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Abstract 
 

In the early 1960s, the prediction of the vibrational response to rocket noise of satellite launch 

vecicles and their payloads became a new exploratory focus. The challenging feature was due 

to the fact that the frequency range of significant response contained the natural frequencies 

of more than half a million higher order modes. Since then, a new effective method has been 

created in order to understand complex noise and vibration issues at the early stages in the 

design of a product or a structure: the Statistical Energy Method (SEA) method can be used to 

optimise a final design before a physical prototype is built, saving both time and money. In 

the following I would like to give a rough introduction into the most outstanding ideas of this 

method, including some examples and a perspective of the future.  
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1 Introduction 
1.1 Methods Used for Vibration Problems 
 

For solving vibration problems there is a comfortable assemblage of methods available. 

Usually we are dealing with models like FEM, (BEM) and analytical models which enable us 

to calculate for deterministic loads and defined model parameters deterministic responses. 

Typically the calculated value is given in detail with respect to frequency, time and location. 

However, the level of discretization of time/frequency and the geometric data has to be 

defined at the basis of theoretical considerations regarding wave-lengths, eigenmodes etc.  

Going a little bit more into detail, we can observe different prefered application fields: 

analytical algorithms, or even “hand-made” solutions take place for rather simple boundary 

conditions. Otherwise, in case of lower frequencies, we are entering the field of the well-

known Multibody Oscillators. Observing higher frequencies, usually the Finite Element 

Method is prefered, whereas the Boundary Element Method has clear advantages for 

unlimited systems. But what about the situation of even higher frequencies? This will be 

focussed in the following chapters now. 



1.2 Introductory Example 

 

The small sketch on the right hand side shows an idealized room of 25 m2. On the left it is 

limited by a steel plate on which a 

harmonic load F is acting. According to 

the regularly distributed spherical points 

sketched in the figure of the room, only 

18 positions will be the location of the 

observations and meassurements.  

The figure below (provided by [Müller-

BBM]) shows for 18 points in the room 

all measured transfer functions between 

the harmonic load and the sound pressure 

(on a logarithmic scale). 

The first peak at about 11 Hz shows the 

first resonance frequency of the plate that is 

subjected by the harmonic load. 

For the frequency range up to about 20 Hz 

the results for the 18 observed points are 

very close to each other. Consequently, for 

low frequencies the air pressure at all 

microphones is nearly equal. 

However, it can clearly be seen that at 

higher frequencies the transfer functions 

differ considerably. The high differences 

result from the different contributions of 

single modes which are close together 

regarding their eigenfrequency. “So e.g. in 

the centre of the room and a tonal excitation at 250 Hz, a difference of about 20 dB (factor 10) 

between the individual functions is observed” [Mü05, page 118-119]. But there are also a lot 

of other uncertainties we have to deal with: Even slight temperatur differences in the room, 

which practically cannot be eliminated, influence the positions of the Eigenfrequencies so that 

a  

detailed prediction cannot be given. However, the air inside the room also shows modes.  



These are starting at about 50 Hz. As the following 

investigation on the right hand side (provided by 

[Müller-BBM]) shows, the modes are varying quite 

much depending on disturbing objects inside the 

room. This is not acceptable, as very strict 

constraints in the way of number, shape and 

arrangement of the furniture would be introduced, 

for example. 

However, these are not the only uncertainties that 

have to be taken into consideration. There are also 

varying values for boundary conditions (like 

clamped or free edges), dynamic material 

properties (e.g. the Young’s modulus), masses of 

the materials (e.g. varying weight of concrete 

depending on its constituents), damping, load 

distribution (e.g the position of the machines in an 

industry hall), frequency of excitation and many 

more. 

Recapitulating the introductory example leads to thr 

insight that at higher frequencies the reliability of 

the result of calculation might be considerably 

reduced. 

mode empty room 

Frequency 

[Hz] 

room with 

disturbing objects

Frequency [Hz] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

… 

56,8  

70,2  

85,4  

90,3  

102,6  

110,6  

114,3  

124,3  

134,1  

141,8  

142,7  

152,8  

159,0  

165,6  

173,2  

173,5  

… 

49,0  

68,6  

79,5  

85,3  

96,2  

104,9  

107,9  

118,7  

127,5  

134,6  

139,8  

149,0  

149,9  

153,9  

162,5  

171,2  

… 

 
 
 

1.3 Historical Example 

 

In the early 1960s, aerospace engineers needed to predict the vibrational response to rocket 

noise of satellite launch vehicles and their payloads. This can be considered as the hour of 

birth for the Statistical Energy Analysis. “Although computational methods for predicting 

vibrational modes of structures were available, the size of the models which could be handled 

[…] and the speed of computation were such as to allow engineers to predict only a few of the 

lowest order modes of rather idealized models”([Fa94], page 1). However, in this problem the 

frequency range of significant response contained the natural frequencies of a multitude of 



higher order modes: the Saturn launch vehicle “possessed about  500.000 natural frequencies 

in the range 0 to 2000 Hz” ([Fa94, page 1]). 

 

 

2 Motivation for Statistical Energy Analysis 
 

A detailed analysis at the basis of FEM approach (input at a point of excitation, output at a 

point of observation) would lead to results which are very sensitive to slight changes in the 

input parameters. The allready mentioned factor of 10 should always be kept in mind in this 

context. 

