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Abstract

In this paper the principles of position and orientation measurement
are explained and its implementation on an Initial Measurement Unit
(IMU) are show.
The first part is about motivation for position measurement, dealing
with industrial applications. Then we proceed to mathematical basics
of attitude representation and figure out the advantages and weaknesses
of the specific types of representation. Next is to give a brief of modern
sensor technology. At last we show how to enhance the performance of
a strapdown Inertial Measurement Unit using Kalman filtering.
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1 Motivation

At present time the exact determination of position and orientation
of technical systems plays an important role. Especially for robustly
controlling the behavior of mechatronic systems a reliable position mea-
surement system is required. Since the early years of the past century
inertial navigation has made a great evolution. First there have only
been military applications propulsing inertial navigation technology,
but nowadays there is also a great variety of civil and industrial prod-
ucts using inertial navigation units (IMU). The development of inertial
measurement systems in recent years has been characterized by the
gradual move form stable gimbaled platform to stapdown technology,
bringing a much more greater comfort to handle the systems, but also
requiring better algorithms.
In the following, we want to give some representing examples:

• the biped walking machine ’Johnnie’: the humanoid heavily de-
pend on the performance of its position measurement sensors in
order to keep balance and to get orientation. We brought on a
strapdown IMU enabling him to exactly determine his position
in 3D.

• automotive industry: IMUs are applied to measure the topology
of test routes and to analyse drive dynamics.

• aeronautic and space products: helicopters, airplanes and space
shuttles need highly accurate position measurement systems in
order to keep control of its movement or to run an autopilot
system. Of course also GPS navigation is used to determine
the actual position, but since its resolution is not exact enough
complementary measurement systems have to be installed.

• military applications: as already mentioned above, they have
been the origin purpose of inertial navigation. First of all, strate-
gic (for instance: ICBM, CM) or tactical missiles require position
determination for navigation as well as torpedoes and jets. In re-
cent times the development autonomous navigating systems, like
drones is furthered.
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• maritime systems: inertial navigation systems are not only used
on ships for guidance, but even to stabilize and balance landing
platforms for helicopters. In case of marine applications, such
systems may be required to provide navigation data of high ac-
curacy over periods of weeks or months.

• industrial robotic systems: many robots for maintenance (e.g. for
pipelines) need guidance systems for position determination.

2 Basic principles of inertial navigation systems

2.1 Basic types of inertial navigation systems

Inertial measurement systems, also known as inertia measurement sys-
tems, detect the accelerations acting along their sensitive axes. Inte-
grate the output once, you have velocity, integrate again, and you have
position along the accelerometer’s axis. As a body in 3D has 6 degrees
of freedom, we need 3 sensitive axes standing perpendicular to each
other and 2 sensors for each axis, one for acceleration (accelerometer)
and one for rotation (gyroscope).
Basically, there exist two different types of inertial measurement tech-
nologies. Firstly, the gimbaled platform technology being the older one
and still in use in many applications, which require high accuracy for
a long period of time (i.e. Voyager space craft or submarines). The
system basically consists of all 6 sensors being mounted on a platform
and arranged perpendicular to each other as mentioned above. The
platform is suspended in a set of 3 gimbals, that are gyro-stabilized
to maintain the direction when the vehicle manoeuvres (Kardan rota-
tion). The gyros are used as sensing elements in null-seeking servos,
with the output of each gyro connected to a servo-motor driving the
appropriate gimbal, thus keeping the gimbal in a constant orientation
in inertial space. This leading to the fact, that the rotational motion of
the IMU is completely decoupled from the vehicle’s. But great efforts
have to be done to realize the complex mechanisation of the Kardan
platform.
But as microcomputers and gyroscopes with large dynamic ranges came
up, the second and nowadays most important inertial measurement
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technology, the stapdown principle, could be realized. They are much
more smaller and less complex than their predecessors, although gim-
baled technology is still in use in some specific high performance appli-
cations. They consist of only one platform including all six sensors and
is directly strapped down on a vehicle. Again the sensors are arranged
perpendicular following an orthogonal axis system.

