
Rationale Management

Stefan Puchner

May 23, 2006

1



Contents

1 Overview 3

2 Motivation 3

3 Foundations 4

4 History 5

5 Issue Modeling Representation 6

6 Managing Rationales 10

7 Conclusion 10

8 References 11

2



1 Overview

The purpose of this document is to give an overview of the role of Rationale Management within
Software Engineering processes. The first section, Motivation, is a short introduction into how
rationale management could be useful. Following, in the section Foundations, some background
on rationale management is given. The section History deals with some well known approaches
for rationale management. Later on, a possible representation for rationale models is proposed,
followed by information about capturing and managing rationales. In the end, a small conclusion
that brings together advantages and disadvantages of rationale management is given.

2 Motivation

To clarify the use for rational models, a short example originating from the cooking world might
help.

Mary asks John, her husband, why he always cuts off both ends of the meat loaf before putting
it in the oven. John responds that he is following his mother’s recipe and that he had always see
her cut the ends of the loaf. He never really questioned the practice and thought it was part of the
recipe. Mary, intrigued by this answer, calls her mother in law to find out more about this meat
loaf recipe.

Ann, John’s mother, provides more details on the meat loaf cutting, but no culinary justification:
she says that she has always trimmed about an inch off each end of the loaf as her mother did,
assuming it had something to do with improving the taste.

Mary continues her investigation and calls John’s maternal grandmother, Zoe. At first, Zoe is
very surprised: she does not cut the ends of the meat loaf and she cannot imagine how such practice
could possibly improve the taste. After much discussion, Zoe eventually remembers that, when Ann
was a little girl, she used to cook on a much narrower stove which could not accommodate standard
sized meat loaves. To work around this problem, she used to cut off about an inch from each end of
the loaf. She stopped this practice once she got a wider stove.

(Out off [Bruegge & Dutoit])

In the world of software development it would be much harder for Mary to gain such reasoning
information. Due to size and complexity of modern software systems, the person that might have
the right information is much harder to identify. It is difficult to understand the design of a bigger
system and its implementation just from source code and graphical representations of the system
models. A lot of knowledge that is created during the development of a software system is not
included in these sources and gets lost over time. This is either due to personnel changes or due
to the limited memory capacity of human beings. For example, other possible design solutions
that where discussed but not implemented are not documented and get lost over time. Rationale
Management means storing all this knowledge that was created during the software development
process in an additional model, called a rationale model.

Especially developers new to a software system encounter a difficult task if they need to get
familiar with an existing software system. They may not be able to understand why the system
was designed the way it is. And, even worse, they may not foresee the effect of changes they might
make. For instance, developers might design an output format of a system’s data in a way that is
more complicated than necessary, to ensure compatibility with legacy systems. A new developer
inspecting the code months later might not understand the reasons for this complicated format,
because there is no information about the legacy system in the source code or the available models.
That is just like Mary not understanding why John cuts off the ends of the ham. This missing

3



understanding might encourage the developer to change the output format to a more intuitive and
simpler one, without recognizing the additional knowledge and reasons that led to the original
format. Developers that are already familiar with a system might experience similar difficulties.
They are usually not able to be familiar with all details of a bigger software system and they
might also forget their knowledge over development time. Similarly, John’s grandmother Zoe had
problems with remembering the reasons for cutting the ends of the ham.

In contrast to that, a developer who has access to an appropriate rationale model could make
much more educated decisions. If encountering a point in the system at which she doesn’t under-
stand the design, she would be able to comprehend the reasoning that led to the current design by
looking it up in the rationale model. There she would find information about why the system was
designed in that way. But as the reader might already have realized, gathering and externalizing
all data of this kind – including problem statements, resolutions and the corresponding arguments
– means a huge additional effort in the development process.

3 Foundations

The general meaning of rationale is justification for decisions. Rationale management in the context
of software engineering means to externalize knowledge about the software project. Since knowledge
is generated by reflecting on issues, externalizing knowledge means to capture information about
decision making processes. That means while other system models represent information about
how a system looks like, the rationale model tells why a system looks like it does.

Software developers engage in many decision making processes throughout the day. Most of
them are rather short and unconscious, for instance, whether a piece of code should be implemented
in an extra method or directly in the caller method. Such decision making processes are nearly
impossible to externalize. There are several reasons why this information is hard to capture: on
the one hand, because the developer is not aware of the fact that she is producing knowledge
she should externalize. And on the other hand, because the quantity of such decisions is so huge
that documenting the decision finding would take significantly more time than the actual coding
work of the developer. But after all, such decisions are usually not of interest when creating a
rationale model, since most simple issues that any experienced developer could solve herself are not
of interest. Including such decisions in a rational model would flood the rational model with trivial
information that nobody would be interested in later on.

