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Abstract
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presented by Mr. Fischer are discussed. Particular regard is given
to the efficient calculation of exponentials of sparse matrices and to
algorithms for parallel matrix-matrix-multiplications.
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2.4.3 Padé approximation . . . . . . . . . . . . . . . 6

2.5 Comparison of the methods . . . . . . . . . . . . . . . 6

3 Parallel matrix-matrix-multiplication 8
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The slice-wise approach . . . . . . . . . . . . . . . . . 8

3.2.1 The algorithm . . . . . . . . . . . . . . . . . . 8
3.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . 9

3.3 The tree-like approach . . . . . . . . . . . . . . . . . . 9
3.3.1 The algorithm . . . . . . . . . . . . . . . . . . 9
3.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . 9

3.4 A pipeline based approach . . . . . . . . . . . . . . . . 10
3.4.1 The algorithm . . . . . . . . . . . . . . . . . . 10
3.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . 10
3.4.3 Further improvements . . . . . . . . . . . . . . 11

2



1 Introduction

The quantum control algorithm which was described in depth in the
talk and paper of Mr. Fischer offers some interesting numerical chal-
lenges if it is to be implemented efficiently.

One iteration step in the Gradient Flow Algorithm goes like this:

• Calculate the forward-propagation for all t1, t2, ..., tk:

U(tk) = e−i∆tHk · e−i∆tHk−1 · · · e−i∆tH1

• Compute the backward-propagation for all tM , tM−1, . . . , tk

Λ(tk) = e−i∆tHk · e−i∆tHk+1 · · · e−i∆tHM

• Calculate the update

∂h(U(tk))
∂uj

= Re
{

tr
[
Λ†(tk)(−iHj)U(tk)

]}
Hk are typically sparse matrices with a size of 1024 × 1024. The

resulting exponentials are equally sized, but no longer sparse. M can
be assumed to be 128.

Analyzing the algorithm, one discovers that the lion’s share of the
computing efforts will go to just two tasks:

• the computations of exponentials of sparse matrices

• matrix-matrix-multiplications

As the memory of a single ordinary computer is to small to contain
all of the exponentials, special consideration will be given to paralleli-
sation approaches for the second task.

2 Computations of exponentials of sparse

matrices

2.1 Definition of the matrix exponential

The matrix exponential of a square matrix in defined using the Taylor
series, just like it is defined for numbers:

eA :=
∞∑

k=0

Ak

k!

It should be noted, however, that the functional equation of the ex-
ponential function is no longer generally true. Thus the computation
of the matrix exponentials is non-trivial.

In the following part, various strategies to calculate the matrix
exponential will be discussed.
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2.2 Properties of the exponent matrix

The optimal algorithmic approach is dependent on the type of the
argument matrix. In the given case, the matrix H is sparse, most
entries are zero. This is the single most important property to choose
the right algorithmic approach, as some matrix operations which are
efficient for full matrices are more expensive on sparse matrices than
other algorithms. 1

The input matrix H also has some other exploitable properties.
It is hermitian and persymmetric. With some sophisticated transfor-
mations, the problem of calculating the exponential of the complex
matrix H can thus be reduced to the computation of the exponential
of two real matrices of half the size.

2.3 Diagonalisation, Eigendecomposition

The exponential of a diagonal matrix

D = diag(d1, . . . , dn) =

 d1

. . .
dn


is trivial to calculate:

eD = diag(ed1 , . . . , edn) =

 ed1

. . .
edn


Furthermore, if A is SDS−1, with D being a diagonal matrix, the

exponential is also trivial to calculate:

eA = S
(
diag(ed1 , . . . , edn)

)
S−1

The decomposition of A into SDS−1 is called Eigendecomposition.
Unfortunately, and unsurprisingly, it is quite expensive to calculate the
Eigendecomposition of a matrix. Still, this approach is one possible
candidate.

2.4 Approximations of the matrix exponential

In this section, different approximations of the matrix exponential are
analysed. A näıve approach would be to take a partial sum of the

1For example, matrix inversion has the same complexity as matrix-matrix-
multiplication only for full matrices. For sparse matrices, the cost for multiplications
is significantly decreased while the cost for inversion is not decreased by a similar amount.
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Taylor series, but due to slow convergence and numerical instability,
this is not feasible. Another approximation with a polynomial, namely
the Chebyshev series expansion, has much better properties and will
be examined more closely.

Furthermore, an approximation using rational functions, the Padé
approximation will be discussed.

2.4.1 Scaling and Squaring

The quality of the approximations of either one of the two approx-
imations discussed below is strongly dependent on the norm of the
exponent being smaller than one. As one needs to compute the ex-
ponential of a matrix of arbitrary norm, a method to transform the
general case of the problem to the special case for which the approxi-
mations work is needed.

