidimensional equidistant grid

$$
L_{n}^{\infty}:=\left\{\ell \in \mathbb{N}^{d}:|\ell|_{\infty} \leq n\right\}, \quad S_{n}^{\infty}:=\bigoplus_{\ell \in L_{n}^{\infty}} W_{\ell}
$$

- the shape: quadratic cut in the figure of the hierarchical increments

First Idea

We have to search for an optimal $L \subset \mathbb{N}^{d}$

- first idea: multidimensional equidistant grid

$$
L_{n}^{\infty}:=\left\{\ell \in \mathbb{N}^{d}:|\ell|_{\infty} \leq n\right\}, \quad S_{n}^{\infty}:=\bigoplus_{\ell \in L_{n}^{\infty}} W_{\ell}
$$

- the shape: quadratic cut in the figure of the hierarchical increments

Evaluation - Costs

We want to decide, how good a given L is

Evaluation - Costs

We want to decide, how good a given L is
But how to evaluate the quality of L ?

Evaluation - Costs

We want to decide, how good a given L is

But how to evaluate the quality of L ?

- Look at the costs of each ℓ :

$$
c(\ell):=\left|I_{\ell}\right|=\mid\left\{1 \leq i \leq 2^{\ell}-1, \text { all } i_{j} \text { odd }\right\} \mid=2^{|\ell|_{1}-d}
$$

the more points $\widehat{=}$ functions in W_{ℓ}, the higher the costs

Evaluation - Costs

We want to decide, how good a given L is

$$
\text { But how to evaluate the quality of } L \text { ? }
$$

- Look at the costs of each ℓ :

$$
c(\ell):=\left|I_{\ell}\right|=\mid\left\{1 \leq i \leq 2^{\ell}-1, \text { all } i_{j} \text { odd }\right\} \mid=2^{|\ell|_{1}-d}
$$

the more points $\widehat{=}$ functions in W_{ℓ}, the higher the costs

- Costs of the full grid S_{n}^{∞} : In each coordinate $2^{n}-1$ possibilities

$$
\Rightarrow \quad C\left(S_{n}^{\infty}\right)=\mathcal{O}\left(2^{n d}\right)
$$

Evaluation - Benefits

- and look at the benefits of each ℓ :

$$
\operatorname{maxfail}(L \cup\{\ell\})-\operatorname{maxfail}(L)=\sum_{k \notin L \cup\{\ell\}}\left\|w_{k}\right\|_{*}-\sum_{k \notin L}\left\|w_{k}\right\|_{*}=\left\|w_{\ell}\right\|_{*}
$$

benefit of ℓ is a better approximation of u_{L} to u if $\ell \in L$

Evaluation - Benefits

- and look at the benefits of each ℓ :

$$
\operatorname{maxfail}(L \cup\{\ell\})-\operatorname{maxfail}(L)=\sum_{k \notin L \cup\{\ell\}}\left\|w_{k}\right\|_{*}-\sum_{k \notin L}\left\|w_{k}\right\|_{*}=\left\|w_{\ell}\right\|_{*}
$$

benefit of ℓ is a better approximation of u_{L} to u if $\ell \in L$

$$
\begin{aligned}
& b_{\infty}(\ell)=b_{2}(\ell):= \\
& b_{E}(\ell):= \\
& 2^{-2|\ell|_{1}} \cdot\left(\sum_{j=1}^{d} 2^{-2 \mid \ell_{1}}\right)^{\frac{1}{2}}
\end{aligned}
$$

benefit $b(\ell)$ is the on ℓ dependend part of the bound of w_{ℓ}

Cost-Benefit Ratio

Now we can evaluate the quality of each ℓ : the ratio of benefit and cost

Cost-Benefit Ratio

Now we can evaluate the quality of each ℓ : the ratio of benefit and cost

- for L_{2} - and ∞-norm ($=$ "*") :

$$
c b r_{2}(\ell)=c b r_{\infty}(\ell)=\frac{b_{*}(\ell)}{c(\ell)}=\frac{2^{-2|\ell|_{1}}}{2^{|\ell|_{1}-d}}=2^{-3|\ell|_{1}+d}
$$

