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Introduction

Some Example Problems

PDE: 4u = f in Ω and u|∂Ω = 0

find u ∈ V with u|∂Ω = 0

numerical quadrature
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Introduction

Motivation

What is the main problem we have to solve ?

given a multivariate function f : Ω → R
want to construct a function u : Ω → R with special properties

only an approximation uS to u is possible

quality of uS depends on the number of evaluations of f

So do what we have to do ?

evaluate f(x) for many different states x ∈ Ω
but: evaluation of f is expensive
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Introduction

Motivation

Example

With a naive approach (n sample points in each dimension):

1-dim: n evaluations of f

d-dim: nd evaluations of f

in high dimensional problems d is very large

nd f evaluations is too expensive

Challenge

reduce the number of f evaluations

keep quality of uS still as high as possible
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Introduction

Main Goal

a little be more in detail:

want to find a function u ∈ V with special properties

V is often a Sobolev Space, particularly dim(V ) = ∞

What to do

take a finite n-dimensional subspace S ⊂ V with

S = span{φi : 1 ≤ i ≤ n}

⇒ get an approximative uS as linear combination of basis functions:

uS =
n∑

i=1

αi · φi
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Hierarchical Basis In 1 dimension

How to get Basis Functions

First of all we start in 1 dimension

S = span{φi : 1 ≤ i ≤ n}

uS =
n∑

i=1

αi · φi

search for ’good’ basis functions φi to approximate any given
u : Ω → R
the φi should be inexpensive to evaluate

dim(S) should be small for an optimal approximation

w.l.o.g. we set Ω := [0, 1], u(0) = u(1) = 0
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Hierarchical Basis In 1 dimension

Piecewise Linear Approach

consider n = 2` − 1 equidistant (inner) knots

x`,i = i · h` with h` = 2−` and 1 ≤ i ≤ 2` − 1

piecewise linear approach with ordinary hat function

φ(x) = max{1− |x| , 0}

for every point x`,i we construct a function φ`,i(x) : Ω → R

φ`,i (x) = φ

(
x− x`,i

h`

)
, T`,i := supp (φ`,i) = [x`,i−1, x`,i+1]

.
xl,ixl,i-1 xl,i+1

1
l,i
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Hierarchical Basis In 1 dimension

Nodal Point Basis

the nodal point basis

Φ` := {φ`,i, i = 1, . . . , 2` − 1}

.

the resulting subspace of V :

S` := span(Φ`), dim(S`) = 2` − 1
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Hierarchical Basis In 1 dimension

Nodal Point Basis

u` ∈ S` can be written as:

u`(x) =
2`−1∑
i=1

αi · φ`,i(x)

the coefficients can be computed very fast

αi = u` (x`,i) = u (x`,i)

example for an arbitrary function u` ∈ S`

.
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Hierarchical Basis In 1 dimension

Nodal Point Basis

Example

For the function u(x) = 4x(1− x) we have the following coefficients:

αi = u`(x`,i)
` = 1 1
` = 2 3/4 1 3/4
` = 3 7/16 3/4 15/16 1 15/16 3/4 7/16
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Hierarchical Basis In 1 dimension

Alternative Basis

What do we have so far ?

V =
∞⋃

`=1

S` = span(Φ) with Φ :=
∞⋃

`=1

Φ`

But still big problems remain:

Φ is not a basis

the coefficients remain large for increasing `

Search for an alternative basis for S` !

Stefan Jerg Numerical Simulation 14
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Hierarchical Basis In 1 dimension

Hierarchical Increments

we define the hierarchical increments

W` := span{φ`,i : i ∈ I`} I` := {i : 1 ≤ i ≤ 2` − 1, i odd}

the basis functions for the hierarchical increments W1,W2,W3:

.
x1,1

.