2.2 Reference frames

Fundamentally, a number of cartesian coordinate systems has to be
defined precisely. Each system is a right handed coordinate frame.
Due to the purpose a lot of different frames are conceivable, here are
only some of the most common:

• The inertial frame (i-frame): has its origin at the center of the
earth and non rotating axis according to the stars. All of its
axis are time invariant, although the its center is translationally
moving, as the earth turns.

• the earth frame (e-frame): has its origin at the earth’s center and
axis, that are fixed with respect to the earth.

• the navigation frame (n-frame): has its origin at the location of
the navigation system and its axis aligned with the directions of
north, east and the local vertical (down).

• the wander azimuth frame (w-frame): may be used to avoid the
singularities in the computation which occur at the poles of the
navigation frame. Like the n-frame it is locally level.

• the body frame (b-frame): is a local body-fixed axis system, which
is aligned with the roll, pitch and yaw axes of the vehicle con-
taining the navigation system.

According to the chosen frame, a suitable frame mechanisation has
to be found. For the present, all measured values are received in the
body coordinate system. The navigation equation may be solved in
any one of a number of reference frames. But if the chosen frame
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rotates, the theorem of Coriolis has to be considered (Euler derivatives).

bvP abs = Abi ivP abs =
d

d t
(brOP ) + bωib × brOP (1)

Where bωib is the turn rate of the body frame with respect to the i-
frame. The accelerometers usually provide a measurement of specific
force in a body fixed axis set, denoted bf . In order to navigate it is
necessary to resolve the components of the specific force in the chosen
reference frame.

if = Aib bf (2)

Ȧib = Aib bΩib (3)

Where bΩib is a skew symmetric matrix formed from the elements of the
vector bωib representing the turn rate of the body with respect to the
i-frame as measured by the gyroscopes, and Aib is the 3 x 3 direction
cosine matrix. To give a short example of a frame mechanisation, the
inertial frame is chosen for representation. The navigation equation
reads as follows:

˙ivP = Aib bf − iωie × ivP + igl (4)

Where igl is the result vector form gravitation and centripetal accel-
eration, since the two components can not be separately distinguished
and ivP denotes the vehicle’s speed with respect to the Earth, the
ground speed, in inertial axes resolution.

2.3 Strapdown attitude representations

The attitude of the body frame, which is required to resolve the spe-
cific force measurements into the reference frame, may be defined in a
number of different ways. Here, only the most common representations
are listed:
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• Direction cosine matrix: this is a 3 x 3 matrix denoted by Aib, the
columns of which represent unit vectors in body axes projected
along the reference axes. The element in the i-th row and the j-th
column represents the cosine of the angle between the i-th axis of
the reference frame and the j-th axis of the body frame. The rate
of change of Aib with time is given by Eq. 3. For computational
calculation this kind of attitude representation is probably the
most common, because of its simple handling and the fact that
it doesn’t contain any singularities.

• Quaternions: this type of attitude representation is based on the
idea that a transformation from one coordinate frame to another
may be done by a single rotation about a vector µ defined with
respect to the reference frame. The quaternion q, is a four ele-
ment vector, the elements of which are functions of this vector
and the magnitude of the rotation.

p =


a
b
c
d

 =


cosµ/2

(µx/µ) sinµ/2
(µy/µ) sinµ/2
(µz/µ) sinµ/2

 (5)

p = a+ ib+ jc+ kd (6)

Since quaternion representation doesn’t have any singularities it
is also very popular, despite they are not very graphic. Opera-
tions like addition or multiplication are similar to two parameter
complex notation.

• Euler angles: a transformation from one coordinate frame to an-
other is defined by three successive rotations about different axes
taken in turn.The Euler angle representation is perhaps one of
simplest techniques in term of physical appreciation. A new co-
ordinate frame may be expressed as follows, the three rotation
are performed in turns: rotate through angle ψ about reference z
axis, rotate through angle θ about new y axis, rotate through an-
gle φ about new x axis. As mentioned above, this corresponds to
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the angles measured by a angular pick off between a set of three
gimbals in a stable platform inertial navigation system.

