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Quantum computing
Computing

A quantum computer uses so called qubits instead of traditional bits
to solve some problems more efficiently than on classical hardware:

• Shor’s prime factorisation in polynomial time

• Grover-Algorithm for array searches in O(
√

n)
• Quantum-Simulation: to simulate quantum systems, it is

obviously a good choice to use quantum systems

Control

Quantum control plays a key role in quantum technology, as quantum
gates aren’t hardwired as in traditional chips, but sophisticated
manipulations of quantum systems.
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What is not possible
Complexity

• BQP: The class of problems
a quantum computer can
solve in polynomial time with
an error propability of less
than 1/4.

• It is known, that P ⊆ BQP.
• Though BQP is a subset of

NP, it is not known if it is a
true subset.

• Proof that BQP ( NP would
yield that P 6= NP and
therefore solve the P = NP
problem.

NP

BQP

P

Figure: Illustration of prominent
problem classes
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Classic mechanics
Newton and Lagrange

• Newton’s Law: F = m · ẍ

• Disregarding friction, this can be shown to be equivalent to
d
dt

∂L
∂ẋ −

∂L
∂x = 0 with L = 1

2 ·m · ẋ2 −V(x) being the
Lagrange-Function

Hamilton

Hamilton has shown that the Lagrange equation is equivalent to this
system of two partial differential equations:

• ṗ = − ∂H
∂x

• ẋ = ∂H
∂p

With p being the momentum p = m · ẋ and

H = 1
2 mẋ2 + V(x) = p2

2m + V(x) being the energy of the system.
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Quantum Mechanics

The wave function

• In classical physics, x(t) is a function which describes the
trajectory of a mass point exactly.

• In quantum mechanics x(t) is replaced by the wave function
Ψ(x, t).

The Correspondence principle

Classical functions become operators on the wave function whose
eigenvalues are the observable values. In position space, this yields
x → x̂, p → −ih̄∇ and E → ih̄∂t.

The Schrödinger equation

Applied to the Hamilton equation this yields the Schrödinger equation
(− h̄2

2m∇2 + V̂(x))Ψ(x, t) = ih̄∂tΨ(x, t)
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Spin

Discovery

• In 1922, Otto Stern and Walther Gerlach experimented with
accelerated atoms in inhomogenous magnetic fields

• The ray got split in two parts

Explanation

• Electrons have an own attribute we call spin
• This is correlated with a magnetic dipole moment
• Spin is not angular momentum
• The Schrödinger equation does not directly inhibit spin. To save

us from relativistics, we apply it as a hack
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The Spin Operator
The spin operator

• Let z be the distinguished axis. From the Stern-Gerlach
experiment we know that the eigenvalues of Ŝz have to be ± h̄

2 .

• Hence there have to be two different linear independent
eigenvectors which we call (for historical reasons) |↑〉 and |↓〉.

• Therefore we can write the spin state of our electron as a
complex linear combination of these two vectors.(

α
β

)
= α |↑〉+ β |↓〉 ∈ C2

• Because |α|2 equals the propability of finding |↑〉 in an
experiment and |β|2 equals the propability of finding |↓〉, the
normation condition is |α|2 + |β|2 = 1.
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The Pauli spin matrices
From vector to matrix

• In analogy to classic angular momentum, the spin operator has
to satisfy [Ŝx, Ŝy] = ih̄Ŝz and cyclical with [A, B] := AB− BA
being the commutator.

• The spin operators in the three dimensions can be written as
matrices:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
With Ŝi = h̄

2 σi

• We can test our commutator relation from above:

[Ŝx, Ŝy] =
h̄2

4

((
0 1
1 0

)(
0 −i
i 0

)
−
(

0 −i
i 0

)(
0 1
1 0

))
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Coupled systems
The Kronecker tensorproduct

• In order to couple two spins in one system, one has to calculate
the kronecker product of these two systems. Therefore we yield
22 = 4 new basis vectors:

|↑〉 ⊗ |↑〉 =: |↑↑〉 (1)
|↑〉 ⊗ |↓〉 =: |↑↓〉 (2)
|↓〉 ⊗ |↑〉 =: |↓↑〉 (3)
|↓〉 ⊗ |↓〉 =: |↓↓〉 (4)

• In general, one can couple n spins by producing the kronecker
product of all basis vectors, yielding 2n basic states.
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Potential energy of coupled spins
• The potential between two spins is direct proportional to the

scalar product of the two spin operators or to be more exactly
their eigenvalues:

•

V̂ = µŜ(1) ◦ Ŝ(2) = µ

(
Ŝ(1)

z ⊗ Ŝ(2)
z +

1
2

(
Ŝ(1)

+ ⊗ Ŝ(2)
− + Ŝ(1)

