Hoare Calculation and its Application

Robert Lang

TUM

March 2008 - Saint Petersburg - JASS 2008

A first example

function result (x, y)
if $\mathrm{x}=0$
return (y);
else
result $(x-1, y+1)$;
end

A first example

$$
\begin{aligned}
& \text { function result }(x, y) \\
& \text { if } x==0 \\
& \text { return }(y) \text {; } \\
& \text { else } \\
& \text { result }(x-1, y+1) \text {; } \\
& \text { end }
\end{aligned}
$$

How can we prove, that for $x, y \in \mathbb{N}_{0}$:

$$
\text { result }(x, y)=x+y
$$

function result (x, y)
if $x=0$
return (y);
else
result $(x-1, y+1)$;
end

Proof of the assertion by induction on $x:$

```
function result(x,y)
    if x == 0
        return (y);
    else
        result(x-1,y+1);
    end
```

Proof of the assertion by induction on x : $x=0$

```
function result(x,y)
    if x == 0
        return (y);
    else
        result(x-1,y+1);
    end
```

Proof of the assertion by induction on x :
$x=0 \Rightarrow \operatorname{result}(0, y) \underbrace{=}_{x==0} y$, and $y=y+x$

```
function result(x,y)
    if x == 0
        return (y);
    else
        result(x-1,y+1);
    end
```

Proof of the assertion by induction on x :
$x=0 \Rightarrow \operatorname{result}(0, \mathrm{y}) \underbrace{=}_{\mathrm{x}==0} y$, and $y=y+x \checkmark$

```
function result(x,y)
if x == 0
    return (y);
    else
        result(x-1,y+1);
    end
```

Proof of the assertion by induction on x :
$x=0 \Rightarrow \operatorname{result}(0, \mathrm{y}) \underbrace{=}_{\mathrm{x}==0} y$, and $y=y+x \checkmark$
Let the assumption be proved for some $x \in \mathbb{N}_{0}$ and all $y \in \mathbb{N}_{0}$.

```
function result(x,y)
if x == 0
    return (y);
    else
        result(x-1,y+1);
    end
```

Proof of the assertion by induction on x :
$x=0 \Rightarrow \operatorname{result}(0, \mathrm{y}) \underbrace{=}_{\mathrm{x}==0} y$, and $y=y+x \checkmark$
Let the assumption be proved for some $x \in \mathbb{N}_{0}$ and all $y \in \mathbb{N}_{0}$.
$\Rightarrow \operatorname{result}(\mathrm{x}+1, \mathrm{y}) \underbrace{=}_{\text {else }} \operatorname{result}(\mathrm{x}, \mathrm{y}+1)$

```
function result(x,y)
if x == 0
    return (y);
    else
        result(x-1,y+1);
    end
```

Proof of the assertion by induction on x :
$x=0 \Rightarrow \operatorname{result}(0, \mathrm{y}) \underbrace{=}_{\mathrm{x}==0} y$, and $y=y+x \checkmark$
Let the assumption be proved for some $x \in \mathbb{N}_{0}$ and all $y \in \mathbb{N}_{0}$.
\Rightarrow result $(\mathrm{x}+1, \mathrm{y}) \underbrace{=}_{\text {else }} \operatorname{result}(\mathrm{x}, \mathrm{y}+1)$
$\underbrace{=}$

$$
x+(y+1)
$$

induction hypothese

```
function result(x,y)
if x == 0
    return (y);
    else
        result(x-1,y+1);
    end
```

Proof of the assertion by induction on x :
$x=0 \Rightarrow \operatorname{result}(0, \mathrm{y}) \underbrace{=}_{\mathrm{x}==0} y$, and $y=y+x \checkmark$
Let the assumption be proved for some $x \in \mathbb{N}_{0}$ and all $y \in \mathbb{N}_{0}$.
$\Rightarrow \operatorname{result}(\mathrm{x}+1, \mathrm{y}) \underbrace{=}_{\text {else }} \operatorname{result}(\mathrm{x}, \mathrm{y}+1)$

$$
=\quad \quad x+(y+1)
$$

induction hypothese
$\Rightarrow \operatorname{result}(\mathrm{x}+1, \mathrm{y})=x+(y+1)=(x+1)+y$

```
function result(x,y)
if x == 0
    return (y);
    else
        result(x-1,y+1);
    end
```

Proof of the assertion by induction on x :
$x=0 \Rightarrow \operatorname{result}(0, \mathrm{y}) \underbrace{=}_{\mathrm{x}==0} y$, and $y=y+x \checkmark$
Let the assumption be proved for some $x \in \mathbb{N}_{0}$ and all $y \in \mathbb{N}_{0}$.
$\Rightarrow \operatorname{result}(\mathrm{x}+1, \mathrm{y}) \underbrace{=}_{\text {else }} \operatorname{result}(\mathrm{x}, \mathrm{y}+1)$

$$
=\quad x+(y+1)
$$

induction hypothese
$\Rightarrow \operatorname{result}(x+1, y)=x+(y+1)=(x+1)+y$

A second example

function result_2 (x,y)
while x > 0
$\mathrm{x}=\mathrm{x}-1$;
$y=y+1$;
end
return y;