.

x2,1 x2,3

x3,1 x3,3 x3,5 x3,7

1,1

2,1 2,3

3,1 3,3 3,5 3,7
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Hierarchical Basis In 1 dimension

Hierarchical Basis and Hierarchical Surpluses

we get a new view of S` and V

S` =
⊕̀
k=1

Wk and V =
∞⊕

k=1

Wk

we find a new basis for S`: hierarchical basis

Ψ` :=
⋃̀
k=1

⋃
i∈Ik

φk,i

with the hierarchical surpluses w`

u(x) =
∞∑

`=1

w`(x), w` =
∑
i∈I`

v`,i · φ`,i ∈W`

v`,i = u(x`,i)−
u(x`,i−1) + u(x`,i+1)

2
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Hierarchical Basis In 1 dimension

Hierarchical Basis

Example

Again given the function u(x) = 4x(1− x) but different coefficients:

vi

` = 1 1
` = 2 1/4 1 1/4
` = 3 1/16 1/4 1/16 1 1/16 1/4 1/16
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Hierarchical Basis In 1 dimension

Convergence

We have

u(x) =
∞∑

`=1

w`(x) and w` =
∑
i∈I`

v`,i · φ`,i

it seems that the v`,i decrease very fast with increasing `

are the w` really less important for large ` ?

to decide about the importance of each w`: define some norms

Stefan Jerg Numerical Simulation 18
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Hierarchical Basis In 1 dimension

Norms

There are different possibilities to define norms in V

Important norms in our applications:

maximum norm:
‖φ`,i‖∞ := max

x∈Ω
{φ`,i(x)} = 1

L2 norm:

‖φ`,i‖2 :=

√∫
Ω
φ2

`,i(x) dx =

√
2h`

3

energy norm:

‖φ`,i‖E :=

√∫
Ω
(φ′`,i(x))

2 dx =
√

2
h`
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Hierarchical Basis In 1 dimension

Norms

We have norms now, but we don’t know u

we need another representation of v`,i:

v`,i =
∫ 1

0
−h`

2
· φ`,i · u′′(x) dx

now we can find some upper bounds for the v`,i

|v`,i| ≤
h2

`

2
· ‖u′′|T`,i

‖∞

|v`,i| ≤
h3

`

6
· ‖u′′|T`,i

‖2
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Hierarchical Basis In 1 dimension

Norms

And what we originally wanted to quantify:

‖w`‖∞ ≤ h2
`
2 · ‖u′′‖∞

‖w`‖2 ≤ h2
`
3 · ‖u′′‖2

‖w`‖W ≤ h`
2 · ‖u′′‖∞

Stefan Jerg Numerical Simulation 21



Hierarchical Basis In 1 dimension

Approximation Error

With these results it is possible to quantify the approximation error:

approximation error

‖u− un‖∞ ≤ ‖u′′‖∞
6 · h2

n = O(h2
n)

‖u− un‖2 ≤ ‖u′′‖2
9 · h2

n = O(h2
n)

‖u− un‖E ≤ ‖u′′‖∞
2 · hn = O(hn)

(with d = 1: n = `)

Often an estimation of the error is possible:

e.g. finite elements u′′ = f

⇒ ‖u′′‖∗ = ‖f‖∗
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Hierarchical Basis In 2 or more dimensions

Outline

1 Introduction

2 Hierarchical Basis
In 1 dimension
In 2 or more dimensions
Sparse grids
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Hierarchical Basis In 2 or more dimensions

Some Definitions

w.l.o.g. Ω = [0, 1]d, u|∂Ω = 0 and u(x) = u(x1, . . . , xd)
now ` is a grid vector:

` = (`1, . . . , `d) ∈ Nd

2 norms used to shorten the syntax:

|`|1 := `1 + · · ·+ `d |`|∞ := max{`1, . . . , `d}

as the grid is not necessarily quadratic:

h` = (h`1 , . . . , h`d
) = (2−`1 , . . . , 2−`d)

the grid points:

x`,i := (i1 · h`1 , . . . , id · h`d
) with 1 ≤ i < 2`

(the ≤ is componentwise, i.e. ∀j : 1 ≤ ij ≤ 2`j − 1)
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Hierarchical Basis In 2 or more dimensions

