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Abstract
The Schrödinger equation:

(
− h̄2

2m∇2 + V̂(x)
)

Ψ(x, t) = ih̄∂tΨ(x, t). In

NMR spectroscopy, the kinetic term − h̄2

2m∇2 can be abbandoned an V̂(x)
splits in Hd and Hc, where Hd can be diagonalised and Hc has a recursive
shape. In order to overlap the time propagation U(t) = e−iĤ∆t with the
desired matrix UG, a gradient flow algorithm can be utilized. This leads
to some numerical challenges thus as calculating a matrix exponential as
well as producing the product of many matrices.
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Figure 1: Illustration of prominent problem classes

1 Introduction

1.1 Quantum computing
A quantum computer uses so called qubits instead of traditional bits to
solve some problems more efficiently than on classical hardware:

• Integer factorization is one way to break the popular crypographic
algorithm RSA. The best known algorithm on traditional hardware

runs in O
(

exp
((

64
9 b
) 1

3 (log b)
2
3

))
(General number field sieve

(GNFS)). Shor’s prime factorisation would run in polynomial time,
if a quantum computer would be available to run it.

• Traditional array searches run in O(n), whereas the Grover-Algorithm
gets the job done in O(

√
n).

• Quantum-Simulation: to simulate quantum systems, it is obviously
a good choice to use quantum systems.

Quantum control plays a key role in quantum technology, as quantum
gates aren’t hardwired as in traditional chips, but sophisticated manipu-
lations of quantum systems. These quantum gates have to be calculated
very precisley as it is their purpose to bring the system in a defined state

1.2 What is not possible
The class of problems a quantum computer can solve in polynomial time
with an error propability of less than 1/4 is called BQP. It is known, that
P ⊆ BQP and that BQP is a subset of NP. However, it is not known, if
BQP is a true subset of NP, which would yield that P 6= NP and therefore
solve the P = NP problem. Another problem is the feasibility: The biggest
approved quantum register realized up to now could hold 8 qubits and
therefore quantum computing is no realistic option for real problems in
the next couple of years. For instance, to factorize a n bit integer, you need
up to 2 · dlog2(n)e qubits.
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2 Physics

2.1 Classic mechanics
Newton law states F = m · ẍ, where m is the mass, ẍ the acceleration
and F the resulting force.1 Disregarding friction, this can be shown to be
equivalent to d

dt
∂L
∂ẋ −

∂L
∂x = 0 with L = 1

2 ·m · ẋ2 −V(x) (V(x) is the poten-
tial energy) being the Lagrange-Function. Hamilton has shown that the
Lagrange equation is equivalent to this system of two partial differential
equations:

• ṗ = − ∂H
∂x

• ẋ = ∂H
∂p

With p being the momentum p = m · ẋ = ∂L
∂ẋ and H = 1

2 mẋ2 + V(x) =
p2

2m + V(x) being the energy of the system.

2.2 Quantum Mechanics
In classical physics, x(t) is a function which describes the trajectory of a
mass point exactly. In quantum mechanics x(t) is replaced by the wave
function Ψ(x, t). The Correspondence principle Classical functions become
operators on the wave function whose eigenvalues are the observable val-
ues. In position space, this yields x → x̂, p → −ih̄∇ and E → ih̄∂t.
This substitution is due to the correspondence principle, which is not re-
ally the source but a consequence of quantum mechanics.2 Applied to
the Hamilton equation this yields the Schrödinger equation (− h̄2

2m∇2 +
V̂(x))Ψ(x, t) = ih̄∂tΨ(x, t).

2.3 Spin
2.3.1 Discovery

In 1922, Otto Stern and Walther Gerlach made an experiment with acceler-
ated silver-atoms in an inhomogenous magnetic field and found that the
ray got split in two parts along the magnetic field axis. This was unex-
pected since the only relevant 5s valence electron has no orbital angular
momentum and hence no magnetic dipole moment which could interact
with the magnetic field. Today we know that electrons have an intrin-
sic attribute we call spin and which is correlated with a magnetic dipole
moment with the so called g-factor. Spin is not simple angular momen-
tum, because electrons are point-shaped and have no volume (as far as
we know). The schrödinger equation does not predict spin as there is no
classical analogon to it and we derived the equation by applying the cor-
respondence principle to the Hamilton function. To completly understand
spin, one has to do relativistic calculations and use the Dirac equation, but
this is beyond the scope of this paper.