CIK=


cos θ cosψ − cosφ sinψ+sinφ sin θ cosψ sinφ sinψ+cosφ sin θ cosψ

cos θ sinψ cosφ cosψ+sinφ sin θ sinψ − sinφ cosψ+cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ

 (7)

It is useful to use direction cosine and quaternion representation for
intern calculations and Euler angles for extern representation.

3 Sensor technology

3.1 Accelerometers

Inertial navigation relies on measurement of the acceleration which can
be integrated successively to provide estimate of changes in velocity
and position. Accelerometers measure both, the inertial force and the
gravitation component, which have to be separated in order to obtain
only acceleration. Since it is not practical to determine the acceleration
of a vehicle by measuring the total force acting upon it, it is possible to
measure the force acting on a small mass contained within the vehicle
which is constrained to move with the vehicle. A simple sensor could
be thought as a spring-mass structure packed in a small container.

3.2 Gyroscopes

To get the turn rates, two different types of sensors, each based on
another physical effect can be used. Vibratory gyroscopes, basing in
the principle of Corriolis, are the most common, although not very
accurate. If a body moves along a direction while rotating about an
axis perpendicular to that direction, an acceleration in a third direc-
tion orthogonal to the two others acts upon it. Usually, the velocity is
generated by an harmonically vibrating piezo crystal. Although huge
noise and temperature depending drifts occur, this is a very cheap tech-
nology. For low bandwidth purposes this aspect doesn’t matter as well
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as the fact, that the Unit is also negatively influenced by body trans-
lational acceleration, vibrations and the body’s acoustic noise.
For more precise application optical sensors are required, basing on
the so called Sagnac effect. Light beam coming from a super lumin-
iszenz diode (SLD) moves through a beam splitter, dividing the beam.
After having moved through a fiber optic cable coil, each in opposite
direction, the effective path length difference between the two counter-
propagating beams are detected. If the interferometer rotates the time
of each light beam to pass around the circumference is modified.This
is because of the motion of the beam splitter during the time taken for
the light to pass around the ring. In case of using a laser instead of
the SLD, which is so called ring laser gyroscope (RLG), because of the
effective path length, the laser’s frequency changes. Therefore, a direct
digital angular signal is obtained.

4 Sensor fusion and Kalman filtering

4.1 Combination of independent estimates

The Kalman filtering process combines two or even more independent
estimates of a variable in order to form a weighted mean value. For
this reason, a higher order of accuracy could be achieved. Consider the
single dimension case, in which two independent estimates x1, provided
by updating a previous best estimate in accordance with the known
equations of motion and x2, which is obtained by a measurement. With
σ2

1 being the covariance of estimate x1 and σ2
2 of x2, for the weighted

mean value follows:

x = x1 − w(x1 − x2) (8)

x = E(x) =
1

n− 1

n∑
i=1

(xi − x)2, for n ≤ ∞ (9)

x = E(x) = w1E(x1) + w2E(x2) (10)
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Where w = w2 (w1 = 1 − w) is the weighting factor of quantity two.
In multidimensional case in which x1 and x2 are n-dimensional vectors,
the equation changes to:

x = x1 −W (x1 − x2) (11)

Here W stands for a n x n weighting matrix. The best estimate of x
is obtained when W is selected to minimise the covariance of x. In
practical, the dimensions of the two estimates are not equal. A set of
m measurements may be provided, denoted y2, where y2 is only related
to some of the elements of x:

y2 = Hx2 H ∈ <m×n (12)

By definition, the covariance P of x for multidimensional case is given
by:

P = E
{

[x− E(x)] [x− E(x)]T
}

(13)

With the above given measurement equation (Eq. 12) for y2 the equa-
tion for x by replacing W = KH reads as follows:

x = x1 −KH(x1 − x2) = (IKH)x1 +Ky2 (14)

Now, applying the formula for the covariance P for multidimensional
case, we obtain:

P =E
{

[(I −KH)x1 +Ky2 − (I −KH)E(x1)−KE(y2)]
1

[(I −KH)x1 +Ky2 − (I −KH)E(x1)−KE(y2)]
T
} (15)

And since x1 and y2 are uncorrelated, this reduces to:

P = (I −KH)E
{

[x1 − E(x1)] [x1 − E(x1)]
T
}

(I −KH)T

+KE
{

[y2 − E(y2)] [y2 − E(y2)]
T
}
KT

= (I −KH)P1(I −KH)T +KRKT

(16)