Cost-Benefit Ratio

Now we can evaluate the quality of each ℓ : the ratio of benefit and cost

- for L_{2} - and ∞-norm ($=$ "*"):

$$
c b r_{2}(\ell)=c b r_{\infty}(\ell)=\frac{b_{*}(\ell)}{c(\ell)}=\frac{2^{-2|\ell|_{1}}}{2^{|\ell|_{1}-d}}=2^{-3|\ell|_{1}+d}
$$

- the ratio is best for small $|\ell|_{1}$
- so we define

$$
\begin{gathered}
L_{n}^{1}:=\left\{\ell \in \mathbb{N}^{d}:|\ell|_{1} \leq n+d-1\right\} \\
S_{n}^{1}:=\bigoplus_{\ell \in L_{n}^{1}} W_{\ell}
\end{gathered}
$$

Sparse Grids

So, what is a SPARSE GRID ?

Sparse Grids

So, what is a SPARSE GRID ?

- L_{n}^{1} specifies a diagonal cut (alongside every diagonal line, $\operatorname{cbr}(\ell)$ is constant)

Sparse Grids

So, what is a SPARSE GRID ?

- L_{n}^{1} specifies a diagonal cut (alongside every diagonal line, cbr($($) is constant)
- resulting grid is called "sparse grid"

Sparse Grids

So, what is a SPARSE GRID ?

- L_{n}^{1} specifies a diagonal cut (alongside every diagonal line, $\operatorname{cbr}(\ell)$ is constant)
- resulting grid is called "sparse grid"

Example

example with $d=2, n=5$

points with same cbr / $|\ell|_{1}$
have same color)

Sparse Grids

So, what is a SPARSE GRID ?

- L_{n}^{1} specifies a diagonal cut (alongside every diagonal line, $\operatorname{cbr}(\ell)$ is constant)
- resulting grid is called "sparse grid"

Example

example with $d=2, n=5$

points with same $c b r /|\ell|_{1}$
have same color)

Comparison: Full - Sparse Grid

How good is a sparse grid ?

Analysis of the approximation error - ∞-norm:

$$
\begin{aligned}
\left\|u-u_{n}^{\infty}\right\|_{\infty} & \leq \frac{d}{6^{d}} \cdot 2^{-2 n} \cdot\left\|u^{\prime \prime}\right\|_{\infty} \\
\left\|u-u_{n}^{1}\right\|_{\infty} & \leq \frac{2}{8^{d}} \cdot 2^{-2 n} \cdot\left\|u^{\prime \prime}\right\|_{\infty} \quad \cdot\left(\frac{n^{d-1}}{(d-1)!}+\mathcal{O}\left(n^{d-2}\right)\right)
\end{aligned}
$$

$$
\left\|u-u_{n}^{\infty}\right\|_{\infty}=\mathcal{O}\left(h_{n}^{2}\right), \quad\left\|u-u_{n}^{1}\right\|_{\infty}=\mathcal{O}\left(h_{n}^{2} \cdot n^{d-1}\right)
$$

Comparison: Full - Sparse Grid

How good is a sparse grid ?

Analysis of the approximation error $-L_{2}$-norm:

$$
\begin{aligned}
\left\|u-u_{n}^{\infty}\right\|_{2} & \leq \frac{d}{9^{d}} \cdot 2^{-2 n} \cdot\left\|u^{\prime \prime}\right\|_{2} \\
\left\|u-u_{n}^{1}\right\|_{2} & \leq \frac{2}{12^{d}} \cdot 2^{-2 n} \cdot\left\|u^{\prime \prime}\right\|_{2} \quad \cdot\left(\frac{n^{d-1}}{(d-1)!}+\mathcal{O}\left(n^{d-2}\right)\right)
\end{aligned}
$$

$$
\left\|u-u_{n}^{\infty}\right\|_{2}=\mathcal{O}\left(h_{n}^{2}\right), \quad\left\|u-u_{n}^{1}\right\|_{2}=\mathcal{O}\left(h_{n}^{2} \cdot n^{d-1}\right)
$$

Comparison: Full - Sparse Grid

How good is a sparse grid ?