A second example

function result_2 (x,y) while x > 0
 $$
\mathrm{x}=\mathrm{x}-1 ;
$$
 $$
y=y+1 ;
$$
 end
 return y;

How can we prove, that for $x, y \in \mathbb{N}_{0}$:

$$
\text { result_2 }(x, y)=x+y
$$

A second example

$$
\begin{aligned}
& \text { function result_2 }(\mathrm{x}, \mathrm{y}) \\
& \begin{array}{l}
\text { while } \mathrm{x}>0 \\
\mathrm{x}=\mathrm{x}-1 \\
\mathrm{y}=\mathrm{y}+1
\end{array} \\
& \text { end } \\
& \text { return } \mathrm{y} \text {; }
\end{aligned}
$$

How can we prove, that for $x, y \in \mathbb{N}_{0}$:

$$
\text { result_2 }(x, y)=x+y
$$

As easy as in the first example?

```
function result_2 \((x, y)\)
    while \(x>0\)
        \(\mathrm{x}=\mathrm{x}-1\);
        \(y=y+1\);
    end
    return y;
```

Try to prove the assertion by induction on x :

```
function result_2( \(x, y\) )
    while x > 0
        \(\mathrm{x}=\mathrm{x}-1\);
        \(y=y+1\);
    end
    return y;
```

Try to prove the assertion by induction on x :
$x=0$

```
function result_2( \(x, y\) )
    while \(x\) > 0
        \(\mathrm{x}=\mathrm{x}-1\);
        \(y=y+1\);
    end
    return y;
```

Try to prove the assertion by induction on x : $x=0 \Rightarrow$ result_2 $(0, \mathrm{y})=y$ and $y=y+x$

```
function result_2( \(x, y\) )
    while \(x\) > 0
        \(\mathrm{x}=\mathrm{x}-1\);
        \(y=y+1\);
    end
    return y;
```

Try to prove the assertion by induction on x : $x=0 \Rightarrow$ result_2 $(0, \mathrm{y})=y$ and $y=y+x \checkmark$

```
function result_2 (x,y)
    while \(x>0\)
        \(\mathrm{x}=\mathrm{x}-1\);
        \(y=y+1\);
    end
    return y ;
```

Try to prove the assertion by induction on x :
$x=0 \Rightarrow$ result_2 $(0, \mathrm{y})=y$ and $y=y+x \checkmark$

Let the assumption be proved for some $x \in \mathbb{N}_{0}$ and all $y \in \mathbb{N}_{0}$.

```
function result_2(x,y)
    while x > 0
        x = x-1;
        y = y+1;
    end
    return y;
```

Try to prove the assertion by induction on x :
$x=0 \Rightarrow$ result_2 $(0, \mathrm{y})=y$ and $y=y+x \checkmark$

Let the assumption be proved for some $x \in \mathbb{N}_{0}$ and all $y \in \mathbb{N}_{0}$. result_2 ($\mathrm{x}+1, \mathrm{y}$)

```
function result_2(x,y)
    while x > 0
        x = x-1;
        y = y+1;
    end
    return y;
```

Try to prove the assertion by induction on x :
$x=0 \Rightarrow$ result_2 $(0, \mathrm{y})=y$ and $y=y+x \checkmark$

Let the assumption be proved for some $x \in \mathbb{N}_{0}$ and all $y \in \mathbb{N}_{0}$. result_2 $(x+1, y)=\ldots$ It doesn't work!

The Problem
0000

What is the problem?

The Problem
0000

What is the problem?

- There's no recursive run of result_2.

What is the problem?

- There's no recursive run of result_2.
- Number of while-loop-iterations depends on x.

What is the problem?

- There's no recursive run of result_2.
- Number of while-loop-iterations depends on x.
- Values of x, y are changing during running time.

What is the problem?

- There's no recursive run of result_2.
- Number of while-loop-iterations depends on x.
- Values of x, y are changing during running time.
\Rightarrow Mathematical methods of proof won't last!

What is the problem?

- There's no recursive run of result_2.
- Number of while-loop-iterations depends on x.
- Values of x, y are changing during running time.
\Rightarrow Mathematical methods of proof won't last!
\Rightarrow We need new tools!

Challenges

Let P be a given program. We want to prove, that

Challenges

Let P be a given program. We want to prove, that
(1) P terminates for all valid inputs.

Challenges

Let P be a given program. We want to prove, that
(1) P terminates for all valid inputs.
(2) P works for a given domain in that way it is built for.

Challenges

Let P be a given program. We want to prove, that
(1) P terminates for all valid inputs.
(2) P works for a given domain in that way it is built for.

- Both tasks are as hard as the Halting Problem.

Challenges

Let P be a given program. We want to prove, that
(1) P terminates for all valid inputs.
(2) P works for a given domain in that way it is built for.

- Both tasks are as hard as the Halting Problem.
- You must prove them for every single P.