1As we know today, this is just an approximation. In cases, where high velocities are involved,
one should use Einstein’s theory of special relativity.

2But this way, it is simpler to understand
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2.3.2 The Spin operator

Let z be the distinguished axis. From the Stern-Gerlach experiment we
know that the eigenvalues of Ŝz have to be ± h̄

2 . Hence there have to be
two different linear independent eigenvectors which we call (for historical
reasons) |↑〉 and |↓〉. Therefore we can write the spin state of our electron
as a complex linear combination of these two vectors.(

α
β

)
= α |↑〉+ β |↓〉 ∈ C2

Because |α|2 equals the propability of finding |↑〉 in an experiment and
|β|2 equals the propability of finding |↓〉, the normation condition is |α|2 +
|β|2 = 1.

2.3.3 The Pauli spin matrices

In analogy to classic angular momentum, the spin operator has to satisfy
[Ŝx, Ŝy] = ih̄Ŝz and cyclical with [A, B] := AB− BA being the commutator.
The spin operators in the three dimensions can be written as matrices:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
With Ŝi = h̄

2 σi.

2.4 Coupled Spins
In order to couple two spins in one system, one has to calculate the kro-
necker product of these two systems. Therefore we yield 22 = 4 new basis
vectors:

|↑〉 ⊗ |↑〉 =: |↑↑〉 (1)

|↑〉 ⊗ |↓〉 =: |↑↓〉 (2)

|↓〉 ⊗ |↑〉 =: |↓↑〉 (3)

|↓〉 ⊗ |↓〉 =: |↓↓〉 (4)

In general, one can couple n spins by producing the kronecker product of
all basis vectors, yielding 2n basic states. The potential between two spins
is direct proportional to the scalar product of the two spin operators or to
be more exactly their eigenvalues:

V̂ = µŜ(1) ◦ Ŝ(2) = µ

(
Ŝ(1)

z ⊗ Ŝ(2)
z +

1
2

(
Ŝ(1)

+ ⊗ Ŝ(2)
− + Ŝ(1)

− ⊗ Ŝ(2)
+

))
With µ being a constant and Ŝ± = Ŝx ± iŜy with the attributes

Ŝ+ |↑〉 = 0 Ŝ+ |↓〉 = h̄ |↑〉 (5)

Ŝ− |↑〉 = h̄ |↓〉 Ŝ− |↓〉 = 0 (6)

We can describe the complete potential of a system by a hermitian 2n × 2n

matrix with vanishing trace.
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Figure 2: 900MHz, 21.2 T NMR Magnet at HWB-NMR, Birmingham, UK;
credit: wikipedia

3 Nuclear magnetic resonance

3.1 preposition
Nuclei of atoms have like electrons their own spin. One can couple mul-
tiple spins in an experimental setup and manipulate them by external
magnetic fields. Spins can be measured by stimulated emission of radia-
ton The technical challenges include the creation of very strong magnetic
fields (≈ 20T) and the compensation of the energy relaxation as well as
avoiding of the decoherence. Each physical system propagates towards it’s
energetic ground state. This energy relaxation called phenomen erases the
qubits after a certain amount of time, which makes the quantum computer
unusable. Also, the superposition of multiple spins can be destroyed by
interaction with the environment; this is called decoherence and to avoid
it, one has to isolate the experimental setup very carefully from the out-
side.

