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Abstract

The paper considers the notion of generalized Chebyshev polynomials. Their connection
with plane trees and Galois theory is described. Belyi functions are defined as a further
generalization of generalized Chebyshev polynomials.
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1 Introduction

1.1 P. Chebyshev

Pafnuty Lvovich Chebyshev (May 26, 1821 – December 8, 1894) was one of nine children
who was born in the village of Okatovo, Borovsk District, Kaluga province into the family
of the landowner Lev Pavlovich Chebyshev. In 1832 the family moved to Moscow. In 1837
Chebyshev started the studies of mathematics at the philosophical department of Moscow
University and graduated from the university as ”the most outstanding candidate”.

In 1847, Chebyshev defended his dissertation ”About integration with the help of loga-
rithms” at St Petersburg University. Chebyshev lectured at the university from 1847 to 1882.
In 1882 he left the university and completely devoted his life to research. Chebyshev is known
for his work in the field of probability, statistics and number theory. Chebyshev is considered
to be one of the founding fathers of Russian mathematics. Among his students were Aleksandr
Lyapunov and Andrey Markov.

1.2 Chebyshev polynomials

The notion of Chebyshev polynomials is well known. They are useful in various fields of studies.
A lot of generalizations of them have been found and investigated. In this paper we shall talk
about one of them, which can also be referred to as Shabat polynomials. Here we shall discuss
one-to-one correspondence of Shabat polynomials, plane trees and finite extensions of rational
numbers.

2 Basic Definitions

In this section we shall give several definitions of Chebyshev polynomials. Then we turn to
motivation of definition of Shabat polynomials, and finally we shall give the formal definition
of these polynomials.

2.1 Definitions and properties of Chebyshev polynomials

The most widely used definition of Chebyshev polynomials can be given by the following
formula:

Tn(cos(x)) = cos(nx)

This definition is useful for calculations with Chebyshev polynomials. For example, the
following property can be easily proved:

Theorem 1 Tn(Tm(x)) = Tmn(x) = Tm(Tn(x))

Proof

Tn(Tm(x)) = Tn(cos(mx)) = cos(mnx) = Tmn(cos(x))

⊔⊓
Chebyshev polynomials can also be defined With the help of the following norm:

Definition 2.1 Let f(x) be a continuous function defined on the segment [−1, 1]. Then we
define the norm of this function |f | = max(f(x)|x ∈ [−1, 1]).

Then the definition of Chebyshev polynomials can be given in the following way:

Definition 2.2 Tn(x) is the polynomial with the smallest norm among all the polynomials
with the leading coefficient 1

2n .
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Note that Chebyshov Polynomials reach their maximal value exactly in n+1 points which
are cos( k

n
π) where k = 0 . . . n.

This property of Chebyshev polynomials is important in the approximation theory. The
roots of the Chebyshev polynomials (which are also referred to as Chebyshev nodes) are
theoretically the best nodes functions with polynomials.

The following theorem gives us one more property of Chebyshev polynomials, which is also
sometimes used as their definition.

Theorem 2 Chebyshev polynomials form an orthonormal basis for the space of polynomials
in one variable with respect to the scalar product defined in the following way:

< f, g >=

1
∫

−1

f(x)g(x)√
1 + x2

.

For conclusion we give here a number of properties which can be used to calculate the
coefficients of Chebyshev polynomials directly.

Theorem 3 The recursive formula for Chebyshev polynomials

Tn+1(x) = 2xTn(x) + Tn−1(x)

And two direct formulas

Tn(x) =
∑

2j≤n

(

n

2j

)

xn−2j(x2 − 1)j

Tn(x) =
(−1)n

√
1 − x2

(2n − 1)!!

dn

dxn
(1 − x2)n− 1

2

2.2 Motivation of definition of generalized Chebyshev polyno-

mials

Consider a polynomial P (z) of degree n with complex coefficients. It maps a complex plane
onto another one. Take point w ∈ C and consider its inverse image P−1(w) = {z|P (z) = w}.
This set usually consists of n distinct points, but if z is also a root of P ′(z) then the size of
this set is smaller than its usual value.