Challenges

Let P be a given program. We want to prove, that
(1) P terminates for all valid inputs.
(2) P works for a given domain in that way it is built for.

- Both tasks are as hard as the Halting Problem.
- You must prove them for every single P.

In the following algorithms the termination is assumed.

Challenges

Let P be a given program. We want to prove, that
(1) P terminates for all valid inputs.
(2) P works for a given domain in that way it is built for.

- Both tasks are as hard as the Halting Problem.
- You must prove them for every single P.

In the following algorithms the termination is assumed.
\Rightarrow We just meet challenge 2 using Hoare Calculation...

C.A.R. Hoare

C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia

C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia
"I conclude that there are two ways of constructing a software design:

C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia
"I conclude that there are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies

C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia
"I conclude that there are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies and the other way is to make it so complicated that there are no obvious deficiencies."

The Problem

Hoare-Triple

\{P\} S \{Q\}

Hoare-Triple

$\{P\} \mathbf{S}\{\mathrm{Q}\}$

- P, Q predicates with values true or false

Hoare-Triple

$\{P\} S\{Q\}$

- P, Q predicates with values true or false
- S statement, a program with correct syntax

Hoare-Triple

$\{P\} S\{Q\}$

- P, Q predicates with values true or false
- S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

Hoare-Triple

\{P\} S \{Q\}

- P, Q predicates with values true or false
- S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.
$\{P\} \mathbf{S}\{Q\}=$ true $: \Leftrightarrow$

Hoare-Triple

$\{P\} S\{Q\}$

- P, Q predicates with values true or false
- S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.
$\{P\} S\{Q\}=$ true $: \Leftrightarrow$
If the predicate $\{\mathrm{P}\}$ is true immediately before execution of S , then immediately \mathbf{S} has terminated, the predicate $\{Q\}$ is true.

Hoare-Triple

$\{P\} S\{Q\}$

- P, Q predicates with values true or false
- S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.
$\{P\} S\{Q\}=$ true $: \Leftrightarrow$
If the predicate $\{\mathrm{P}\}$ is true immediately before execution of S , then immediately \mathbf{S} has terminated, the predicate $\{Q\}$ is true.

Notation: $\underset{Y}{X}$

Hoare-Triple

$\{P\} S\{Q\}$

- P, Q predicates with values true or false
- S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.
$\{P\} S\{Q\}=$ true $: \Leftrightarrow$
If the predicate $\{\mathrm{P}\}$ is true immediately before execution of S , then immediately \mathbf{S} has terminated, the predicate $\{Q\}$ is true.

Notation: $\frac{X}{Y}: \Leftrightarrow X \Rightarrow Y$

Hoare Rule 1: Skip-Axiom

true $\overline{\{A\}}$ skip $\{A\}$

Hoare Rule 1: Skip-Axiom

true $\overline{\{A\}}$ skip $\{\mathrm{A}\}$

skip means the program with no commands.

Hoare Rule 2: Axiom of Assignment

$$
\frac{\text { true }}{\left\{\mathrm{A}_{\beta / x}\right\} x:=\beta\{\mathrm{A}\}}
$$

Hoare Rule 2: Axiom of Assignment

$$
\frac{\text { true }}{\left\{\mathrm{A}_{\beta / x}\right\} x:=\beta\{\mathrm{A}\}}
$$

$\mathrm{A}_{\beta / x}$ is predicate A , but x instead of β.

Hoare Rule 3: Rule of Composition

$\frac{\{\mathrm{A}\} \mathbf{S} 1\{\mathrm{~B}\} \wedge\{\mathrm{B}\} \mathbf{S} 2\{\mathrm{C}\}}{\{\mathrm{A}\} \mathbf{S 1}, \mathrm{S} 2\{\mathrm{C}\}}$

Hoare Rule 4: Rule of Conditional Branching
$\frac{\{A \wedge B\} S 1\{Q\} \wedge\{A \wedge \neg B\} S 2\{Q\}}{\{A\} \text { if } B \text { then } S 1 \text { else } S 2 \text { end if }\{Q\}}$

Hoare Rule 5: Rule of Iteration

$\frac{\{I \wedge B\} S\{I\}}{\{I\} \text { while } B \text { loop S end loop }\{I \wedge \neg B\}}$

Hoare Rule 5: Rule of Iteration

$$
\frac{\{I \wedge B\} S\{I\}}{\{I\} \text { while } B \text { loop S end loop }\{I \wedge \neg B\}}
$$

Such an I is called loop-invariant.