3.2 Some Physics
We remember the Schrödinger equation:

ĤΨ(x, t) =

(
− h̄2

2m
∇2 + V̂(x)

)
Ψ(x, t) = ih̄∂tΨ(x, t)

In our case, the particles don’t move, so we can abbandon the kinetic term
− h̄2

2m∇2. We already know the potential for two particles. For n particles,
this yields

V̂(x) =
1
2 ∑

i 6=j
µijŜ(i) ◦ Ŝ(j)

This is a 2n × 2n matrix which can be diagonalised. In the following, we
will refer to this diagnoalised matrix as Hd. Previously we stated that the
spin system can be controlled by external magnetic fields. In our formal
model this can be read as application of the Ŝ± operators on single spins.
For n spins which can be separatley influenced, the controlled potential is

V̂c =
n−1

∑
k=0

(uk(·12k ⊗ σx ⊗ 12n−k−q + i · 12k ⊗ σy ⊗ 12n−k−q ))
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Figure 3: Induced spinflips in a two particle system: red is 12 ⊗ Ŝ+ and blue
is Ŝ+ ⊗ 12.

Which we will call Hc. One can build the matrix of Hc for n particles using
the following recursion:

An+1 =
(

An 12n

12n An

)
With A0 = (0) being the matrix for zero particles.

3.3 The GRAPE algorithm
3.3.1 The solution of the Schrödinger equation

The time-independent Schrödinger equation ih̄∂tΨ = ĤΨ (in the Gaussian
system: i∂tΨ = ĤΨ) has the solution: Ψ(t) = e−iĤtΨ(0). With the matrix
exponential function eĤ = ∑∞

k=0
Ĥk

k! . Our Hamiltonian was: Ĥ = Hd +
Hc(u1(t), . . .) = Hd + ∑j Hj(t) With Hj(t) piecewise constant on t + ∆t. So

in our case the solution is: Ψ(t) = e−i∆tĤ(tk)e−i∆tĤ(tk−1) · · · e−i∆tĤ(t1)Ψ(0) =:
U(t)Ψ(0) With k∆t = t.

3.3.2 Quantum gate construction

A quantum gate is an operation on the spin state of the system which
performs a desired change in it, e.g. NOT, NAND, XOR,. . .. For each of
these gates the desired operation can be described by a matrix UG. So
the challenge is: adjusting Hj(tk) so that U(t) overlaps best with UG for
a given time t = T. It can be shown that maximising < tr(U†

GU(T))
subject to ∂tU(t) = −iĤU(t) optimizes the propagator. To solve this task,
Khajena and Glaser came up with a gradient flow algorithm they called
”gradient ascent pulse engineering” (GRAPE):
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Figure 4: The control term for a 4 spin system: Each dot stands for a non-zero
entry in the matrix; The recursion can be seen, starting from the top left corner
where A0 = 0 resides. The next bigger rectangle has this in its main diagonal
and the identity in its secondary diagonal. And so on.

1. Set initial controls u(r)
j (tk) for all times tk (k ∈ {1, 2, . . . , M}) at ran-

dom or by guess

2. For each k ∈ {1, . . . , M} do:

(a) Calculate the forward-propagation U(tk) = e−i∆tĤ(tk)e−i∆tĤ(tk−1) · · · e−i∆tĤ(t1)

(b) Calculate the backward-propagation Λ(tk) = e−i∆tĤ(tk)e−i∆tĤ(tk+1) · · · e−i∆tĤ(tM)

(c) Update u(r+1)
j (tk) = u(r)

j (tk) + ε<
(

tr
(

Λ†(tk)(−iĤj)U(tk)
))

3. Return to step 2 with the new controls u(r+1)
j

One can set the initial controls found with other algorithms, e.g. CORPSE
or short-CORPSE (SCORPSE), but this is not really necessary since GRAPE
will always find the nearest local optimum to its starting position. But
Note: It can never be proven that the global optimum is found, so we
shall reference the resulting controls as optimized rather than optimal.

3.3.3 Challenges of GRAPE

GRAPE converges to a local optimum of U(t). It is necessary to re-run it
a couple of times with different initial values to confirm that the global
maximum is reached altough this cannot be proven. GRAPE also brings
some computational challenges, as it requires it’s user to calculate the
exponential of multiple sparse matrices Uk := e−i∆tĤ(tk) as well as the
product of many different matrices U(tk) = Uk ·Uk−1 · · ·U1 in each step.
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