
Efficient Storage and Processing of Adaptive Triangular Grids 
using Sierpinski Curves 

 
Csaba Attila Vigh, 
Dr. Michael Bader 

Department of Informatics, TU München 
JASS 2006, course 2: 

Numerical Simulation: From Models to Visualizations 
 
Abstract. In this paper an algorithm is presented to store and process fully adaptive 
computational grids requiring only a minimal amount of memory. The adaptive grid is 
specified by a recursive bisection of triangular grid cells. The cells are stored and 
processed in an order specified by the Sierpinski space-filling curve. A sophisticated 
system of stacks is used to ensure cache-efficient access to the unknowns. 
 
1. Introduction 
 

One of the most common approaches to modeling and simulation is based on 
PDEs and their numerical discretization with finite elements or similar methods. In the 
generation of the respective computational grids, there is often a demand for adaptive 
refinement. Introducing adaptive refinement leads to a trade-off between memory 
requirements and computing time. This is due to the need to obtain the neighbor 
relationships between grid cells both during grid generation and computation. Storing 
these relations explicitly allows arbitrary unstructured grids, but requires a considerable 
memory overhead. It could be even more than 1 kilobyte of memory used per unknown. 

Now we want to address a situation where memory should be saved as far as 
possible, which requires the use of a strongly structured grid, and the neighbor relations 
must be computed instead. In this paper we will present grids resulting from recursive 
splitting of triangles. To efficiently process such a grid, we present a scheme that 
combines the use of space-filling curves and a system of stacks. The stack-like access 
leads to excellent cache-efficiency, while the parallelization strategies based on space-
filling curves are readily available. 
 
2. Space filling curves 
 

In 1878, Cantor demonstrated that any two finite-dimensional manifolds, no 
matter what their dimensions, have the same cardinality. This implies, that the unit 
interval [ ]1,0  can be mapped bijectively onto the square [ ]21,0 , or onto the cube [ ]31,0 . 
The question arose immediately whether or not such a mapping can be continuous. In 
1879 Netto showed that such a mapping is necessarily discontinuous. 

Suppose the condition of bijectivity is dropped, is it possible to obtain a 
continuous surjective mapping? Since any continuous mapping from [ ]1,0  into the plane 
(or space) is called a curve, the question may be rephrased: Is there a curve that passes 
through every point of a two-dimensional region with positive Jordan content (area)? 



Peano settled this question by constructing in 1890 the first such curve. Further examples 
by Hilbert, Sierpinski, and others followed. 
 
2.1 Hilbert’s Space-Filling Curve 

 
Although Peano discovered the first space-filling curve, Hilbert was who 

recognized a general geometric generating procedure that allowed the construction of an 
entire class of space-filling curves: If the interval I ( [ ]1,0 ) can be mapped continuously 
onto the square Q ( [ ]21,0 ), then after partitioning I into four congruent subintervals and Q 
info four congruent subsquares, each subinterval can be mapped continuously onto one of 
the subsquares. Next, each subinterval is, in turn, partitioned into four congruent 
subintervals and each subsquare into four congruent subsquares, and the argument is 
repeated. If this is carried out infinitely many times, I and Q are partitioned into n22  
congruent replicas. Hilbert has demonstrated that the subsquares can be arranged so that 
adjacent subintervals correspond to adjacent subsquares with an edge in common. 
Furthermore, the inclusion relationships are preserved: if a square corresponds to an 
interval, then its subsquares correspond to the subintervals of that interval (see Figure 1). 

 

 
Figure 1: Generating Hilbert’s Space-Filling Curve (from Sagan [2]) 

 

 
Figure 2: Six iterations of the Hilbert curve (from Wikipedia [4]) 



 Hilbert’s mapping is surjective and continuous, meaning it is a space-filling 
curve, and it is nowhere differentiable (see Sagan [2]). Hilbert’s curve can be extended to 
three dimensions, the unit interval and the unit cube will be divided in 8 congruent 
subintervals and subcubes, with the proper ordering (see Sagan [2]). 

 
2.2 Peano’s Space-Filling Curve 
In the generation of Peano’s space-filling curve we partition the unit interval I 

into 9 congruent subintervals, and the unit square Q into 9 congruent subsquares. The 
subsquares will be arranged in the order indicated by Figure 3. If the partitioning is 
carried out n times, then we may obtain n23 subintervals mapped into n23 subsquares. 
Figure 4 shows the first three iterations of the Peano curve. 

 

3 4 9
2 5 8
1 6 7  

Figure 3: Peano’s mapping 
 

 
Figure 4: Three iterations of the Peano curve (from Wikipedia [4]) 

 
2.3 Sierpinski’s Space-Filling Curve 

 In 1912 Sierpinski introduced another space-filling curve, of which the first four 
iterations are displayed on Figure 5. 
 