Hoare Rule 6: Rule of Consequence

$$
\frac{A \Rightarrow A^{\prime} \wedge\left\{A^{\prime}\right\} S\left\{B^{\prime}\right\} \wedge B^{\prime} \Rightarrow B}{\{A\} S\{B\}}
$$

Proof of result_2 (x, y) using Hoare

function result_2 (x, y)
function result_2 $2(x, y$)

Proof of result_2 (x, y) using Hoare

function result_2 (x,y)
function result_2 (x, y) $\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}$

Proof of result_2 (x, y) using Hoare

function result_2 (x, y)
while x > 0
function result_2 (x, y) $\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}$ $\{1\}$ while x > 0

Proof of result_2 (x, y) using Hoare

```
function result_2(x,y)
while x > 0
    x = x-1;
    y = y+1;
end
    while x > 0
    {I^B}
    x = x-1;
    y = y+1;
    {l}
```

function result_2 (x, y) $\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}$ \{1\}
end

Proof of result_2 (x, y) using Hoare

```
function result_2(x,y)
while x > 0
    x = x-1;
    y = y+1;
end
function result_2(x,y)
        {P:x\geq0\wedge y\geq0,r:=x+y}
        {1}
```

$$
\begin{aligned}
& x=x-1 ; \\
& y=y+1 ;
\end{aligned}
$$

end
{I\wedgeB}
x = x-1;
y = y+1;
{l}
end
{I\wedge\negB} (Rule of Iteration)

```
function result_2 \((x, y)\) \(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \{1\}
```

```
while x > 0
```

```
```

while x > 0

```

\section*{Proof of result_2 ( \(\mathrm{x}, \mathrm{y}\) ) using Hoare}
```

function result_2(x,y)
while x > 0
x = x-1;
y = y+1;
end
function result_2(x,y)
{P:x\geq0\wedge y\geq0,r:=x+y}
{1}
while x > 0
{I^B}
x = x-1;
y = y+1;
{l}
end
{I\wedge\negB} (Rule of Iteration)
{Q:y=r}

```

\section*{Proof of result_2 ( \(\mathrm{x}, \mathrm{y}\) ) using Hoare}
```

function result_2(x,y) function result_2(x,y)
{P:x\geq0\wedge y \geq0,r:=x+y}
{1}
{I^B}
x = x-1;
y = y+1;
{l}
end
{I\wedge\negB} (Rule of Iteration)
{Q:y=r}
return y;

```
function result_2 \((x, y)\) \(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \(\{1\}\)
```

 while x > 0
    ```
```

 while x > 0
    ```
\[
\{I \wedge B\}
\]
\[
x=x-1 ;
\]
\[
\mathrm{y}=\mathrm{y}+1
\]
\[
\{\mid\}
\]
end
\[
\begin{aligned}
& \{I \wedge \neg B\} \text { (Rule of Iteration) } \\
& \{\mathrm{Q}: y=r\}
\end{aligned}
\]
return y ;

\section*{Proof of result_2 ( \(\mathrm{x}, \mathrm{y}\) ) using Hoare}
```

function result_2(x,y) function result_2(x,y)
{P:x\geq0\wedge y\geq0,r:=x+y}
{1}
while x > 0
x = x-1;
y = y+1;
end