− ⊗ Ŝ(2)
+

))
• With µ being a constant and Ŝ± = Ŝx ± iŜy with the attributes

Ŝ+ |↑〉 = 0 Ŝ+ |↓〉 = h̄ |↑〉 (5)
Ŝ− |↑〉 = h̄ |↓〉 Ŝ− |↓〉 = 0 (6)

• We can describe the complete potential of a system by a
hermitian 2n × 2n matrix with vanishing trace.
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(
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Ŝ(1)

+ ⊗ Ŝ(2)
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Nuclear magnetic resonance

NMR

• Nuclei of atoms have their
own spin

• One can couple multiple
spins in an experimental
setup

• Spins can be manipulated by
external magnetic fields

• Spins can be measured by
stimulated emission of
radiaton

Figure: 900MHz, 21.2 T NMR
Magnet at HWB-NMR, Birmingham,
UK; credit: wikipedia
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Technical challenges
• Strong magnetic fields (≈ 20T)

• Energy relaxation: The system returns to the ground state, the
qubits are erased.

• Decoherence: The superposition of the spins is destroyed by
interaction with the environment (”‘super selection rule”’)
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Outline

Nuclear magnetic resonance
preposition
Some Physics
The GRAPE algorithm
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NMR and the Schrödinger equation
We remember

ĤΨ(x, t) =

(
− h̄2

2m
∇2 + V̂(x)

)
Ψ(x, t) = ih̄∂tΨ(x, t)

In our case

• Our particles don’t move, so we can abbandon the kinetic term
− h̄2

2m∇2.
• We already know the potential for two particles. For n particles,

this yields

V̂(x) =
1
2 ∑

i 6=j
µijŜ(i) ◦ Ŝ(j)

• This is a 2n × 2n matrix which can be diagonalised. In the
following, we will refer to this diagnoalised matrix as Hd
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The control term (1)
How to control our system

Previously we stated that the spin system can be controlled by
external magnetic fields. In our formal model this can be read as
application of the Ŝ± operators on single spins.

|↓↓〉

|↑↑〉

|↑↓〉
|↓↑〉

E

Figure: Induced spinflips in a two particle system: red is 12 ⊗ Ŝ+ and blue is
Ŝ+ ⊗ 12.
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The control term (2)
In general

For n spins which can be separatley influenced, the controlled
potential is

V̂c =
n−1

∑
k=0

(ak · 12k ⊗ σx ⊗ 12n−k−q + bk · 12k ⊗ σy ⊗ 12n−k−q)

Which we will call Hc.

Recursion

One can build the matrix of Hc for n particles using the following
recursion:

An+1 =
(

An 12n

12n An

)
With A0 = (0) being the matrix for zero particles.
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Eye candy
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A solution for the Schrödinger equation
Forward Propagation

• The time-independent Schrödinger equation: ih̄∂tΨ = ĤΨ

• In the Gaussian system: i∂tΨ = ĤΨ

• The solution is obviously: Ψ(t) = e−iĤtΨ(0)

• With the matrix exponential function eĤ = ∑∞
k=0

Ĥk

k!

• Our Hamiltonian was: Ĥ = Hd + Hc(a1(t), b1(t), . . .) =
Hd + Hc(u1(t), . . .) = Hd + ∑j Hj(t) With Hj(t) piecewise
constant on t + ∆t

• So in our case the solution is:
Ψ(t) = e−i∆tĤ(tk)e−i∆tĤ(tk−1) · · · e−i∆tĤ(t1)Ψ(0) =: U(t)Ψ(0) With
k∆t = t
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• Our Hamiltonian was: Ĥ = Hd + Hc(a1(t), b1(t), . . .) =
Hd + Hc(u1(t), . . .) = Hd + ∑j Hj(t) With Hj(t) piecewise
constant on t + ∆t

• So in our case the solution is:
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Quantum gate construction
Problem description

• A quantum gate is an operation on the spin state of the system
which performs a desired change in it, e.g. NOT, NAND, XOR,. . ..

• For each of these gates the desired operation can be described
by a matrix UG.

• So the challenge is: adjusting Hj(tk) so that U(t) overlaps best
with UG for a given time t = T.

The GRAPE algorithm

It can be shown that maximising < tr(U†
GU(T)) subject to

∂tU(t) = −iĤU(t) optimizes the propagator.
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GRAPE
1. Set initial controls u(r)

j (tk) for all times tk (k ∈ {1, 2, . . . , M}) at
random or by guess

2. For each k ∈ {1, . . . , M} do:
2.1 Calculate the forward-propagation

U(tk) = e−i∆tĤ(tk)e−i∆tĤ(tk−1) · · · e−i∆tĤ(t1)

2.2 Calculate the backward-propagation
Λ(tk) = e−i∆tĤ(tk)e−i∆tĤ(tk+1) · · · e−i∆tĤ(tM)

2.3 Update u(r+1)
j (tk) = u(r)

j (tk) + ε<
(
tr
(
Λ†(tk)(−iĤj)U(tk)

))
3. Return to step 2 with the new controls u(r+1)

j
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2.2 Calculate the backward-propagation
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Challenges of GRAPE
• GRAPE converges to a local optimum of U(t). It is necessary to

re-run it a couple of times with different initial values to confirm
that the global maximum is reached altough this cannot be
proven.