 
Figure 5: Four iterations of the Sierpinski curve (from Sagan [2]) 

  
 Half of Sierpinski’s curve lies on one, while the other half lies on the other right 
isosceles triangle that is obtained by slicing the square into half by its diagonal. 



Therefore, we will view Sierpinski’s curve as a map from the unit interval I onto a right 
isosceles triangle T with vertices at (0, 0), (2, 0) and (1, 1). Using Hilbert’s generating 
principle, we partition I into two congruent subintervals and T into two congruent 
subtriangles. After n times we obtain n2 subintervals mapped into n2 subtriangles. The 
order in which subtriangles have to be arranged in order to satisfy the requirements that 
adjacent subintervals be mapped onto adjacent triangles with an edge in common and that 
each mapping preserve the preceding one, is shown in Figure 6. 
 

 
Figure 6: Generation of the Sierpinski Curve (from Sagan [2]) 

 
 The curve starts from (0, 0) and ends at (2, 0). The requirement that the exit point 
from each subtriangle has to coincide with the entry point of the following one includes 
an orientation in each subtriangle, which is shown on Figure 7. 
 

 
Figure 7: Mapping T onto its congruent parts (from Sagan [2]) 

 
 
3. Recursively Structured Triangular Grids and Sierpinski Curves 
 
 Starting from the simplest case of a computational domain, a right isosceles 
triangle acting as the starting cell, the computational grid is constructed in a recursive 
process. We recursively split each triangle cell into two congruent subcells. This splitting 
is repeated until the desired resolution of the grid has been reached. The grid may also be 
adaptive, as shown in Figure 8. The respective substructuring tree is shown next to it. 
 



 
Figure 8: Recursive construction of the grid on a triangular domain (from Bader [1]) 

 
A respective uniformly refined recursive construction is used to define the 

Sierpinski curve, which is used to generate a linear order on the grid cells. This 
corresponds to a depth-first traversal of the substructuring tree. To store the grid structure 
therefore requires only one bit per cell to indicate whether a cell is a leave or whether it is 
adaptively refined. 

There are a few extensions to this basic scheme, which offer more flexibility 
regarding complicated computational domains: 
- instead of one initial triangle, a simple grid of several triangles may be used 
- cells can be arbitrary triangles as long as the structure of the recursive subdivision is 

not changed: one leg of each triangular cell will be defined as the tagged edge and 
take the role of the hypotenuse 

- subtriangles do not need to be real subsets of the parent triangle: the tagged edge (or 
hypotenuse) can be replaced by a linear interpolation of the boundary (see Figure 9) 

 

 
Figure 9: Subdividing triangles at boundaries (from Bader [1]) 

 
4. Discretization of the PDE 
 
 Consider, for example, a discretization using linear finite elements on the 
triangular grid cells. It will generate an element stiffness matrix and a right hand side for 
each cell. Accumulation of these local systems will lead to a global system of equations 
for the unknowns, which are placed on the nodes of the grid. 
 In our case we assume that storing the local or global system of equations is 
considered to be too memory-consuming. Instead, we assume that it is possible to 
compute the stiffness matrix on the fly or even hardcode it into the software. Then we 
only need a minimal amount of memory to store the recursive grid structure and the 
values of the unknowns. This is typical to iterative solvers, which contain the matrix-
vector product between the stiffness matrix and the vector of unknowns. 



 In the classical node-oriented approach, this product would be evaluated line-by-
line using a loop over the unknowns. This requires access to all neighboring nodes for 
each unknown. In a recursively structured grid this might be difficult: a neighbor may be 
part of an element that lies on an entirely different subtree. Therefore, the grid should be 
processed in a cell-oriented way. 
 
5. Cache Efficient Processing of the Computational Grid 
 
 In such a cell-oriented processing, the problem is not to access all neighbors of 
the currently processed unknown, but to access all unknowns within the current cell. We 
will not store the indices of the unknowns for each element, but instead process the 
elements along the Sierpinski curve. 
 As we can see from Figure 10, the Sierpinski curve divides the unknowns into 
two halves, one lying on the left of the curve, the other half on the right. We can mark the 
respective nodes with two different colors: red (circles) and green (boxes). Processing the 
grid cells in the Sierpinski order, we recognize that the access to the unknowns is 
compatible with the access to a stack. Consider the unknowns 5 to 10: during processing 
the cells to the left of them, they are accessed in ascending order; during processing the 
cells to the right of them, they are accessed in descending order. In addition the 
unknowns 8, 9, 10 are in turn placed on top of the respective stack. 
 