$$
\begin{aligned}
& \text { function result_2 }(x, y) \\
& \{P: x \geq 0 \wedge y \geq 0, r:=x+y\} \\
& \{I\} \\
& \text { while } x>0 \\
& \{I \wedge B\} \\
& x=x-1 ; \\
& y=y+1 ; \\
& \{I\} \\
& \text { end } \\
& \{I \wedge \neg B\} \text { (Rule of Iteration) } \\
& \{Q: y=r\} \\
& \text { return } y ;
\end{aligned}
$$

```
- \(\mathrm{B}: x>0\) (condition in while-loop)

\section*{Proof of result_2 ( \(\mathrm{x}, \mathrm{y}\) ) using Hoare}
\begin{tabular}{lc} 
function result_2 \((\mathrm{x}, \mathrm{y})\) & function result_2 \((\mathrm{x}, \mathrm{y})\) \\
& \(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \\
& \(\{I\}\) \\
while \(\mathrm{x}>0\) & while \(\mathrm{x}>0\) \\
& \(\{I \wedge B\}\) \\
\(\mathrm{x}=\mathrm{x}-1 ;\) & \(\mathrm{x}=\mathrm{x}-1 ;\) \\
\(\mathrm{y}=\mathrm{y}+1 ;\) & \(\mathrm{y}=\mathrm{y}+1 ;\) \\
& \(\{I\}\) \\
end & end \\
& \(\{I \wedge \neg \mathrm{~B}\}\) (Rule of Iteration) \\
& \(\{Q: y=r\}\) \\
return \(\mathrm{y} ;\) & return \(\mathrm{y} ;\)
\end{tabular}
- \(\mathrm{B}: x>0\) (condition in while-loop) \(\Rightarrow \neg \mathrm{B}: \neg(x>0)\)

\section*{Proof of result_2 ( \(\mathrm{x}, \mathrm{y}\) ) using Hoare}
\begin{tabular}{lc} 
function result_2 \((\mathrm{x}, \mathrm{y})\) & function result_2 \((\mathrm{x}, \mathrm{y})\) \\
& \(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \\
& \(\{I\}\) \\
while \(\mathrm{x}>0\) & while \(\mathrm{x}>0\) \\
& \(\{I \wedge B\}\) \\
\(\mathrm{x}=\mathrm{x}-1 ;\) & \(\mathrm{x}=\mathrm{x}-1 ;\) \\
\(\mathrm{y}=\mathrm{y}+1 ;\) & \(\mathrm{y}=\mathrm{y}+1 ;\) \\
& \(\{I\}\) \\
end & end \\
& \(\{I \wedge \neg \mathrm{~B}\}\) (Rule of lteration) \\
& \(\{Q: y=r\}\) \\
return \(\mathrm{y} ;\) & return \(\mathrm{y} ;\)
\end{tabular}
- \(\mathrm{B}: x>0\) (condition in while-loop) \(\Rightarrow \neg \mathrm{B}: \neg(x>0)\)
- loop-invariant:

\section*{Proof of result_2 ( \(\mathrm{x}, \mathrm{y}\) ) using Hoare}
\begin{tabular}{cc} 
function result_2 \((\mathrm{x}, \mathrm{y})\) & function result_2 \((\mathrm{x}, \mathrm{y})\) \\
& \(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \\
& \(\{I\}\) \\
while \(\mathrm{x}>0\) & while \(\mathrm{x}>0\) \\
& \(\{I \wedge B\}\) \\
\(\mathrm{x}=\mathrm{x}-1 ;\) & \(\mathrm{x}=\mathrm{x}-1 ;\) \\
\(\mathrm{y}=\mathrm{y}+1 ;\) & \(\mathrm{y}=\mathrm{y}+1 ;\) \\
& \(\{I\}\) \\
end & end \\
& \(\{I \wedge \neg \mathrm{~B}\}\) (Rule of lteration) \\
& \(\{Q: y=r\}\) \\
return \(\mathrm{y} ;\) & return \(\mathrm{y} ;\)
\end{tabular}
- \(\mathrm{B}: x>0\) (condition in while-loop) \(\Rightarrow \neg \mathrm{B}: \neg(x>0)\)
- loop-invariant: I: \(r=x+y\)
while \(x\) > 0
while \(x\) > 0
\(\{I: r=x+y \wedge B: x>0\}\)
while \(\mathrm{x}>0\)
\(\{I: r=x+y \wedge B: x>0\}\)
\{Item 1\}
\(\mathrm{x}=\mathrm{x}-1\);
\{Item 2\}
\(y=y+1\);
while \(\mathrm{x}>0\)
\(\{I: r=x+y \wedge B: x>0\}\)
\{Item 1\}
\(\mathrm{x}=\mathrm{x}-1\);
\{Item 2\}
\(\mathrm{y}=\mathrm{y}+1\);
\(\{1: r=x+y, x \geq 0\}\)
while \(\mathrm{x}>0\)
\(\{1: r=x+y \wedge B: x>0\}\)
\{Item 1\}
\(\mathrm{x}=\mathrm{x}-1\);
\{Item 2\}
\(\mathrm{y}=\mathrm{y}+1\);
\(\{1: r=x+y, x \geq 0\}\)
- Rule of Assign.:
while \(\mathrm{x}>0\)
\(\{1: r=x+y \wedge B: x>0\}\)
\(\{\) Item 1\}
\(\mathrm{x}=\mathrm{x}-1\);
\{Item 2\}
\(\mathrm{y}=\mathrm{y}+1\);
\(\{1: r=x+y, x \geq 0\}\)
- Rule of Assign.: Item 2: \(\{x+(y+1), x \geq 0\}\)
```

while $\mathrm{x}>0$
$\{I: r=x+y \wedge B: x>0\}$
\{Item 1\}
$\mathrm{x}=\mathrm{x}-1$;
\{Item 2\}
$\mathrm{y}=\mathrm{y}+1$;
$\{1: r=x+y, x \geq 0\}$

```
- Rule of Assign.: Item 2: \(\{x+(y+1), x \geq 0\}\)
- Assign.:
```

while $\mathrm{x}>0$
$\{I: r=x+y \wedge B: x>0\}$
\{Item 1\}
$\mathrm{x}=\mathrm{x}-1$;
\{Item 2\}
$\mathrm{y}=\mathrm{y}+1$;
$\{1: r=x+y, x \geq 0\}$

```
- Rule of Assign.: Item 2: \(\{x+(y+1), x \geq 0\}\)
- Assign.: Item 1: \(\{(x-1)+(y+1), x-1 \geq 0\}\)
```

while $\mathrm{x}>0$
$\{I: r=x+y \wedge B: x>0\}$
\{Item 1\}
$\mathrm{x}=\mathrm{x}-1$;
\{Item 2\}
$\mathrm{y}=\mathrm{y}+1$;
$\{1: r=x+y, x \geq 0\}$

```
- Rule of Assign.: Item 2: \(\{x+(y+1), x \geq 0\}\)
- Assign.: Item 1: \(\{(x-1)+(y+1), x-1 \geq 0\}\)
- In fact:
```