Some Definitions

Here are the first grid points for d = 2 (` up to (3, 3)):

x`,i := (i1 · h`1 , . . . , id · h`d
) with 1 ≤ i < 2`

l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2
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Hierarchical Basis In 2 or more dimensions

d-linear Functions

We have to construct some basis functions:

multiply one dimensional hats for each coordinate:

φ`j ,ij (xj) = φ

(
xj − x`j ,ij

h`j

)

φ`,i(x) =
d∏

j=1

φ`j ,ij (xj)

get d-linear basis functions
(i.e. for fixed (d− 1) coordinates, function is linear in the remaining variable)
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Hierarchical Basis In 2 or more dimensions

Basis Functions in 2 Dimensions

Example

the functions φ(1,1),(1,1) and φ(2,3),(3,5)
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Hierarchical Basis In 2 or more dimensions

Basis and Subspaces

Now we have to make some definitions, analog to the 1 dimensional case

for a fixed ` ∈ Nd we define:

a nodal basis
Φ` := {φ`,i, 1 ≤ i < 2`}

a set
I` := {1 ≤ i ≤ 2` − 1, all ij odd}

the hierarchical increments

W` := span{φ`,i : i ∈ I`}

and the hierarchical basis

Ψ` :=
⋃
k≤`

⋃
i∈Ik

φk,i
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Hierarchical Basis In 2 or more dimensions

Basis and Subspaces

Now we have to make some definitions, analog to the 1 dimensional case

for a fixed ` ∈ Nd we define:

we get the subspace

S` := span{Φ`} = span{ψ`} =
⊕
k≤`

Wk

the dimension of S`

dim(S`) = (2`1 − 1) · · · · · (2`d − 1) = O(2|`|1)

the whole space can be represented by the Wk

V = S∞ =
⊕
k∈Nd

Wk
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Hierarchical Basis In 2 or more dimensions

Basis and Subspaces

Now we have to make some definitions, analog to the 1 dimensional case

for a fixed ` ∈ Nd we define:

the hierarchical surpluses of u ∈ V

u(x) =
∑
`∈Nd

w`(x), w` =
∑
i∈I`

v`,i · φ`,i ∈W`

and the v`,i, same as in 1 dimension (maybe a litte more complicated ;-))

v`,i =

 
dY

j=1

�
− 1

2
1 − 1

2

�
x`j ,ij

,`j

!
u
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Hierarchical Basis In 2 or more dimensions

Hierarchical Surpluses

Example

for 2 dimensions, v`,(i1,i2) is as follows:

v`,(i1,i2) =
u(x`,(i1−1,i2−1))− 2u(x`,(i1,i2−1)) + u(x`,(i1+1,i2−1))

4

+
−2u(x`,(i1−1,i2)) + 4u(x`,(i1,i2))− 2u(x`,(i1+1,i2))

4

+
u(x`,(i1−1,i2+1))− 2u(x`,(i1,i2+1)) + u(x`,(i1+1,i2+1))

4
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Hierarchical Basis In 2 or more dimensions

v`,i - Another Representation

There is an integral representation for v`,i, analogious to 1-dim

first of all, a different definition for u′′:

u′′ :=
∂2du

∂x2
1 · · · ∂x2

d

the new representation:

v`,i =
∫

Ω

 d∏
j=1

−
h`j

2
· φ`j ,ij (xj)

u′′(x) dx
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Hierarchical Basis In 2 or more dimensions

Norms – d Dimensions

for the basis functions we have:

‖φ`,i‖∞ = 1

‖φ`,i‖2 =
(

2
3

) d
2 · 2−|`|1/2

‖φ`,i‖E =
√

2 ·
(

2
3

) d−1
2 · 2−|`|1/2

(∑d
j=1 22`j

) 1
2

and for the coefficients:

|v`,i| ≤ 2−d · 2−2|`|1 · ‖u′′‖∞

|v`,i| ≤ 2−d ·
(

2
3

) d
2 2−3/2|`|1 · ‖u′′|T`,i

‖2
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Hierarchical Basis In 2 or more dimensions

Norms – d Dimensions

we are interested in the surpluses:

‖w`‖∞ ≤ 2−d · 2−2|`|1 · ‖u′′‖∞ = O(h2
1 · · ·h2

d)

‖w`‖2 ≤ 3−d · 2−2|`|1 · ‖u′′‖2 = O(h2
1 · · ·h2

d)

‖w`‖∞ ≤ 1
2 · 12(d−1)/2

· 2−2|`|1 ·

 d∑
j=1

22`j

 1
2

· ‖u′′‖∞

= O

h2
1 · · ·h2

d ·

√√√√ d∑
j=1

1
h2

j
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Hierarchical Basis In 2 or more dimensions

Approximation Error – d Dimensions

the approximation error depends on the approximation but:

approximation in 2 or more dimensions is not clear

approximation error

take a set L ⊂ Nd

approximation error with this L:

‖u− uL‖ ≤
∑
`/∈L

‖w`‖

which L is the best to take?
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Hierarchical Basis Sparse grids

Outline

1 Introduction

2 Hierarchical Basis
In 1 dimension
In 2 or more dimensions
Sparse grids

3 Conclusion
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Hierarchical Basis Sparse grids

First Idea

We have to search for an optimal L ⊂ Nd

first idea: multidimensional equidistant grid

L∞n := {` ∈ Nd : |`|∞ ≤ n}, S∞n :=
⊕

`∈L∞n

W`

the shape: quadratic cut in the figure of the hierarchical increments

Stefan Jerg Numerical Simulation 35



Hierarchical Basis Sparse grids

First Idea

We have to search for an optimal L ⊂ Nd

first idea: multidimensional equidistant grid

L∞n := {` ∈ Nd : |`|∞ ≤ n}, S∞n :=
⊕

`∈L∞n

W`

the shape: quadratic cut in the figure of the hierarchical increments

Stefan Jerg Numerical Simulation 35



Hierarchical Basis Sparse grids

First Idea

We have to search for an optimal L ⊂ Nd

first idea: multidimensional equidistant grid

L∞n := {` ∈ Nd : |`|∞ ≤ n}, S∞n :=
⊕

`∈L∞n

W`

the shape: quadratic cut in the figure of the hierarchical increments
l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

Stefan Jerg Numerical Simulation 35



Hierarchical Basis Sparse grids

First Idea

We have to search for an optimal L ⊂ Nd

first idea: multidimensional equidistant grid

L∞n := {` ∈ Nd : |`|∞ ≤ n}, S∞n :=
⊕

`∈L∞n

W`

the shape: quadratic cut in the figure of the hierarchical increments
l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

Stefan Jerg Numerical Simulation 35



Hierarchical Basis Sparse grids

Evaluation – Costs

We want to decide, how good a given L is

But how to evaluate the quality of L ?

Look at the costs of each `:

c(`) := |I`| = |{1 ≤ i ≤ 2` − 1, all ij odd}| = 2|`|1−d

the more points =̂ functions in W`, the higher the costs

Costs of the full grid S∞n : In each coordinate 2n − 1 possibilities

⇒ C(S∞n ) = O(2nd)
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Hierarchical Basis Sparse grids

Evaluation – Benefits

and look at the benefits of each `:

maxfail(L∪{`})−maxfail(L) =
∑

k/∈L∪{`}

‖wk‖∗−
∑
k/∈L

‖wk‖∗ = ‖w`‖∗

benefit of ` is a better approximation of uL to u if ` ∈ L

b∞(`) = b2(`) := 2−2|`|1

bE(`) := 2−2|`|1 ·

 d∑
j=1

22`j

 1
2

benefit b(`) is the on ` dependend part of the bound of w`
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Hierarchical Basis Sparse grids