Definition 2.3 A complex number z is called a critical point of P if P ′(z) = 0

Definition 2.4 Critical value of polynomial is its value in its critical point.

Definition 2.5 Let z be a critical point of P and let P ′(z) = P ′′(z) = · · · = P (k−1)(z) = 0
and P (k)(z) 6= 0 then we say that critical point z has order k. Also sometimes we shall call
non-critical points critical points of order 1.

Since P ′(z) is a polynomial of degree n − 1, the polynomial P (z) usually has n − 1 critical
points(of order 2) and n − 1 critical values. But in some cases critical points glue together
forming a critical point of a higher order and/or some critical values may be attached into the
same value. What we are interested in is the most degenerate case, when the set of critical
values of P (z) is as small as possible.

It can be easily seen that the set of critical values of polynomial consists of only one critical
value if and only if this polynomial is zn or its linear transformation.

And now we can define generalized Chebyshev polynomials.
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Definition 2.6 Polynomial f(z) is called generalized Chebyshev polynomial (GCP) if it has
two critical values at most.

We immediately see two simple examples which are zn and Tn(z).
The other definition of GCP can be obtained from the following theorem.

Theorem 4 Let w1 and w2 be distinct complex numbers. Then for each polynomial P (z) the
size of the union of P−1(w1) and P−1(w2) is at least n + 1. And this maximum is reached if
and only if P is GCP.

Proof Let

P (z) − w1 =

d1
∏

i=1

(z − ai)
αi

P (z) − w2 =

d2
∏

i=1

(z − bi)
βi

where ai and bi are distinct complex numbers. Then we have the following:

d1
∏

i=1

(z − ai)
αi−1

d2
∏

i=1

(z − bi)
βi−1|P ′(z)

And we see that
d1
∑

i=1
αi − 1+

d2
∑

i=1
βi − 1 ≤ deg(P ′(z)) = n−1. But

d1
∑

i=1
αi =

d2
∑

i=1
βi = deg(P (z)) =

n, so we got n − d1 + n − d2 ≤ n − 1 and finally d1 + d2 ≥ n + 1. Here d1 + d2 equals the
size of the union of inverse images of w1 and w2. So the inequality in question is proved. The
equality takes place if and only if P ′(z) can be factored into the product of z − ai and z − bi

in certain powers. But it means that the only critical values of P are the values of P in points
ai and bi, which are w1 and w2 and the theorem is proved. ⊔⊓

It can be easily seen that linear transformations of GCP are also GSP. More formally: if
L1, L2 are linear functions C → C, and f(z) is GCP, then L1(f(L2(z)))) is also a GCP. Now
we can introduce an equivalence on GCP: polynomials f(z) and g(z) are called equivalent if
one of them is a linear transformation of another one (∃L1, L2 : g(z) = L1(f(L2(z))))).

2.3 Combinatorial bicolored plane trees

Everyone knows that a tree is a connected graph without circuits. Each tree can be drawn on
the plane in a number of ways. We are going to introduce an additional structure on a tree
to fix the type of picture of this tree.

Definition 2.7 Plane tree is a structure of a tree and for every vertex v a cyclic order on the
vertices adjacent to v.

So in this definition for each vertex we fix the order in which the edges adjacent to it should
be drawn. Now we shall define what plane trees we should consider equal.

Definition 2.8 Plane trees are called isomorphic if there exists an isomorphism of trees as
graphs which also preserves cyclic permutations from the definition of plane trees.

The equivalence class of plane trees is called a combinatorial plane tree.

Every tree has a natural structure of a bipartite graph: its vertices can be colored in two
colors. So through fixing one of the two colorings we obtain a bicolored plane tree.

Definition 2.9 Bicolored plane tree is a plane tree with vertices colored with two colors, in a
way described above.
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In the same natural way as in the case of plane trees, we shall introduce an isomorphism
of bicolored plane trees. Classes of equivalence of bicolored plane trees are combinatorial
bicolored plane trees. For the sake of brevity from now on the term tree means a combinatorial
bicolored plane tree.