The more important decision making processes take usually much more time and are therefore
worth the effort it takes to externalize them. Furthermore more than one person may be involved in
these decisions. So they are more conscious and explicitly identified as decision making processes,
which is a requirement for storing them in the rationale model. Decisions of this kind may be major
design decisions like whether to use a database system or a file system for persistent data storage.
The reasoning about such major decisions may be of interest for developers even later on.

In [Fisher et al.] an approach of keeping negotiations rational and avoiding more or less acciden-
tal outcomes of negotiations is described. The entity types of a rational negotiation are identified
as

• the actual problem the negotiation is about,
• interests the different negotiators try to meet with the decisions,
• proposals that are possible solutions to the problem, and
• arguments that enforce or weaken proposals.

This model of multilateral negotiation can be matched to most kinds of decision making pro-
cesses, multilateral as well as unilateral. In software development, multilateral decision making

4



processes are generally meetings in which developers discuss different design proposals. Unilateral
ones – if only one developer is reflecting over a certain issue – have these different entities as well.
In the further discussion, following types will be used for categorizing the different thoughts of
decision making processes in software development:

• issue as generalization of problem
• criteria as generalization of interests
• proposals as possible solution to the problem
• arguments to measure how good proposals match the criteria
• resolution instead of decision

Every rational decision making process can be described by this model. Splitting a decision
making process up into these entities has various advantages. The one addressed by [Fisher et al.] is
that the negotiation process is fairer, faster and overall of more benefit for all stakeholders. Humans
naturally tend to develop proposals that match their – possibly unconscious – interests too early, and
fix them as their position that must be defended at all costs. A more flexible way of negotiation
is to split positions into interests (criteria) and proposals. Based on the finding and fixing of
the existing interests, proposals that fit much better to these interests than the initial positions
can be developed. Such proposals can then be accepted more easily by the different stakeholders.
Additionally, this approach helps to impersonalize the proposals and therefore improves the climate
between the negotiators.

Another advantage is that more educated decisions are possible, even in unilateral decisions. If
the decision maker categorizes his thoughts with the entity types described above, she will be able
to have a more neutral view, cleared from her current mood or feelings. The outcome would be a
more rational decision.

Finally, there is the advantage that if a decision making process should be externalized into
a rationale model, this can be done best with a useful typing. Without different types a lookup
in the rational model would require a text search algorithm, which might not lead to the desired
information algorithmically. When using types, the thoughts can be linked and structured in a way
that reflects the path of reasoning. That way a developer may find out on which resolutions the
current issue depends on, and see which criteria are fulfilled by which proposals.

4 History

Starting with the Issue-Based Information System [Kunz & Rittel], researchers proposed several
approaches to build rationale models. These approaches include not only the representation of
rationales, but the process of capturing them as well. In this section a short introduction to these
approaches is given.

Issue-Based Information System (IBIS) was created to address so called wicked problems, mean-
ing problems that can not be solved algorithmically but rather through discussion. IBIS describes
issues, positions, and arguments as different entities for rationales. It does not feature resolution
and criterion types as discussed above. Criteria are implicitly stated together with proposals in
position nodes (Figure 1).

The Questions, Options, and Criteria (QOC, [MacLean et al.]) model is based on IBIS. For
the representation, it splits positions up into options and criteria (Figure 2). Therefore, it is more
aligned to the model with the five types stated before. QOC and IBIS differ not only in the
representation of rationales, but in the process of rationale capturing as well. IBIS proposes a
capturing process while the decision making process is ongoing and therefore offers a historical

5



Figure 1:

record of the decision making process. QOC proposes to capture rationales after decisions have
been made and externalize the knowledge about the different solutions that were under discussion.
This will usually lead to less detail than the former approach.

Figure 2:

Another rational model description that is based on IBIS is Decision Representation Language
(DRL, [Lee]). It significantly increases the complexity compared to IBIS by featuring seven different
types, namely decision problem, alternative, goal, claim, achieve link, procedure, and question.

The NFR Framework [Chung et al.] does not extend IBIS, but proposes a model to describe
dependencies between nonfunctional requirements and design decisions, and stores information
about different proposals. Like models of the other approaches, an NFR model can be represented
as graph. Nonfunctional requirements are called goals and may be decomposed to sub-goals. An
NFR graph may also feature so called operationalizing goals. These represent concrete system
features in contrast to other goals which are nonfunctional requirements.

