Dimension-adaptive Sparse Grids

Jörg Blank

April 14, 2008
(1) Data Mining

- Function Reconstruction
(2) Sparse Grids
- Motivation
- Introduction
(3) Combination technique
- Motivation
- Dimension-adaptive

4 Examples
(5) Outlook

Data Mining: An use case for sparse grids

- Deduce knowledge from a (large) database
- Recover a function from test results
- Cope with measurement errors

Function Reconstruction

Function Reconstruction

Datasets

- Higher dimensions are common.

$$
S=\left\{\left(x_{i}, y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}\right\}_{i=1}^{M}
$$

- d-dimensional dataset with M entries
- y_{i}-function value
- Restricting y_{i} to an arbitrary number of classes is possible

Datasets

- We assume that the data points are evaluations of an unknown function f

Definition

Wanted: a function

$$
\begin{gathered}
y=f\left(x_{1}, x_{2}, \ldots, x_{d}\right) \\
f \in V
\end{gathered}
$$

where V is a function space over \mathbb{R}^{d}

Regularisation

Recover this function as good as possible!

$$
\begin{gathered}
\min _{f \in V} R(f) \\
R(f)=\frac{1}{M} \sum_{i=1}^{M} \Psi\left(f\left(\mathbf{x}_{i}\right), y_{i}\right)+\lambda \Phi(f)
\end{gathered}
$$

- $\Psi(x, y)=(x-y)^{2}$
- $\Phi(f)=\|\nabla f\|_{2}^{2}$

Discretization

- We confine V to a discrete space V_{N}
- A function $f_{N} \in V_{N}$ can now be written as:

$$
f_{N}=\sum_{j=1}^{N} \alpha_{j} \phi_{j}(\mathbf{x})
$$

- weights: $\left\{\alpha_{i}\right\}_{i=1}^{N}$
- a base: $\Phi_{N}=\left\{\varphi_{i}\right\}_{i=1}^{N}$

The choice of basis functions has a major impact on viability and accuracy of this approach.

Differentation of $R\left(f_{N}\right)$ now yields for $k=1 \ldots N$:

$$
\sum_{j=1}^{N} \alpha_{j}\left[M \lambda\left(\nabla \varphi_{j}, \nabla \varphi_{k}\right)_{L_{2}}+\sum_{i=1}^{M} \varphi_{j}\left(\mathbf{x}_{i}\right) \cdot \varphi_{k}\left(\mathbf{x}_{i}\right)\right]=\sum_{i=1}^{M} y_{i} \varphi_{k}\left(\mathbf{x}_{i}\right)
$$

Which is a system of linear equations with N unknowns and N equations and can be written in matrix form:

$$
\left(\lambda C+B \cdot B^{T}\right) \alpha=B y
$$

This system is symmetric and positiv definite and can be solved using a standard solver like Conjugated Gradients method.

Choice of base functions

- Nodal basis yields: $O\left(n^{d}\right)$
- Not viable even for medium dimension counts
- Solution: Use less grid points!

Hat functions

$$
\begin{gathered}
\phi(x)= \begin{cases}1-|x| & \text { if } x \in[-1,1] \\
0 & \text { otherwise }\end{cases} \\
\phi_{l, i}(x)=\phi\left(\frac{x-i \cdot h_{l}}{h_{l}}\right)=\phi\left(\frac{x-i \cdot 2^{-1}}{2^{-l}}\right)=\phi\left(x \cdot 2^{\prime}-i\right)
\end{gathered}
$$

An hierarchical basis

Figure: Datamining mit Dünnen Gittern, Pflüger

An hierarchical basis

Figure: Datamining mit Dünnen Gittern, Pflüger

Pagoda

This function can be enhanced to a d-linear function
Definition

$$
\phi_{\mathbf{l}, \mathbf{i}}(\mathbf{x}):=\prod_{j=1}^{d} \phi_{l_{j} \cdot i_{j}}\left(x_{j}\right)
$$