3 Correspondence between trees and Chebyshev poly-

nomials

3.1 Definition

Let us consider the inverse image of a segment. We colored the ends of the segment in black
and white colors. Let [C0, C1] be the segment free of critical values of polynomial P (z). Then
the inverse image would be a set of disjoint sets, each of them being homeomorphic to a
segment.

Figure 1: Inverse image of a segment

Then we suppose that there are no critical points inside a segment, but they may appear at
one or both ends. Then several curvilinear segments may glue together with the monochrome
vertexes.

Figure 2: Inverse image of a segment with critical values on its ends.

Anyway we get a bicolored graph on a plane, whose vertices are inverse images of the ends
of segment.

Let us consider the case when P (z) is GCP and the segment joins its critical values. First
we look at two simple examples: P (z) = zn Its only critical value is 0 and we choose the
second point to be equal 1. So we have a ”star” since the solutions of equality zn = t for
t ∈ [0, 1] have the argument equal to k

n
2π.

Figure 3: P (z) = z
n.

Another example is P (z) = Tn(z). Its critical values are 1 and −1. The inverse image of
the segment [−1, 1] consists of only real numbers. So we get a ”chain”.
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Figure 4: P (z) = Tn(z).

Now given a GCP, we can construct a bicolored plane graph. The following theorem gives
us more information on the graph constructed.

Theorem 5 For each GCP f(z) the graph constructed is a bicolored plane tree.

Proof It is clear that the constructed graph has n + 1 vertices (since the union of inverse
images of critical values of GCP consists of n + 1 points) and n edges (because the segment
has no critical values on it, and the inverse image of each point on it consists on exactly n
points). What we need is to prove that the graph has no circuits.

In case of existence of a circuit, our polynomial f(z) takes only real values on the boundary
of domain bounded by our circuit. It means that the harmonic function Im(f(z)) equals
zero on the boundary. But it means that Im(f(z)) = 0 on the whole domain, which is a
contradiction. ⊔⊓

And now the central theorem of this section.

Theorem 6 For each combinatorial bicolored plane tree T there exists a GCP such that the
corresponding inverse image is isomorphic to T . Moreover, this GCP is unique up to the
equivalence introduced above.

And we have a bijection between the classes of equivalence of GCP and combinatorial
bicolored plane trees.

3.2 Canonical geometric form

As we know from the previous section, for each tree we can construct a GCP. Also, given
a GCP, we are able to construct a picture of a tree on the complex plane and the view of
this picture is unique up to linear transformations of complex plane which do not change the
geometric form of the picture. So for each tree we have a canonical way how to draw it on
the plain. Now we shall look at several pictures of canonical geometric forms trees.
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3.3 Calculation of GCP

The main question of the section is: given a tree, how can we calculate the coefficients of the
corresponding GCP? The first way is based on the following system of polynomial equations.

P (z) = λ
∏

i=1

d1(z − ai)
αi

P (z) − 1 = λ
∏

i=1

d2(z − bi)
βi
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Here we suppose critical values of P to be 0 and 1. αi and βi are the degrees of black and
white vertices of the tree. These two polynomial equations give us n algebraic equations in
n + 2 variables. It allows us to find coefficients of GCP since these two degrees of freedom
correspond to the choice of linear transformation.

When we calculate coefficients of GCP, we use only the degrees of vertices of our tree.
So for a number of trees we have the same system of equation. All such trees form a family
< α, β > where α = (α1, α2, . . . ), β = (β1, β2, . . . ). By solving the system of equations we can
find all the polynomials which correspond to the trees of this family.

Here are examples of trees and their polynomials:

P (z) = z3(z2 − 2z + a)

where a = 34+6
√

21
7 for the left tree and a = 34−6

√
21

7 for the right one.