The both examples above are leading to the insight that at higher frequencies a method with 

less detailing has to be accepted. The uncertainties of  modelling parameters and the following 

variableness of the results have been pointed out by two examples. 

In order to obtain acceptable sensitivities of the results, but to describe nevertheless the 

system response, we will give the results in an averaged sense. That means we are now 

appraching a completely different method of solving these high frequency problems. 

 

 

3 Deterministic Approach 
 

According to modal superposition, the system response like velocity or pressure can be 

computed by linear combination of the mode shapes at the point of observation: 

     system response ∑γ=

The iγ  are used as weighting factors that show the contribution of the i.th mode. Showing the 

term of iγ  more precisely, we obtain: 
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The numerator of the first fraction contains the influence of the geometry of excitation, 

whereas the denomintor includes the modal mass and the resonance frequency. The second 

fraction is called the amplification function that comprises the influence of the frequency of 

excitation. 

 



4 Energetic Approach 
 

In the first step a shift from velocities to energy is carried out. Therefore we use the fact that 

the mean kinetic energy is proportional to the mean square velocity: 
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Now we can increase the prediction accuracy by appropiate averaging in several steps. Within 

step 1 we execute an averaging over the points of observation: 
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The bar over the  should symbolise that the first averaging step has been done now. Further 
bars will follow for the following averagings. Using the fact of orthogonality of modeshapes 
we further obtain: 
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And with the explicit term of iγ  we can also write: 
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We can consider this as “summing up the modal energy”. However, by this step the phase 

information gets lost. 

Step 2 is now the averaging over the points of excitation. This is quite well-known under the 

name of  “rain on the roof excitation”. By that iγ  changes in the following way:  
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1  is the mean square of the modal force and  the modal mass. 

By inserting this in the equation for 
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where F is the force of excitation,  the amplification function, and m the total mass. iα



It can clearly be seen that by this second averaging step the information about the shape of the 

individual eigenmodes is eliminated and – as a consequence – has no longer to be considered. 

In order to simplify the mean square 

velocit once again, we execute the 

third step of averaging, now over the 

frequencies of excitation.  

n 

For this we assume several similar 

modes N  in a frequency band (see 

also the figure on the right). 

∆

Applied on the formula for 2
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Here we have introduced the centre frequen

band. 

 

 

5 Mean Input Power 
 

The whole building can be separated in par

waves. Now we are looking at one „sub-s

steady state vibration: that means that the m

cycle of vibration equals to the dissipated p

The mean input power in a frequency band ca
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Of course, this is an expected fact, as e.g. loudspeakers always have for example 100 Watt, 

independent from damping effects caused by furniture. 

 

 

6 Balance of Power 
 

Every sub-system is considered as a 

energy reservoir. Because of this we 

can easily draw a hydrodynamic 

analogy. The sub-system is described 

by a tank of water. It is possible to rise 

the energy E by filling in some water 

from above. On the other hand we lose 

some water by the effects of dissipated 

energy that is proportional to the 

absolute dynamic energy E of the sub-system: η⋅⋅π= Ef2P mdiss .   

Mean input power P

Energy E in the sub-system

Dissipated energy 

 

Now we can fulfill the expansion to coupled systems with two or more water reservoirs: 

For every sub-system holds: 

                         out,iin,i PP =

However, for coupled systems the 

“lost” energy consists of two parts. On 

the one hand we have the dissipated 

Energy , as already 

mentioned above. On the other hand 

there is an energy flow between to sub-

systems:   
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7 Equations of the Statistical Energy Analysis 
 

Now the governing equations (see also [Wi05], page 9-11) can be derived by considering the 

loss of energy by damping and the energy flow between every pair of sub-systems (coupling): 
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This finally leads to 
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It should be noted that - related to the different possible deflection patterns (e.g. bending, 

shear, torsional waves) - each part of the structure might appear as various energy reservoirs 

and thus described by various governing equations. 

 

 

8 Conclusion 
 

In finite element computations usually a high discretization of the structure is necessary. In 

opposite to that the SEA-method is based on calculation of global values. Because of this, the 

computational costs are much smaller and even interactive planning by the engineer is 

possible. 

“However, if absolute values have to be predicted, the necessary level of detailing and the 

confidence in the input data should be checked thoroughly” ([Mü04], chapter 8). 

Energy methods have a huge impact on the methodology of noise and vibration prediction. 

Especially hybrid methods can carry out vibroacoustic investigations with a good confidence 

using the advantages of all methods at suitable situations. “The choice of the appropriate 

methods, depending on the individual sub-systems, frequency of calculation and 

characteristics of the coupling is a challenge for the engineer” ([Mü04], chapter 8).  In order 

to give a small example let’s have a look at the system of a high velocity train on a railway. A 



prediction of the interior noise, due to the rolling of the wheel set is carried out. The vehicle 

can be decomposed in three major coupled sub-systems: the wheel-set I, the boogie II, and the 

wagon III. 

RRaaiill--IImmppeeddaannccee--MMooddeell  RRIIMM 

 
The wheel-set can be computed by a rail-impendance-Model, using the theory of multibody 

oscillators. The bogie has a modal characteristic, which can be modelled by deterministic 

methods like FEM. And finally the wagon itself shows a high modal density that advises to 

describe the vibroacoustic behaviour with the help of energy methods. 
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