Analysis of the approximation error $-E$-norm:

$$
\begin{aligned}
\left\|u-u_{n}^{\infty}\right\|_{E} & \leq \\
\left\|u-u_{n}^{1}\right\|_{E} & \leq
\end{aligned} \frac{d^{3 / 2}}{2 \cdot 3^{(d-1) / 2} \cdot 6^{d-1}} \cdot 2^{-n} \cdot\left\|u^{\prime \prime}\right\|_{\infty}
$$

$$
\left\|u-u_{n}^{\infty}\right\|_{E}=\mathcal{O}\left(h_{n}\right), \quad\left\|u-u_{n}^{1}\right\|_{E}=\mathcal{O}\left(h_{n}\right)
$$

Comparison: Full - Sparse Grid

How good is a sparse grid ?

Indeed - it is very good, especially for high dimensional problems

approximation errors

$$
\begin{aligned}
\left\|u-u_{n}^{\infty}\right\|_{\infty} & =\mathcal{O}\left(h_{n}^{2}\right), & & \left\|u-u_{n}^{1}\right\|_{\infty}
\end{aligned}
$$

- dimensions:

$$
\operatorname{dim}\left(S_{n}^{\infty}\right)=\mathcal{O}\left(2^{n d}\right), \quad \operatorname{dim}\left(S_{n}^{1}\right)=\mathcal{O}\left(2^{n} \cdot n^{d-1}\right)
$$

Sizes of Dimensions

Already with small d, the effect is quite drastic

Dimension Comparison

- $d=2$

n	1	2	3	4	5	\ldots	10
$\operatorname{dim}\left(S_{n}^{\infty}\right)$	1	9	49	225	961	\ldots	1046529
$\operatorname{dim}\left(S_{n}^{1}\right)$	1	5	17	49	129	\ldots	9217

- $d=3$

n	1	2	3	4	\ldots	10
$\operatorname{dim}\left(S_{n}^{\infty}\right)$	1	27	343	225	\ldots	1070590167
$\operatorname{dim}\left(S_{n}^{1}\right)$	1	7	17	31	\ldots	47103

E-Norm Sparse Grid

A short remark on the E-norm sparse grid:

E-Norm Sparse Grid

A short remark on the E-norm sparse grid:

- a grid based on $c b r_{E}$ is not the same as one based on $c b r_{2} / c b r_{\infty}$

E-Norm Sparse Grid

A short remark on the E-norm sparse grid:

- a grid based on $c b r_{E}$ is not the same as one based on $c b r_{2} / c b r_{\infty}$
- we have

$$
b_{E}(\ell)=2^{-2|\ell|_{1}} \cdot\left(\sum_{j=1}^{d} 2^{2 \ell_{j}}\right)^{\frac{1}{2}}
$$

E-Norm Sparse Grid

A short remark on the E-norm sparse grid:

- a grid based on $c b r_{E}$ is not the same as one based on $c b r_{2} / c b r_{\infty}$
- we have

$$
b_{E}(\ell)=2^{-2|\ell|_{1}} \cdot\left(\sum_{j=1}^{d} 2^{2 \ell_{j}}\right)^{\frac{1}{2}}
$$

- one can show

$$
\begin{gathered}
\operatorname{dim}\left(S_{n}^{E}\right) \leq 2^{n} \cdot \frac{d}{2} \cdot e^{d}=\mathcal{O}\left(2^{n}\right) \quad, \quad S_{n}^{E} \subset S_{n}^{1} \\
\left\|u-u_{n}^{E}\right\|_{E}=\mathcal{O}\left(h_{n}\right)=\left\|u-u_{n}^{\infty / 1}\right\|_{E}
\end{gathered}
$$

Outline

(1) Introduction

(2) Hierarchical Basis

- In 1 dimension
- In 2 or more dimensions
- Sparse grids
(3) Conclusion

Different Ω

We always assumed $\Omega=[0,1]^{d}$. What's about $\Omega \neq[0,1]^{d}$?

Different Ω

We always assumed $\Omega=[0,1]^{d}$. What's about $\Omega \neq[0,1]^{d}$?