Cost-Benefit Ratio

Now we can evaluate the quality of each `: the ratio of benefit and cost

for L2- and ∞-norm (=“∗”):

cbr2(`) = cbr∞(`) =
b∗(`)
c(`)

=
2−2|`|1

2|`|1−d
= 2−3|`|1+d

the ratio is best for small |`|1
so we define

L1
n := {` ∈ Nd : |`|1 ≤ n+ d− 1}

S1
n :=

⊕
`∈L1

n

W`
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Hierarchical Basis Sparse grids

Sparse Grids

So, what is a SPARSE GRID ?

L1
n specifies a diagonal cut

(alongside every diagonal line, cbr(`) is constant)

resulting grid is called “sparse grid”

Example

example with d = 2, n = 5

points with same cbr / |`|1
have same color)
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Hierarchical Basis Sparse grids

Comparison: Full – Sparse Grid

How good is a sparse grid ?

Analysis of the approximation error – ∞-norm:

‖u− u∞n ‖∞ ≤ d

6d
· 2−2n·‖u′′‖∞

‖u− u1
n‖∞ ≤ 2

8d
· 2−2n·‖u′′‖∞ ·

(
nd−1

(d− 1)!
+O(nd−2)

)

‖u− u∞n ‖∞ = O(h2
n), ‖u− u1

n‖∞ = O(h2
n · nd−1)
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Hierarchical Basis Sparse grids

Comparison: Full – Sparse Grid

How good is a sparse grid ?

Analysis of the approximation error – L2-norm:

‖u− u∞n ‖2 ≤ d

9d
· 2−2n·‖u′′‖2

‖u− u1
n‖2 ≤ 2

12d
· 2−2n·‖u′′‖2 ·

(
nd−1

(d− 1)!
+O(nd−2)

)

‖u− u∞n ‖2 = O(h2
n), ‖u− u1

n‖2 = O(h2
n · nd−1)
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Hierarchical Basis Sparse grids

Comparison: Full – Sparse Grid

How good is a sparse grid ?

Analysis of the approximation error – E-norm:

‖u− u∞n ‖E ≤ d3/2

2 · 3(d−1)/2 · 6d−1
· 2−n·‖u′′‖∞

‖u− u1
n‖E ≤ d

2 · 3(d−1)/2 · 4d−1
· 2−n·‖u′′‖∞

‖u− u∞n ‖E = O(hn), ‖u− u1
n‖E = O(hn)
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Hierarchical Basis Sparse grids

Comparison: Full – Sparse Grid

How good is a sparse grid ?

Indeed – it is very good, especially for high dimensional problems

approximation errors

‖u− u∞n ‖∞ = O(h2
n), ‖u− u1

n‖∞ =O(h2
n · nd−1)

‖u− u∞n ‖2 = O(h2
n), ‖u− u1

n‖2 =O(h2
n · nd−1)

‖u− u∞n ‖E = O(hn), ‖u− u1
n‖E =O(hn)

dimensions:

dim(S∞n ) = O(2nd), dim(S1
n) = O(2n · nd−1)
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Hierarchical Basis Sparse grids

Sizes of Dimensions

Already with small d, the effect is quite drastic

Dimension Comparison

d = 2
n 1 2 3 4 5 . . . 10

dim(S∞n ) 1 9 49 225 961 . . . 1 046 529

dim(S1
n) 1 5 17 49 129 . . . 9 217

d = 3
n 1 2 3 4 . . . 10

dim(S∞n ) 1 27 343 225 . . . 1 070 590 167

dim(S1
n) 1 7 17 31 . . . 47 103
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Hierarchical Basis Sparse grids