P (z) = z3(z − 1)2(z − a)

where a is a root of polynomial 25a3 − 12a2 − 24a − 16.
The computation of coefficients of GCP for a tree with a big number of vertices becomes a

complicated problem since we have to solve a system of algebraic equations of a high degree,
so another way is to be found, and it has been found. The idea of the new method is the
following:

First we calculate coefficients not precisely. It can be done by using the class of polynomials
with the following conditions: 1.There exist complex numbers C and w such that g(w) = C,
f ′(w) = 0, f ′′(w) 6= 0

2.If f ′(z) = 0, then f(z) = ±1 or z = w.
By changing the parameters C and w we can find the approximate values of coefficients of

each GCP.
And in the second stage we find precise values of coefficients.
Here we give a small example of GCP which has been calculated with this method, but

cannot be calculated in any other way.
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4 GCP in Galois theory

It can be easily seen that the group Gal(Q̄/Q) acts on the set of GCP with algebraic coefficients
since their coefficients are solutions of a system of algebraic equations with rational coefficients.
So Galois group moves GCP to GCP. This leads us to the concept of the field of definition
of a tree. So we have defined the action of Galois group on trees (since there is a one-to-one
correspondence between trees and GCP).

Definition 4.1 Field of definition of a tree is a field which corresponds to the subgroup of
Gal(Q̄/Q) that fixes the specific tree.

The next theorem makes it clear that this notion is really useful.

Theorem 7 For any bicolored plane tree there exists a generalized Chebyshev polynomial
whose coefficients belong to the field of definition of the tree. Moreover, each finite extension
of rational numbers is a field of definition of certain tree.

5 Composition of GCP

It is well known that the composition of Chebyshev polynomials is Chebyshev polynomial,
too. And is this the case for generalized Chebyshev polynomials? The next theorem gives an
answer.

Theorem 8 Let f , g be GCPwith critical values equal to 0 and 1 such that /f(0), f(1)/ lie
in /0, 1/. Then the composition f(g(x)) is also GCP.

Proof f(g(x))′ = 0 ⇒ g′(x)f ′(g(x)) = 0 ⇒ g′(x) = 0 or f ′(g(x)) = 0 ⇒ f({0, 1}) ⊂ {0, 1} ⊔⊓
Let us imagine that we have two trees TP and TG. Their polynomials are P (z) and G(z). And
we need to construct a tree which corresponds to P (G(z)). We can calculate P (z) and G(z),
find their composition and then construct a tree.But there is a direct way to do it.

First note that the geometrical meaning of condition F ({0, 1}) ⊂ {0, 1} is that there are
two vertices of TP that lie at the points 0 and 1. Thus, TP is not simply a tree but a tree
with two distinct vertices. These two vertices divide TP into 3 parts: ”body”, ”head” and
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”tail”. Where the ”body” contains the vertices between distinguished ones, including them,
the ”head” contains vertices from the side of 0 including 0 and the ”tail” contains vertices
from the side of 1 including 1. And finally, in TP we substitute the ”body” for each edge (in
such a way that zero vertices from ”bodies” glues to white vertices of TQ), and then for each
vertex of TQ we glue the number of ”heads” or ”tail” with respect to the color of this vertex to
this vertex in such a way that there is exactly one ”head” (”tail”) between each two ”bodies”.
This completes the construction.

6 Belyi functions

Given a tree, we know how to construct a polynomial. But we also can find a solution in the
case of plane maps.

Definition 6.1 Let f be a rational function on the Riemann sphere that satisfies the following
conditions: 1. f has only three critical values: 0, 1, ∞ 2. All points of f−1(1) are critical
with the degree exactly equal to 2. These functions are called Belyi functions.

The idea is that for each Belyi function we can construct a plane map, and this correspon-
dence is a bijection if Belyi functions are considered up to linear transformations of Riemann
sphere(i.e. functions of type az+b

cz+d
).

The map construction procedure from Belyi function looks as follows:
f−1(∞) are vertices.
f−1(1,∞) are edges ( f−1(1) are points on the edges)
f−1(0) are points on faces of a map.
And the last theorem shows the connection between GCP and Belyi functions.

Theorem 9 Let P (z) be a GCP with critical values equal to −1 and 1. TP is the tree which
corresponds to P . Then the Belyi function which corresponds to TP can be calculated with the
following formula:

f(z) =
1

1 − P (z)2
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