- for Ω cuboid: linear transformation of coordinates of $x_{i, \ell}$:

$$
x_{i, \ell}=\left(a_{j}+i_{j} \cdot \frac{b_{j}-a_{j}}{2^{\ell}}\right)_{j=1, \ldots, d}
$$

Different Ω

We always assumed $\Omega=[0,1]^{d}$. What's about $\Omega \neq[0,1]^{d}$?

- for Ω cuboid: linear transformation of coordinates of $x_{i, \ell}$:

$$
x_{i, \ell}=\left(a_{j}+i_{j} \cdot \frac{b_{j}-a_{j}}{2^{\ell}}\right)_{j=1, \ldots, d}
$$

- for abitrary Ω :
- approximate Ω with cuboids C
(additional approximation error, take care of special properties of u !)
- transform cuboid into a fitting shape e.g. circle or sphere

Adaptive Refinement

- a sparse grid is not yet an adaptive refinement

Adaptive Refinement

- a sparse grid is not yet an adaptive refinement
- for adaptivity:
- partition Ω (e.g. halfs, quarters)
- evaluate error for each part T

$$
\left\|\left.\left(u-u_{n}\right)\right|_{T}\right\|_{*}=\left\|u-u_{n}\right\|_{*} \cdot \frac{\left\|\left.u^{\prime \prime}\right|_{T}\right\|_{*}}{\left\|u^{\prime \prime}\right\|_{*}} \cdot \frac{\operatorname{area}(T)}{\operatorname{area}(\Omega)}, \quad(*=2 / E)
$$

- new sparse grid on T where the error is maximal

Adaptive Refinement

- a sparse grid is not yet an adaptive refinement
- for adaptivity:
- partition Ω (e.g. halfs, quarters)
- evaluate error for each part T

$$
\left\|\left.\left(u-u_{n}\right)\right|_{T}\right\|_{*}=\left\|u-u_{n}\right\|_{*} \cdot \frac{\left\|\left.u^{\prime \prime}\right|_{T}\right\|_{*}}{\left\|u^{\prime \prime}\right\|_{*}} \cdot \frac{\operatorname{area}(T)}{\operatorname{area}(\Omega)}, \quad(*=2 / E)
$$

- new sparse grid on T where the error is maximal
- Caution: we usually don't know $u^{\prime \prime}=\frac{\partial^{2 d} u}{\partial x_{1}^{2} \ldots \partial x_{d}^{2}}$ for $d>2$ if at all, we only know $\triangle u:=\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}} \quad$ (e.g. PDE: $\triangle u=-f$)

Other Approaches and Applications

- not only piecewise linear approaches are possible:

Other Approaches and Applications

- not only piecewise linear approaches are possible:
- quadratic functions
- polynomial functions in general
- wavelets
- etc.
- many applications of sparse grids:

Other Approaches and Applications

- not only piecewise linear approaches are possible:
- quadratic functions
- polynomial functions in general
- wavelets
- etc.
- many applications of sparse grids:
- numerical quadrature
- solving PDEs
- data-mining
- etc.

The End

Thanks for listening!

For further reading:
(H.-J. Bungartz, M. Griebel
Sparse grids
Acta Numerica, pp. 147-269, 2004
围 M. Bader, S. Zimmer
lecture's slides "Algorithmen des Wissenschaftlichen Rechnens"
(http://www5.in.tum.de/lehre/vorlesungen/algowiss/ss05/material.html)
TU München, summer term 2005

Outline

4 Sparse Grids on Finite Elements

The PDE and it's weak form

- Given a PDE: $\Delta u=f$ in Ω and $\left.u\right|_{\partial \Omega}=0$

The PDE and it's weak form

- Given a PDE: $\Delta u=f$ in Ω and $\left.u\right|_{\partial \Omega}=0$
- Find $u \in V$ with $\left.u\right|_{\partial \Omega}=0$ and

$$
\begin{aligned}
\int_{\Omega} u^{\prime} \cdot v^{\prime} d x & =\int_{\Omega} f \cdot v d x, \forall v \in V \\
\Longleftrightarrow \int_{\Omega} \nabla u^{T} \cdot \nabla v d x & =\int_{\Omega} f \cdot v d x, \forall v \in V
\end{aligned}
$$