 
Figure 10: Marching through a grid of triangular elements in Sierpinski order. The nodes 
to the left and to the right of the curve are accessed in an order that motivates the use of a 

stack to store intermediate results (from Bader [1]) 
 
A system of four stacks is needed to organize the access to the unknowns: 
- one read stack that holds the initial values of the unknowns; 
- two helper stacks, a green and a red stack to hold intermediate values of the 

unknowns of the respective color; 
- one write stack to store the updated values of the unknowns. 

 



Whenever we move from a processed cell to the other, two unknowns can always 
be reused, those adjacent to the common edge. Therefore we only have to deal with the 
remaining two that are opposite to the common edge. 
 
 The remaining unknown in the exited cell will either be put onto the write stack 
(if its processing is complete) or onto the helper stack of the correct color (if it still has to 
be processed by other cells). To decide whether the processing completed or not, we can 
use a counter for the number of accesses. To determine the color of the unknown, we 
need to know whether it lies to the left or to the right of the curve. As the Sierpinski curve 
always enters and exits a cell at the two nodes adjacent to the hypotenuse, there are only 
three possible scenarios (see Figure 11): 
- the curve enters through the hypotenuse – then it exits across the opposite leg (it will 

not go back to the cell where it came from); 
- the curve enters through the adjacent leg and leaves through the hypotenuse; 
- the curve enters and exits across the opposite legs of the triangle. 
 

 
Figure 11: Three scenarios to determine the coloring of the nodes: to the left of the curve 

is red (circles), to the right if green (boxes) (from Bader [1]) 
 

The remaining unknown in the entered cell will either be taken from the read 
stack, if it has never been used before, or from the respective colored helper stack. This 
decision depends only whether the unknown has already been accessed before. Therefore, 
we consider whether the three adjacent triangle cells have already been processed or not. 
For two out of three this is known: the cell adjacent to the entering edge has already been 
processed; the cell adjacent to the exit edge has not. The third cell can be old (processed 
already) or new (not yet processed). Consequently, we split each of our existing three 
scenarios according to this additional criterion, and obtain six new scenarios (see also 
Figure 12): 
- if at least one of the adjacent edges is marked as old, we have to take the unknown 

from the respective colored stack; 
- if both adjacent edges are marked as new, we have to fetch the unknowns from the 

read stack. 
 



 
Figure 12: Determination and recursive propagation of edge parameters (from Bader [1]) 

 
Knowing the scenario of the cell, in case the cell is divided, we also know exactly 

the scenario for the two subcells as well. The processing of the grid can thus be managed 
by a set of six recursive procedures, which on the leaves perform the operations on the 
discretization level. 

 
6. 3D Sierpinski Curves 
 
 From the 3D Sierpinski curve we expect to fill a tetrahedron. Therefore we define 
a tetrahedron with a tagged edge to be a 4-tuple [ ]4321 ,,, xxxx  with 3

4321 ,,, ℜ∈xxxx  

where the edge 21, xx  is directed and takes the role of the tagged edge.  
We then can bisect such a tetrahedron along the tagged edge into two sub-

tetrahedrons in the following way:  
 

[ ] [ ] [ ]542354314321 ,,,,,,,,,, xxxxxxxxxxxx → , where 215 , xxx ∈ . 
 

 Using again Hilbert’s geometric generating principle, we have the unit interval I 
subdivided into n2  subintervals and the starting tetrahedron into n2  sub-tetrahedrons. 
The Sierpinski curve is approximated by the polygonal line given by the tagged edges: 
 

233121 ,,,, xxxxxx →  
 



 
Figure 13: Bisection of a tagged tetrahedron. Sierpinski curve (red arrows): 

233121 ,,,, xxxxxx → . 
 
7. Conclusion 
 
 We presented an algorithm to efficiently generate and process an adaptive 
triangular grid with minimal memory requirements. A result from Stevenson [3] states 
that in order to maintain conformity in any locally refined grid (triangles, tetrahedrons or 
any n-simplices) using recursive bisections, only finite number of additional bisections is 
needed. Furthermore, these additional bisections will maintain the locality of the 
refinement, meaning that the grid will not become globally uniformly refined. 

It is hoped that, by implementing it, such a computational speed is achieved that is 
competitive with the algorithms based on regular grids. Extension of the scheme to the 
three-dimensional tetrahedron grid using the 3D version of Sierpinski’s space-filling 
curve is currently subject to research. 
 
References 

1. M. Bader, Ch. Zenger. Efficient storage and processing of adaptive triangular 
grids using Sierpinski curves 

2. H. Sagan. Space-filling curves 
3. R. Stevenson. The completion of locally refined simplical partitions created by 

bisection 
4. http://en.wikipedia.org  