Fortunately, such a method exists. It is called scaling and squaring.
The following equation is true for the matrix exponential:

eA =
(
eA/2k

)2k

That means that one can multiply the exponent with a factor of
1
2k to decrease its norm, then use the approximation to calculate the
exponential, and square that result k times to obtain the exponential.

Of course, these calculations increase both the time needed to run
and the numerical error, but they mean that the following two ap-
proximations can generally be used.

2.4.2 Chebyshev series expansion

The Chebyshev polynomials form an orthogonal basis in the interval
[−1, 1] with a slightly unusual metric. Any well behaved function —
particularly the exponential function — can be expanded in this basis.
The basic idea of the Chebyshev series expansion is to approximate
the exponential function by a partial sum of this expansion. The
coefficients decreases as 1

2kk!
, so even a polynomial of comparably low

order can give a very good approximation.
Furthermore, this method can also be used to calculate matrix ex-

ponentials, provided that the norm of the argument matrix is smaller
than one. Using the “Scaling and Squaring” technique, this prerequi-
site can be ensured.

As matrix polynomials of sparse matrices are comparably inex-
pensive to compute, especially when using elaborate multiplication
schemes, the efficiency of this algorithm is rather high.
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2.4.3 Padé approximation

Like the Taylor series expansion, the Padé expansion approximates
a well-behaved function, like the exponential function, at a single
point, which will be zero in the given case. But unlike the Taylor
series expansion, the Padé approximation uses a rational function in-
stead of a polynomial to emulate the given function.

As the Taylor method did completely fail in terms of numerical
stability, it is somewhat surprising that the Padé method actually
works quite well.

Like the Chebyshev method, the Padé method can be generalized
to matrices. But there are similar restrictions on the norms of the
argument matrices, as the Padé approximation is good only near zero.
Thus the “Scaling and Squaring” steps have to be applied before and
afterward respectively.

The division is replaced by a matrix inversion when switching from
real numbers to matrices. Of course, the inverse matrix, which has
rather poor numerical properties, in never calculated explicitly, but
rather indirectly by solving a corresponding system of linear equations.

It should be noted that the matrix inversion is more costly than
matrix-matrix-multiplications for sparse matrices, which means that
the Padé approximation has some initial disadvantage when compared
to the Chebyshev method. Whether or not this is balanced by better
approximations with smaller polynomials is dependent on the size of
the matrices.

2.5 Comparison of the methods

Figures 1 and 2 give an idea of the computation time and accuracy
of the different methods2. It should be noted that the edge length of
the input matrix doubles with each additional spin, so the plots are
basically logarithmic on both axis.

The plots show that all of the methods are similar both in terms
of computational effort and accuracy, with the Eigendecomposition
being the worst and the Chebyshev method having a little advantage.
This advantage is believed to increase for even greater matrices.

2The measurement was done by Mr. Waldherr, for more details, refer to his diploma
thesis.
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Figure 1: computation time comparison for the different methods of calcu-
lating the matrix exponential

Figure 2: accuracy comparison for the different methods of calculating the
matrix exponential
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3 Parallel matrix-matrix-multiplication

3.1 Introduction

After calculating the exponentials Uk, they have to be multiplied with
each other. The following products are needed:

U0

U0 · U1

U0 · U1 · U2
...
U0 · U1 · U2 · · ·UM

(1)

Unfortunately, the exponential of a sparse matrix is no longer
sparse. In fact, these matrices can become so large that they no longer
fit on the memory of a typical personal computer all at once. This
calls for a parallel solution.

In the following sections, three different approaches will be dis-
cussed. The first one is a rather intuitive one, the second one is some-
what complicated and the third one is a sort of compromise between
the first two ones which preserves the strength of both and reduces
the drawbacks of either of the first.

3.2 The slice-wise approach

3.2.1 The algorithm

The idea behind this algorithm is the realisation that one needs only
the upper half of the leftmost matrix to calculate the upper half of all
of the products.

One divides the matrix U0 vertically3 into as many parts — or
slices — as processors are present4. Each processor5 gets both one
slice of the matrix U0 and all of the other matrices. Every CPU is
now able to calculate a slice of all of the products, starting from the
leftmost: U0 · U1. Afterwards, all of the slices of all of the products
have to be collected and reassembled.

3That means, one cuts horizontally, so to speak.
4The case where there are more CPUs than matrix rows is considered pathological.
5The terms processor and computer are used somewhat sloppy and interchangeable

in the following sections. The parallelisation approaches all assume a cluster of different
nodes, each with its own memory and a processor, which communicate over some one-to-
one network.
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3.2.2 Analysis

The algorithm depends on the matrices being broadcasted to all the
computers. This creates both a memory problem for every node and
a time problem for the one which has to broadcast to every other one.
The latter problem can be addressed by starting to calculate before
the node has all the matrices it will need later on, but the first one
remains.