Figure: AWR2, Bungartz

Sparse Grids

Extending the hierarchical pattern yields a subgrid scheme (in 2D case):

Figure: AWR2, Bungartz

Use grids with large contribution to the solution and few gridpoints

Regular Sparse Grids have a far better behaviour:
$O\left(n * \log (n)^{d-1}\right)$

This leads to the well known pattern:

Figure: AWR2, Bungartz

Working with Sparse Grids involves a lot of overhead:

Figure: AWR, Bungartz

It is possible to create a similiar structure by combining multiple, much coarser full grids

Figure: AWR2, Bungartz

For the 2D case:

$$
f_{n}^{(c)}(\mathbf{x}):=\sum_{\| \|_{1}=n+1} f_{\mathbf{l}}(\mathbf{x})-\sum_{\| \|_{1}=n} f_{\mathbf{l}}(\mathbf{x})
$$

Or more general:

Definition

$$
f_{n}^{(c)}(\mathbf{x}):=\sum_{q=0}^{d-1}(-1)^{q}\binom{d-1}{q} \sum_{\mid \mathbf{I}_{1}=n-q} f_{\mathbf{1}}(\mathbf{x})
$$

This formula is derived from the combinatorial 'inclusion-exclusion' principle!

Characteristics

- Existing codes for full grids can be used
- Embarrassingly parallel: Each subgrid can be computed without communication
- Still less points than regular nodal grids
- Only for regular sparse grids!

Generalisation

Generalisation

Allowing all subspace combinations would be a bad idea!

Definition

Admissibility
\mathcal{I} - set of selected indices

$$
\underline{k} \in \mathcal{I} \text { and } \underline{j} \leqslant \underline{k} \Rightarrow \underline{j} \in \mathcal{I}
$$

Combination

Combination

Example: Combining a $(2,3)$ and a $(3,1)$ grid

Adaptivity

Start with the smallest grid: $\underline{1}=(1, \ldots, 1)$
Successively add new grid indexes:

- new index set must remain admissible
- new index must provide a significant contribution to the general solution

Error indicator

How to measure the contribution of an index?

- Calculate $\varepsilon=R(f)$
- The regularisation term may be omitted
- a large ε indicates a bad fitting \rightarrow further refinement needed

Algorithm

- Initizalize index set $I=\{\underline{1}\}$
- Initizalize old index set $O=\{ \}$
- Solve problem on 1
- while global $\varepsilon>$ bound
- Choose $\underline{i} \in I$ with largest ε_{i}
- Refine in all dimensions, if admissible in O
- Move \underline{i} to O
- Calculate problems and ε on new indexes
- Update global ε

Algorithm

Why dimension-adaptivity?

Consider:

$$
f(\mathbf{x})=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{d}\left(x_{d}\right)
$$

- All dimensions are totally independant
- It is possible to reconstruct the function with very little grid points
- The introduced algorithm can produce a near optimal result

Additive functions

$$
f\left(x_{1}, x_{2}\right)=e^{-x_{1}^{2}}+e^{-x_{2}^{2}}
$$

Multiplicative functions

$$
f\left(x_{1}, x_{2}\right)=e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}
$$

Mixed functions

$$
f\left(x_{1}, x_{2}\right)=e^{-x_{1}^{2}}+e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}
$$

Outlook

- Up to 15 dimensions possible in real world applications
- Or more if not to many dimensions hold informations...
- It is possible to use other coefficients for combination
- One possibility: minimize difference to 'normal' sparse grids
- This is called opticom technique by Garcke
- Additional computional complexity, but better stability

Outlook

Other application areas:

- Integration

An alternative for Monte-Carlo-Integration for high dimensional integrals

- Solving PDEs

Possibility to solve PDEs in high dimensions or using a space-time-discretization

- Of course there is still the 'real' sparse grid technique

Thank you for your attention.