E-Norm Sparse Grid

A short remark on the E-norm sparse grid:

a grid based on cbrE is not the same as one based on cbr2/cbr∞

we have

bE(`) = 2−2|`|1 ·

 d∑
j=1

22`j

 1
2

one can show

dim(SE
n ) ≤ 2n · d

2
· ed = O(2n) , SE

n ⊂ S1
n

‖u− uE
n ‖E = O(hn) = ‖u− u∞/1

n ‖E
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Conclusion

Different Ω

We always assumed Ω = [0, 1]d. What’s about Ω 6= [0, 1]d ?

for Ω cuboid: linear transformation of coordinates of xi,`:

xi,` =
(
aj + ij ·

bj − aj

2`

)
j=1,...,d

for abitrary Ω:

approximate Ω with cuboids C
(additional approximation error, take care of special properties of u !)

transform cuboid into a fitting shape e.g. circle or sphere
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Conclusion

Adaptive Refinement

a sparse grid is not yet an adaptive refinement

for adaptivity:

partition Ω (e.g. halfs, quarters)
evaluate error for each part T

‖(u− un)|T ‖∗ = ‖u− un‖∗ ·
‖u′′|T ‖∗
‖u′′‖∗

· area(T )
area(Ω)

, (∗ = 2/E)

new sparse grid on T where the error is maximal

Caution: we usually don’t know u′′ = ∂2du
∂x2

1···∂x2
d

for d > 2

if at all, we only know 4u :=
∑d

i=1
∂2u
∂x2

i
(e.g. PDE: 4u = −f)
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Conclusion

Other Approaches and Applications

not only piecewise linear approaches are possible:

quadratic functions
polynomial functions in general
wavelets
etc.

many applications of sparse grids:

numerical quadrature
solving PDEs
data-mining
etc.
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The End

Thanks for listening!

For further reading:

H.-J. Bungartz, M. Griebel
Sparse grids
Acta Numerica, pp. 147-269, 2004

M. Bader, S. Zimmer
lecture’s slides “Algorithmen des Wissenschaftlichen Rechnens”
(http://www5.in.tum.de/lehre/vorlesungen/algowiss/ss05/material.html)
TU München, summer term 2005
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Sparse Grids on Finite Elements

Outline

4 Sparse Grids on Finite Elements

Stefan Jerg Numerical Simulation 48



Sparse Grids on Finite Elements

The PDE and it’s weak form

Given a PDE: 4u = f in Ω and u|∂Ω = 0

Find u ∈ V with u|∂Ω = 0 and∫
Ω
u′ · v′dx =

∫
Ω
f · v dx,∀v ∈ V

⇐⇒
∫

Ω
∇uT · ∇v dx =

∫
Ω
f · v dx,∀v ∈ V
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Sparse Grids on Finite Elements

Galerkin Projection

Take finite n-dimensional subspace S ⊂ V with

S = span{φi : 1 ≤ i ≤ n}

Receive an approximative uS as linear combination of basis functions:

uS =
n∑

i=1

αi · φi
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Sparse Grids on Finite Elements

Linear Equation System

We get a linear equation system for z = (α1, . . . , αn)

Az = b

A =
(∫

Ω
φ′i · φ′j dx

)
i,j=1,...,n

b =
(∫

Ω
f · φi dx

)
i=1,...,n
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Sparse Grids on Finite Elements

Matrix Conditions

matrix is sparse, if φ has small support - e.g. using the nodal point
basis, but then:

cond(A) = O(h−2
n ) and dim(A) = O(2dn)×O(2dn)

sparse grid functions: bigger support ⇒ A is (nearly) fully
covered but:

cond(A) = O(h−1
n ) and dim(A) = O(2n · nd−1)×O(2n · nd−1)

using iterative linear equation solvers (e.g. CG method):
⇒ don’t need A explicitly but only Av

there are algorithms for evaluation of Av in O(N) time

back to talk
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