While the total number of scalar multiplications are equal to that
of the sequential method for this parallelisation approach, the com-
munication required is prohibitive.

3.3 The tree-like approach

3.3.1 The algorithm

The tree-like approach is most understandable when one just has to
compute the product of all the matrices and not the products in be-
tween.

This algorithm requires the number of matrices to be a power of
two and needs half as many nodes as there are matrices6.

Basically, one builds one binary tree, starting with the branches
and ending with the trunk. In the first step, one multiplies U0 with
U1 on one CPU, U2 and U3 on a different one, the next two matrices
on yet another one and so on in parallel. Afterwards, the first and the
second product are multiplied on one processor, and so are the third
and the fourth on another one again. This is repeated until only one
product is left.

This idea has two problems. After the first step only half of the
processors are still occupied. This is very inefficient. The other prob-
lem is that the intermediate products — which our algorithm requires
— are not yet computed.

The obvious solution to these two problems is to have the unoc-
cupied nodes calculate the intermediate products. This can be done,
but the resulting rules which CPU has to multiply which matrices are
quite complicated and beyond the scope of this text.

3.3.2 Analysis

This algorithm does not need as much communication as the slice-
wise. Particularly, broadcasts are avoided. But there are drawbacks.
First and foremost, the total number of multiplications (O(n log2 n))
are greatly increased when compared to the number of multiplications

6Naturally, it will also work for other cases, but not as optimal.
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used by the sequential one (O(n)). It is true that parallelisation always
has some price, but in this case, the price may well be having to spend
three times as many CPU seconds just to get the result in a shorter
time.

Another practical problem is that many multiplications depend on
a single result from the previous step. In the final iteration, one result
has to be sent to about half of all nodes. This tends to cause delays.

3.4 A pipeline based approach

This is the third algorithm which the author believes to be better
suited to the Quantum Control Algorithm than the previous two. By
taking the slice-wise idea from the first algorithm and combining it
with a generic pipelining approach, one can produce an algorithm
which has no more scalar multiplication than the sequential approach
and which needs less communication even than the tree-like approach.

3.4.1 The algorithm

This algorithm requires about as many CPUs as there are matrices.
The leftmost matrix is again divided vertically like in the slice-wise

approach. Every other matrix is sent to exactly one CPU, U1 to the
first, U2 to the second and so on.

Now, the first slice of the matrix U0 is sent to the CPU storing
U1. That node then calculates the first slice of the first product,
stores it in its memory and sends it to the processor holding U2, which
in turn multiplies that slice by U2 and passes the result on. In the
meantime, the second slice of U0 is sent to the first CPU again, where
it is processed in the same way.

After the last slice has passed through the pipeline, each node has
one product stored in its memory.

3.4.2 Analysis

While the author may be a bit biased towards this one as he indepen-
dently thought of it7, this section will mainly contain advantages.

The total amount of scalar multiplications is as good as it is for
the sequential variant. And while the total required communication
may or may not be optimal, it is at least asymptotically optimal.8

7Admittedly only after having seen the slice-wise one and having heard something
about pipelining...

8The total amount of data transmitted is not more than twice as high as the minimum.
The data transmitted consists of three portions of almost equal total size. The first one are
the matrices U1 to Un and the second one is the communication during the pipelines, the
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A minor drawback is that any pipeline will have some idle time on
the nodes when it is not yet — or not any more — fully filled. This is
considered a minor problem for large matrices which can be cut into
many slices.

The many small data pieces which need to be transmitted might
cause a performance decrease for some network setups.

Also, a number of CPUs equal to the number of matrices might
be considered to high. In that case, any number of matrices could be
stored on each CPU and could be processed sequentially.

3.4.3 Further improvements

While the algorithm might (or might not) work quite well in this way,
it is the personal opinion of the author that its true beauty is only
seen when it is fully integrated in the quantum control algorithm.

Each CPU is associated with one timestep, which means it is re-
sponsible for one Hamilton matrix H.9

First, each node computes the exponential of its current matrix H.
Afterwards, the leftmost matrix U is divided into slices and pushed
through the pipeline normally. After that, the rightmost matrix U
is horizontally divided into slices and pushed backwards through the
pipeline. Now — and this is the nice part about this improvement —
every single CPU has exactly the two intermediate products it needs
to update its Hamilton matrix. Apart from the pipeline, no further
communication is required between the iterations of the algorithm.

third one is the collection of the results. The communication which would be absolutely
needed (in any non-trivial parallelisation) is (at least) the sending of the input and the
receiving of the output. This amounts to two thirds of the communication of the described
algorithm.

9Or any number of timesteps, as discussed above.
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