5 Issue Modeling Representation

In this section the Issue Modeling approach, as introduced in [Bruegge & Dutoit], is described
in more detail than the approaches in the section history (Figure 3). It is based on the IBIS
representation model but does not asses the way of capturing rationales. It uses the five entity
types that were already described above, namely:

Issue: Problem with no single correct resolution. It contains a subject, a description as question
and a status (open or closed). It may be decomposed into sub-issues and may be raised by
proposals.

6



Figure 3:

Proposal: Possible solution to an issue. It contains a subject and a description, but no information
about value, advantage, disadvantage. It may not be a good answer to an issue, may address
more than one issue, or it may overlap with other issues.

Criterion: A quality a proposal should have. It consists of a subject (phrased positively), a
description and is connected to proposals through Assessment association (including value
and weight).

Argument: Opinion of a person towards a proposal, criterion, or assessment. It contains a subject,
a description and is connected to the entity under discussion through ‘is opposed by’ or ‘is
supported by’ association.

Resolution: Selected alternative to close an issue. It consists of a subject, a description, and a
status (active or obsolete). It may be based on several proposals.

The assessment node in Figure 3 is an association class. In general a criterion may not only be
addressed or be not addressed by a proposal. Rather, it is reasonable to define how well the criterion
was addressed, for instance on a scale from one to ten. The assessment class holds quantitative
information about the relationship between a proposal and a criterion.

The following example will give a better understanding for the issue based representation model
(Figure 4). The issue node ‘storage’ represents the issue: Which storage technology should be used
in our system for persistent storage? The two proposal nodes suggest the usage of a database
system or the file system for persistent storage. While the proposal ‘database’ meets the crite-
rion ‘flexibility’ it fails to meet ‘simplicity’; and vice versa for the ‘files’ proposal. The argument
‘extensibility-first’ expresses opposition to the ‘files’ proposal since the resolution should be easily
extensible. It is supported by the ‘flexibility’ criterion. If the ‘database’ proposal was chosen, a new
sub-issue would be opened: Which database system should be used? The resolution node ‘storage
in database’ indicates that the ‘database’ proposal was selected.

Externalizing knowledge and typing thoughts is the most time intensive task that comes with
the creation of a rationale model. This section describes in which areas of software development
rationales could be captured, which detail levels of rationale capture can be identified, and which
activities are suitable for capturing rationales. Rationales can be captured during diverse phases
of software development:

7



Figure 4:

Requirements elicitation and analysis: During requirements elicitation and analysis, far-reaching
nonfunctional and functional requirements are defined. These influence the whole system de-
sign. If requirements change during the development process, it would be useful to developers
to know about which design decisions where made based on these requirements, so the de-
veloper would know where to consider a redesign on the system. Furthermore, the rationales
externalized during the requirements elicitation and analysis phase could be useful for defin-
ing user acceptance tests. That is because the crucial parts of a system concerning a specific
requirement could be identified more easily, if the coherence between the requirement and the
design decisions are visible.

System design: Rationales captured during system design can be helpful later on, if parts of the
system get changed. In that case a developer could find out which other design decision
depend on the one he changed and knows where redesign considerations are necessary.

Project management: Risk management is an important field of project management that can
benefit from rationale models. For example, if a project manager externalizes a decision
making process about choosing technology A or technology B, she would write down the
proposals for each technology and express the risk considerations as arguments and criteria.
The project manager may decide for the cheaper technology A that has a high risk of failure,
since it is quite new on the market. If it later turns out that technology A is unexpectedly
not suitable for the required purpose, the project manager could review the other proposals
pertaining to this risk management decision again, and may decide for technology B. Here
again, the rationale model shows the other decisions that were influenced by this one.

Integration and testing: During integration and testing phases, a developer could not only find
out in which area of the model a conflict occurred, but may also find out which design decisions
are responsible for it. This may, on the one hand, help to find more conflicts of this kind,
and on the other hand, enable a resolution to the conflict with minimal impact on the rest of

8



the system.

Externalizing rationale knowledge can be done in different degrees of detail and effort. We call
the following degrees levels of rationale capture:

No explicit rationale capture: For this level, no additional efforts have to be made to create
a rationale model. The rationales just reside where they are anyway; that is in E-mails,
memos, on napkins, or in the memories of developers. Of course, such a rationale model is
of limited use since developers might forget rationales, napkins are not useful for archiving
knowledge, and even electronic texts like E-mails can only be searched by text strings but
not by dependencies.

Rationale reconstruction: In this approach rationales get captured after the decision has been
made, in a way of documentation. A rationale model captured on this level might not contain
other proposals besides the one finally decided on, and does not feature argumentation.