In which P1 denotes the covariance of estimate x1, such as R denotes
the covariance of estimate x2.
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Now we are looking for K matrix, such that P minimises in the sense,
that the diagonal elements of P, the variances of x, are minimised. As
this is given in [1], K reads as:

K = P1H
T

[
HP1H

T +R
]−1

(17)

in which R denotes the variance of y2.
Under such conditions, the best estimate of x is given by:

x = x1 −K [Hx1 − y2] (18)

P = P1 −KHP1 (19)

Note, that the quantity x1 can not only be obtained by the motion equa-
tion, but also by a process called sensor fusion, which the both quanti-
ties obtained for instance by the long-term signal of the accelerometers
and the short-term signals of the gyroscopes are merged together in.
Even GPS, if provided, can be used to infuse further information into
the system. This is probably the most common case.

4.2 Kalman filtering

A Kalman filter is simply an optimal recursive data processing algo-
rithm. There are many ways of defining optimal, dependent upon the
criteria chosen to evaluate performance. The Kalman filter is optimal
with respect to virtually any criterion that makes sense. One aspect of
this optimality that the Kalman filter incorporates all information that
can be provided to it. It processes all available measurements, regard-
less of their precision , to estimate the current value of the variables
of interest, with use of (1) knowledge of the system and measurement
device dynamics, (2) the statistical description of the systems noises,
measurements errors, and uncertainty in the dynamics models, and (3)
any available information about the initial conditions of the variables
of interest.
The dynamic behavior of a linearised system may be expressed by a
first order differential equation (state representation):

ẋ = Fx+Gu+Dw (20)
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Here, x(t) denotes the system’s state vector, u(t) is the deterministic
input vector and w(t) is the system’s noise. The output equation is
expressed by:

y = Hx+ v (21)

Usually the noise vector v(t) has zero-mean and is normally distributed,
with spectral density R. The Kalman filter for this system described
here seeks to provide the best estimates of the states x(t). The mea-
surement of the true system are compared with predictions of those
measurements, derived from the latest best estimates of the states pro-
vided by the system model. The differences between the true and
predicted measurements are fed back through a weighting matrix, the
Kalman Gain matrix, to correct the estimated states of the model. The
Kalman gain has to set in that way, to provide best estimates of the
states in a least squares sense.
Since the measurements in practice are provided at discrete intervals of
time the continuous differential equation given above has to be trans-
formed to a discrete difference equation, as given in [1]:

xk+1 = Φkxk + Γkuk + ∆kwk (22)

yk+1 = Hk+1xk+1 + vk+1 (23)

The zero-mean, discrete noises, wk for system’s noise and vk+1 for mea-
surement noise are characterized by covariance matrices Qk and Rk

respectively. In the process of filtering, two different sets of equations,
the prediction process and the measurement update have to be distin-
guished. The best estimate of the state tk+1 at time tk is:

xk+1 = Φkxk (24)

Pk+1 = ΦkPkΦ
T
k + ΛkQkΛ

T
k (25)

with Pk+1 being the covariance at time tk+1, predicted at time tk.
When a new value yk+1 is obtained by measurement at time tk+1, it is
compared with the predicting value derived from the system’s model.
The measured value is then used to update the prediction value to
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generate a best estimate. Hence the best estimate at time tk+1 is given
by [3]:

xk+1/k+1 = xk+1/k −Kk+1
[
Hk+1xk+1/k − yk+1

]
(26)

Pk+1/k+1 = Pk+1/k −Kk+1Hk+1Pk+1/k (27)

Kk+1 = Pk+1/kH
T
k+1

[
Hk+1Pk+1/kH

T
k+1/k +Rk+1

]
(28)

Where H denotes the measurement matrix and K is the Kalman gain
matrix. A Subscript followed by a slash denotes the time a value is
calculated. If the system, which is focused nonlinear, the Kalman fil-
ter described above has to be updated to the extended Kalman filter,
described below.