while x > 0
$\{I: r=x+y \wedge B: x>0\}$
\{Item 1\}

$$
x=x-1 ;
$$

$$
\{\text { Item } 2\}
$$

$$
y=y+1 ;
$$

$$
\{1: r=x+y, x \geq 0\}
$$

```
- Rule of Assign.: Item 2: \(\{x+(y+1), x \geq 0\}\)
- Assign.: Item 1: \(\{(x-1)+(y+1), x-1 \geq 0\}\)
- In fact: \(\{(x-1)+(y+1), x-1 \geq 0\}\)
```

while x > 0
$\{I: r=x+y \wedge B: x>0\}$
\{Item 1\}

$$
x=x-1 ;
$$

$$
\{\text { Item } 2\}
$$

$$
y=y+1 ;
$$

$$
\{1: r=x+y, x \geq 0\}
$$

```
- Rule of Assign.: Item 2: \(\{x+(y+1), x \geq 0\}\)
- Assign.: Item 1: \(\{(x-1)+(y+1), x-1 \geq 0\}\)
- In fact: \(\{(x-1)+(y+1), x-1 \geq 0\} \hat{=}\{I: x+y \wedge B: x>0\}\)
```

while $\mathrm{x}>0$
$\{I: r=x+y \wedge B: x>0\}$
\{Item 1\}

$$
x=x-1 ;
$$

$$
\{\text { Item } 2\}
$$

$$
y=y+1 ;
$$

$$
\{1: r=x+y, x \geq 0\}
$$

```
- Rule of Assign.: Item 2: \(\{x+(y+1), x \geq 0\}\)
- Assign.: Item 1: \(\{(x-1)+(y+1), x-1 \geq 0\}\)
- In fact: \(\{(x-1)+(y+1), x-1 \geq 0\} \hat{=}\{I: x+y \wedge B: x>0\}\) because \(x-1 \geq 0 \Leftrightarrow x>0\) for integer \(x\).
function result_2 \((x, y)\)
\(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \(\{1: r=x+y\}\)
while \(\mathrm{x}>0\)
\(\{I: r=x+y \wedge B: x>0 \quad y \geq 0\}\)
\(\mathrm{x}=\mathrm{x}-1\);
\(\mathrm{y}=\mathrm{y}+1\);
\(\{!: r=x+y\}\)
end
function result_2 \((x, y)\)
\(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \(\{1: r=x+y\}\)
while \(\mathrm{x}>0\)
\(\{I: r=x+y \wedge B: x>0 \quad y \geq 0\}\) \(\mathrm{x}=\mathrm{x}-1\);
\(\mathrm{y}=\mathrm{y}+1\);
\(\{!: r=x+y\}\)
end
\[
\{\mathrm{I}: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}
\]
function result_2 \((x, y)\)
\(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \(\{1: r=x+y\}\)
while \(\mathrm{x}>0\)
\(\{I: r=x+y \wedge B: x>0 \quad y \geq 0\}\) \(\mathrm{x}=\mathrm{x}-1\);
\(\mathrm{y}=\mathrm{y}+1\);
\(\{!: r=x+y\}\)
end
\(\{\mathrm{I}: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}\)
\(\{Q: y=r\}\)
function result_2 \((x, y)\)
\(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \(\{1: r=x+y\}\)
while \(\mathrm{x}>0\)
\(\{I: r=x+y \wedge B: x>0 \quad y \geq 0\}\) \(\mathrm{x}=\mathrm{x}-1\);
\(y=y+1\);
\(\{I: r=x+y\}\)
end
\(\{\mathrm{I}: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}\)
\(\{Q: y=r\}\)
return \(y\);
function result_2 \((x, y)\)
\(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \(\{1: r=x+y\}\)
while \(\mathrm{x}>0\)
\(\{I: r=x+y \wedge B: x>0 \quad y \geq 0\}\) \(\mathrm{x}=\mathrm{x}-1\);
\[
y=y+1
\]
\[
\{1: r=x+y\}
\]
end
\[
\{\mathrm{I}: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}
\]
\[
\{Q: y=r\}
\]
return \(y\);
\(\mathrm{P}: x \geq 0 \wedge y \geq 0\)
function result_2 \((x, y)\)
\(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \(\{1: r=x+y\}\)
while \(\mathrm{x}>0\)
\(\{I: r=x+y \wedge B: x>0 \quad y \geq 0\}\) \(\mathrm{x}=\mathrm{x}-1\);
\[
y=y+1
\]
\[
\{1: r=x+y\}
\]
end
\[
\{\mathrm{I}: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}
\]
\[
\{Q: y=r\}
\]
return \(y\);
\(P: x \geq 0 \wedge y \geq 0\) and \(\neg(x>0)\)
function result_2 \((x, y)\)
\(\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}\) \(\{1: r=x+y\}\)
while \(\mathrm{x}>0\)
\(\{I: r=x+y \wedge B: x>0 \quad y \geq 0\}\) \(\mathrm{x}=\mathrm{x}-1\); \(\mathrm{y}=\mathrm{y}+1\); \(\{I: r=x+y\}\)
end
\[
\{\mathrm{I}: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}
\]
\[
\{Q: y=r\}
\]
return \(y\);
\(P: x \geq 0 \wedge y \geq 0\) and \(\neg(x>0) \Rightarrow x=0\)
```