Rationale capture: When applying this level, all rationale information gets externalized. Over
time, a huge and interconnected model – for instance represented by a graph – is created. This
level of capture requires huge investments, since the capturing process is very time intensive.

Rationale integration: Rationale integration is similar to rationale capture, but the generated
rationale model does not just reside beside other models. Rather, the changes on the rationale
model induce changes on other models. The rationale model becomes the central model which
all other models depend on.

Finally, there are different rationale activities that can be captured. Following are four categories
that cover most of the multilateral rationale activities.

Meetings: This is perhaps the most important category, since major design decisions and most
difficult issues are often discussed in meetings. The capturing process includes taking the
minutes, decomposing the minutes into the different types of the rationale model, and entering
this information in the electronic rational model.

Electronic communication: Since electronic communication is increasingly used, the amount of
rationale activities based on electronic communication increases as well. To cover this kind
of communication in creation of rationale models, users could be encouraged to use a special
groupware client that features functionality for capturing rationales.

Changes If changes in system design or requirements occur, the rational model should be updated.
That means, for instance, marking the current resolution as out of date and adding the new
one, together with new arguments and criteria, if applicable.

Reconstructing rationale This way of rationale model construction is applied when using ra-
tional reconstructing as a level of rationale capture. First, decisions are made and later on
these decisions get justified in a documentation step.

9



6 Managing Rationales

If rationale models are implemented in professional software development, it is important that
the rationale models be built up meticulously and comprehensively. But a developer usually sees
no direct connection between the benefit a rationale model might have for her, and the additional
time and effort she spends in creating it. Therefore, developers are not likely to use a rationale
model voluntarily. So it remains the responsibility of management to assure that developers really
do work with and on rationale models.

One part of this management responsibility is to ensure that the rationale model is easy to access
and has high usability for the developers. That way the barrier for using the rationale model can
be lowered. Another important factor in managing rationales is the assignment of responsibilities
by the manager. For capturing a meeting, you will usually need a minute taker who captures
all information that was said. Later, a rationale editor would extract this information from the
minutes, type the different parts, and enter it in the rationale model. To ensure the integrity and
the completeness of the rational model, a reviewer needs to inspect it regularly and request and add
additional information from the developers if it is missing in the rationale model. To ensure that
this reviewer is accepted by the other developers and not seen as a kind of controlling big brother,
the reviewer must not be manager in this project. Furthermore, the reviewer should be available
to the other developers for questions concerning the rationale model. That way, both sides can
help each other, resulting in a better atmosphere at work than if just on side depends on the other
unidirectionally.

7 Conclusion

Rationale management can help to improve software development dramatically. Firstly, there is the
huge advantage of enabling easier and safer changes on existing systems, due to the availability of
all knowledge necessary for the changes. Secondly, rationale management helps to make the success
of a software project more independent of single developers. Since the knowledge of developers is
not solely stored in their own head but accessible to all, a single developer can more easily be
exchanged. Finally, rationale management may lead to more rational decisions, because it forces
developers to decompose their thoughts and encourages an objective view on issues. It needs to be
evaluated for each project if the huge benefits of rationale management balance the great effort that
comes with it, and on what level of detail a rationale model should be created. Further research
should evaluate how capturing and maintaining rationales can be done efficiently and what kind of
rationale model tools provide the highest usability for a given situation.

10



8 References

Bruegge & Dutoit B. Bruegge & A. Dutoit. Object-Oriented Software Engineering (Second
edition, International edition). Pearson Prentice Hall, 2004.

Fisher et al. R. Fisher, W. Ury, & B. Patton. Getting to Yes: Negotiating Agreement Without
Giving In (Second edition). Penguin Books. 1991.

Kunz & Rittel W. Kunz & H. Rittel, Issues as elements of information systems (Working Paper
No. 131). Institut fuer Grundlagen der Plannung, Universitaet Stuttgart, 1970.

MacLean et al. A. MacLean, R.M. Young, V. Bellotti, & T. Moran, “Questions, Options, and
Criteria: Elements of Design Space Analysis,” Human-Computer Interaction, 6 (3&4): 201-
50, 1996.

Lee J. Lee, “A qualitative decision management system,” In P.H Winston & S. Shellard (Eds.),
ARTIFICIAL Intelligence at MIT: Expanding Frontiers. Cambridge, MA, MIT Press. Vol 1,
104-33, 1990.

11


	Overview
	Motivation
	Foundations
	History
	Issue Modeling Representation
	Managing Rationales
	Conclusion
	References