Galerkin Projection

- Take finite n-dimensional subspace $S \subset V$ with

$$
S=\operatorname{span}\left\{\phi_{i}: 1 \leq i \leq n\right\}
$$

Galerkin Projection

- Take finite n-dimensional subspace $S \subset V$ with

$$
S=\operatorname{span}\left\{\phi_{i}: 1 \leq i \leq n\right\}
$$

- Receive an approximative u_{S} as linear combination of basis functions:

$$
u_{S}=\sum_{i=1}^{n} \alpha_{i} \cdot \phi_{i}
$$

Linear Equation System

We get a linear equation system for $z=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

$$
A z=b
$$

Linear Equation System

We get a linear equation system for $z=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

$$
\begin{gathered}
A z=b \\
A=\left(\int_{\Omega} \phi_{i}^{\prime} \cdot \phi_{j}^{\prime} d x\right)_{i, j=1, \ldots, n} \\
b=\left(\int_{\Omega} f \cdot \phi_{i} d x\right)_{i=1, \ldots, n}
\end{gathered}
$$

Matrix Conditions

- matrix is sparse, if ϕ has small support - e.g. using the nodal point basis, but then:

$$
\operatorname{cond}(A)=\mathcal{O}\left(h_{n}^{-2}\right) \quad \text { and } \operatorname{dim}(A)=\mathcal{O}\left(2^{d n}\right) \times \mathcal{O}\left(2^{d n}\right)
$$

Matrix Conditions

- matrix is sparse, if ϕ has small support - e.g. using the nodal point basis, but then:

$$
\operatorname{cond}(A)=\mathcal{O}\left(h_{n}^{-2}\right) \quad \text { and } \operatorname{dim}(A)=\mathcal{O}\left(2^{d n}\right) \times \mathcal{O}\left(2^{d n}\right)
$$

- sparse grid functions: bigger support $\Rightarrow A$ is (nearly) fully covered but:

$$
\operatorname{cond}(A)=\mathcal{O}\left(h_{n}^{-1}\right) \quad \text { and } \quad \operatorname{dim}(A)=\mathcal{O}\left(2^{n} \cdot n^{d-1}\right) \times \mathcal{O}\left(2^{n} \cdot n^{d-1}\right)
$$

Matrix Conditions

- matrix is sparse, if ϕ has small support - e.g. using the nodal point basis, but then:

$$
\operatorname{cond}(A)=\mathcal{O}\left(h_{n}^{-2}\right) \quad \text { and } \operatorname{dim}(A)=\mathcal{O}\left(2^{d n}\right) \times \mathcal{O}\left(2^{d n}\right)
$$

- sparse grid functions: bigger support $\Rightarrow A$ is (nearly) fully covered but:

$$
\operatorname{cond}(A)=\mathcal{O}\left(h_{n}^{-1}\right) \quad \text { and } \quad \operatorname{dim}(A)=\mathcal{O}\left(2^{n} \cdot n^{d-1}\right) \times \mathcal{O}\left(2^{n} \cdot n^{d-1}\right)
$$

- using iterative linear equation solvers (e.g. CG method):
\Rightarrow don't need A explicitly but only $A v$

Matrix Conditions

- matrix is sparse, if ϕ has small support - e.g. using the nodal point basis, but then:

$$
\operatorname{cond}(A)=\mathcal{O}\left(h_{n}^{-2}\right) \quad \text { and } \operatorname{dim}(A)=\mathcal{O}\left(2^{d n}\right) \times \mathcal{O}\left(2^{d n}\right)
$$

- sparse grid functions: bigger support $\Rightarrow A$ is (nearly) fully covered but:

$$
\operatorname{cond}(A)=\mathcal{O}\left(h_{n}^{-1}\right) \quad \text { and } \quad \operatorname{dim}(A)=\mathcal{O}\left(2^{n} \cdot n^{d-1}\right) \times \mathcal{O}\left(2^{n} \cdot n^{d-1}\right)
$$

- using iterative linear equation solvers (e.g. CG method):
\Rightarrow don't need A explicitly but only $A v$
- there are algorithms for evaluation of $A v$ in $\mathcal{O}(N)$ time