function result_2 (x, y)
$\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}$
$\{1: r=x+y\}$
while $\mathrm{x}>0$
$\{I: r=x+y \wedge B: x>0 \quad y \geq 0\}$
$\mathrm{x}=\mathrm{x}-1$;
$\mathrm{y}=\mathrm{y}+1$;
$\{1: r=x+y\}$
end
$\{\mathrm{I}: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}$
$\{Q: y=r\}$

```
    return \(y\);
\(\mathrm{P}: x \geq 0 \wedge y \geq 0\) and \(\neg(x>0) \Rightarrow x=0\)
\(\Rightarrow \mathrm{Q}: y=\)
```

function result_2 (x, y)
$\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}$
$\{1: r=x+y\}$
while $\mathrm{x}>0$
$\{I: r=x+y \wedge B: x>0 \quad y \geq 0\}$
$\mathrm{x}=\mathrm{x}-1$;
$\mathrm{y}=\mathrm{y}+1$;
$\{1: r=x+y\}$
end
$\{\mathrm{I}: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}$
$\{Q: y=r\}$

```
    return \(y\);
\(\mathrm{P}: x \geq 0 \wedge y \geq 0\) and \(\neg(x>0) \Rightarrow x=0\)
\(\Rightarrow \mathrm{Q}: y=y+x\)
```

function result_2(x,y)
$\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}$
$\{1: r=x+y\}$
while $x>0$
$\{1: r=x+y \wedge B: x>0 y \geq 0\}$
$\mathrm{x}=\mathrm{x}-1$;
$\mathrm{y}=\mathrm{y}+1$;
$\{: r=x+y\}$
end
$\{I: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}$
$\{Q: y=r\}$

```
    return y;
\(\mathrm{P}: x \geq 0 \wedge y \geq 0\) and \(\neg(x>0) \Rightarrow x=0\)
\(\Rightarrow \mathrm{Q}: y=y+x=r\) ( \(\mathrm{I}: r=x+y\) loop-invariant)
```