• One has to calculate the exponential of a sparse matrix
Uk := e−i∆tĤ(tk)

• One has to calculate the product of many different matrices
U(tk) = Uk ·Uk−1 · · ·U1

• One has to calculate the trace
tr{(UkUk+1 · · ·UM)(−iĤj)(UkUk−1 · · ·U1)}∀j, k
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Conclusion
• The Schrödinger equation:(

− h̄2

2m∇2 + V̂(x)
)

Ψ(x, t) = ih̄∂tΨ(x, t)

• In NMR spectroscopy, the kinetic term − h̄2

2m∇2 can be
abbandoned an V̂(x) splits in Hd and Hc

• Hd can be diagonalised whereas Hc has a recursive shape

• In order to overlap the time propagation U(t) = e−iĤ∆t with the
desired matrix UG, a gradient flow algorithm can be utilized

• This leads to some numerical challenges thus as calculating a
matrix exponential as well as producing the product of many
matrices
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Lie algebra (1)
Definition

Let V be a vector space over a field F with a binary operation [·, ·]

[·, ·] : V ×V → V

which satisfies the following relations:

• Bilinearity: [x + λy, z] = [x, z] + λ[y, z] and
[x, y + λz] = [x, y] + λ[x, z]

• Skew-symmetry: [x, x] = 0
• Jacobi Identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0
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Lie algebra (1)
Definition

Let V be a vector space over a field F with a binary operation [·, ·]
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• Skew-symmetry: [x, x] = 0
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∀x, y, z ∈ V, ∀λ ∈ F
Then V is a Lie algebra.
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Lie algebra (2)
Examples

• The well-known R3 with the cross product.
• Our previously defined Pauli-Matrices.
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Kronecker product (1)
Definition

Let A ∈ Cm×n, B ∈ Cr×s. Then the Kronecker product
A⊗ B ∈ Cmr×ns of A and B is defined as:

A⊗ B =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

⊗ B :=

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB


Attributes (1)

• Bilinearity:
• A⊗ (B + C) = A⊗ B + A⊗ C
• (A + B)⊗ C = A⊗ C + B⊗ C
• λ(A⊗ B) = (λA)⊗ B = A⊗ (λB)

• associativity: A⊗ (B⊗ C) = (A⊗ B)⊗ C
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Kronecker product (2)
Attributes (2)

• transposition: (A⊗ B)T = AT ⊗ BT

• ∀A, B ∈ Cn×n, C, D ∈ Cm×m : (AB)⊗ (CD) = (A⊗ C)(B⊗ D)
• The kronecker product of diagonal matrices is a diagonal matrix
• 12q = 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸

q times

• tr(A⊗ B) = tr(A) · tr(B)
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Drift-Term
Two spin system

|Ψ1〉 := |↑↑〉 |Ψ2〉 := |↑↓〉 |Ψ3〉 := |↓↑〉 |Ψ4〉 := |↓↓〉

Ĥd = Ŝ(1)
z ⊗ Ŝ(2)

z +
1
2

(
Ŝ(1)

+ ⊗ Ŝ(2)
− + Ŝ(1)

− ⊗ Ŝ(2)
+

)
Non-diagonalised Hamiltonian for two-spin system

Ĥd =
h̄2

4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1


Reference: Myself, so it could be faulty.
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Shor’s Algorithm (1)
Factorize a number n

1. Pick random 1 < x < n
2. If gcd(x, n) > 1 → success
3. Use the period-finding subroutine to find r, the period of

f (ν) = xν mod n i.e. the smallest integer r for which
f (ν + r) = f (ν) (quantum stuff here)

4. If r is odd → go back to step 1
5. If x

r
2 = −1 mod n → go back to step 1

6. gcd(xk − 1, n) is a nontrivial factor of n. success
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foo
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Shor’s Algorithm (2)
Period finding subroutine

You will need at least Q qubits, where n2 ≤ Q < 2n2.

1. Initialize the qubits to Q− 1
2 ∑Q−1

x=0 |x〉 |0〉
2. Construct f (x) as a quantum function and apply it to the state, to

obtain
Q− 1

2 ∑
x
|x〉 | f (x)〉

3. Apply the quantum Fourier transform to get the final state

Q−1 ∑
x

∑
y

ωxy |y〉 | f (x)〉

4. Perform a measurement. We obtain an equally distributed
multiple of f (x)/r.

5. Repeat a couple of times to obtain a working candidate for r
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foo
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Stern Gerlach experiment
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