4.3 Extended Kalman filtering

The algorithm described in the previous section is only applicable to
linear time invariant systems with Gaussian noise type disturbances.
But as usually this condition is not appropriate, the algorithm has
to be re-designed to the so called ’extended Kalman filter’, in order
to regain the optimal filtering. Since a filter of infinite dimension is
not feasible in practice, we have to accept a suboptimal behavior and
make its performance as close to optimal as possible. This concludes in
predicting the system and its covariance matrix P over relatively short
time intervals during which the conditions for linearity hold. This
means that all matrices of the above linear system are no longer time
invariant and have to be determinated for every time step. This is
usually done by approximating the system about a nominal trajectory
and linearisation by taylor series truncation. Let’s consider a non linear
continuous system given by:

ẋ = f(x, u) (29)

y = h(x, u) (30)

(31)

also the trajectory is given by:

˙̃x = f(x̃, ũ) (32)
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for small deviations, a truncated taylor series approximation can be
assumed to be:

∂ f

∂ x
=


∂ f1
∂ x1

. . . ∂ f1
∂ xn

... . . .
∂ fn

∂ x1

∂ fn

∂ xn

 (33)

x(t) = x̃(t) + ∆x(t) (34)

˙̃x+ ∆ẋ = f(x̃, ũ) +
∂

∂ x
f(x̃, ũ)∆x+

∂

∂ u
f(x̃, ũ)∆u (35)

The deviation term can be denoted in shorter form, using A(t), G(t),
H(t) and D(t):

∆ẋ = A(t)∆x+G(t)∆u (36)

∆y = H(t)∆x+D(t)∆u (37)

As you can easily see, the system’s matrices are time variant. In sum-
mary the following steps have to been done for each time interval to
run the Kalman filter on the non-linear system:

1. Linearisation about the nominal trajectory, usually taken to be
the latest estimate of the states.

2. Calculate the discrete system from the continuous.

3. Integrate the state prediction equations: the differential equa-
tions for the nominal trajectory and the deviations from it. Then
adding the result.

4. Calculate the Kalman equations, to get best estimates of the de-
viations from the nominal trajectory. The correction summand,
given by the Kalman gain multiplied by the measurement differ-
ences can added directly to the predicted state estimates.

5. Proceed to next time interval and return to 1.

This leads directly to the following discrete system representation of
the non-linear system [3]:

x(ti+1) = Φ(ti+1, ti)x(ti) +G(ti)u(ti) + w(ti) (38)

y(ti) = H(ti)x(ti) + v(ti) (39)
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This equation expresses the error deviation from the system state
x(ti+1), in which the matrices Φ, G and H represent the vector deriva-
tives. By using them instead of the timeinvatiant matrices of the linear
filter, the Kalman Gain matrix for the non linear system is computed
as given above.ead of the timeinvatiant matrices of the linear filter, the
Kalman Gain matrix for the non linear system is computed as given
above.

5 Conclusion

The basic principles of position measurement and navigation in iner-
tial systems have been presented, in order to give a brief to this theme.
The strapdown technology, which plays the most important role for
the future, has been identified as the most sensitive because of its
heavy addiction of precise attitude measurement. Therefore, high per-
formance gyroscopes must be combined with accurate filter algorithms
like the Kalman filter, in order to get further information from extern,
improving the system’s accuracy.
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[2] E. v. Hinüber, ’Inertiale Meßsysteme mit
faseroptischen Kreiseln’, iMAR Gmbh St.
Ingbert, 2002

[3] Z. Chen, ’Entwicklung und Implementierung
eines Extended Kalman Filters zur
Kompensation der Fehlerdynamik eines
bioanalogen Inertialen Messsytems’,
Semesterarbeit, TU München, Lehrstuhl für
angewandte Mechanik, 2005

[4] P. S. Maybeck, ’Stochastic Models, Estimation,
and Control Volume 1’, Academic Press, New
York San Francisco London, 1979


	Motivation
	Basic principles of inertial navigation systems
	Basic types of inertial navigation systems
	Reference frames
	Strapdown attitude representations

	Sensor technology
	Accelerometers
	Gyroscopes

	Sensor fusion and Kalman filtering
	Combination of independent estimates
	Kalman filtering
	Extended Kalman filtering

	Conclusion