function result_2(x,y)
$\{P: x \geq 0 \wedge y \geq 0, r:=x+y\}$
$\{1: r=x+y\}$
while $x>0$
$\{1: r=x+y \wedge B: x>0 y \geq 0\}$
$\mathrm{x}=\mathrm{x}-1$;
$\mathrm{y}=\mathrm{y}+1$;
$\{1: r=x+y\}$
end
$\{I: r=x+y \wedge \neg \mathrm{~B}: \neg(x>0)\}$
$\{Q: y=r\}$

```
    return y;
\(\mathrm{P}: x \geq 0 \wedge y \geq 0\) and \(\neg(x>0) \Rightarrow x=0\)
\(\Rightarrow \mathrm{Q}: y=y+x=r\) ( \(\mathrm{I}: r=x+y\) loop-invariant)

00000

\section*{Numerical Quadrature}

\section*{Numerical Quadrature}

Let \(f:[a, b] \rightarrow \mathbb{R}\) be sufficiently smooth (e.g. \(f \in C^{2}\) ).

\section*{Numerical Quadrature}

Let \(f:[a, b] \rightarrow \mathbb{R}\) be sufficiently smooth (e.g. \(f \in C^{2}\) ).

The functional of the definite integral is given by

\section*{Numerical Quadrature}

Let \(f:[a, b] \rightarrow \mathbb{R}\) be sufficiently smooth (e.g. \(f \in C^{2}\) ).

The functional of the definite integral is given by
\[
F(f, a, b):=\int_{a}^{b} f(x) d x
\]

\section*{Numerical Quadrature}

Let \(f:[a, b] \rightarrow \mathbb{R}\) be sufficiently smooth (e.g. \(f \in C^{2}\) ).

The functional of the definite integral is given by
\[
F(f, a, b):=\int_{a}^{b} f(x) d x
\]

Numerical Quadrature means:

\section*{Numerical Quadrature}

Let \(f:[a, b] \rightarrow \mathbb{R}\) be sufficiently smooth (e.g. \(f \in C^{2}\) ).

The functional of the definite integral is given by
\[
F(f, a, b):=\int_{a}^{b} f(x) d x
\]

Numerical Quadrature means:
Calculate an approximation for the numerical value of \(F(f, a, b)\).

\section*{The Trapezodial-Rule}

Approximation with linear function:

\section*{The Trapezodial-Rule}

Approximation with linear function:
\[
F \approx T:=(b-a) \cdot \frac{f(a)+f(b)}{2}
\]


Dividing \([a, b]\) into smaller, equidistant intervals:

Dividing \([a, b]\) into smaller, equidistant intervals: \(\Rightarrow\) piecewise linear functions
\[
F \approx T S:=\frac{b-a}{n+1} \cdot\left[\frac{f(a)}{2}+\sum_{k=1}^{n} f\left(x_{k}\right)+\frac{f(b)}{2}\right]
\]


Dividing \([a, b]\) into smaller, equidistant intervals: \(\Rightarrow\) piecewise linear functions
\[
F \approx T S:=\frac{b-a}{n+1} \cdot\left[\frac{f(a)}{2}+\sum_{k=1}^{n} f\left(x_{k}\right)+\frac{f(b)}{2}\right]
\]


In the picture: \(n=4\)

Dividing \([a, b]\) into smaller, equidistant intervals: \(\Rightarrow\) piecewise linear functions
\[
F \approx T S:=\frac{b-a}{n+1} \cdot\left[\frac{f(a)}{2}+\sum_{k=1}^{n} f\left(x_{k}\right)+\frac{f(b)}{2}\right]
\]


In the picture: \(n=4\)

The errors \(\Delta F=|F-T|\) or \(\Delta F=|F-T S|\) depend on the second derivative:

Dividing \([a, b]\) into smaller, equidistant intervals: \(\Rightarrow\) piecewise linear functions
\[
F \approx T S:=\frac{b-a}{n+1} \cdot\left[\frac{f(a)}{2}+\sum_{k=1}^{n} f\left(x_{k}\right)+\frac{f(b)}{2}\right]
\]


In the picture: \(n=4\)

The errors \(\Delta F=|F-T|\) or \(\Delta F=|F-T S|\) depend on the second derivative:
\[
\Delta F \leq \frac{(b-a)^{3}}{12 \cdot n^{2}} \cdot\left\|f^{\prime \prime}\right\|_{\infty}
\]

\section*{Hierachical Decomposition}

To approximate \(F(f, a, b)\) we start with the Trapezoidal-Rule:

\section*{Hierachical Decomposition}

To approximate \(F(f, a, b)\) we start with the Trapezoidal-Rule:
\[
F(f, a, b) \approx T(f, a, b)=(b-a) \cdot \frac{f(a)+f(b)}{2}
\]

\section*{Hierachical Decomposition}

To approximate \(F(f, a, b)\) we start with the Trapezoidal-Rule:
\[
F(f, a, b) \approx T(f, a, b)=(b-a) \cdot \frac{f(a)+f(b)}{2}
\]

There is a residuum \(S(f, a, b)\) with:

\section*{Hierachical Decomposition}

To approximate \(F(f, a, b)\) we start with the Trapezoidal-Rule:
\[
F(f, a, b) \approx T(f, a, b)=(b-a) \cdot \frac{f(a)+f(b)}{2}
\]

There is a residuum \(S(f, a, b)\) with:
\[
F(f, a, b)=T(f, a, b)+S(f, a, b)
\]


Now decompose \(S(f, a, b)\) into a triangle \(D\) with projected heigh

Now decompose \(S(f, a, b)\) into a triangle \(D\) with projected heigh
\[
h=f\left(\frac{a+b}{2}\right)-\frac{f(a)+f(b)}{2}
\]


Now decompose \(S(f, a, b)\) into a triangle \(D\) with projected heigh
\[
h=f\left(\frac{a+b}{2}\right)-\frac{f(a)+f(b)}{2}
\]


The area of \(D\) is given by:

Now decompose \(S(f, a, b)\) into a triangle \(D\) with projected heigh
\[
h=f\left(\frac{a+b}{2}\right)-\frac{f(a)+f(b)}{2}
\]


The area of \(D\) is given by:
\[
D(f, a, b)=\frac{b-a}{2} \cdot h
\]



The new residuum can be determined by using this idea recursively:


The new residuum can be determined by using this idea recursively:
\[
S(f, a, b)=D(f, a, b)+S\left(f, a, \frac{a+b}{2}\right)+S\left(f, \frac{a+b}{2}, b\right)
\]

Approximation via Basis Functions

\section*{Approximation via Basis Functions}

If \(u:[a, b] \rightarrow \mathbb{R}\) is an approximation to \(f\), then

\section*{Approximation via Basis Functions}

If \(u:[a, b] \rightarrow \mathbb{R}\) is an approximation to \(f\), then
\[
F(f, a, b) \approx F(u, a, b)
\]

\section*{Approximation via Basis Functions}

If \(u:[a, b] \rightarrow \mathbb{R}\) is an approximation to \(f\), then
\[
F(f, a, b) \approx F(u, a, b)
\]

Let \(u(x)\) be a linear combination of basis functions \(\Phi_{k}(x)\) :

\section*{Approximation via Basis Functions}

If \(u:[a, b] \rightarrow \mathbb{R}\) is an approximation to \(f\), then
\[
F(f, a, b) \approx F(u, a, b)
\]

Let \(u(x)\) be a linear combination of basis functions \(\Phi_{k}(x)\) :
\[
u(x)=\sum_{k=1}^{N} \alpha_{k} \Phi_{k}(x)
\]

\section*{Approximation via Basis Functions}

If \(u:[a, b] \rightarrow \mathbb{R}\) is an approximation to \(f\), then
\[
F(f, a, b) \approx F(u, a, b)
\]

Let \(u(x)\) be a linear combination of basis functions \(\Phi_{k}(x)\) :
\[
u(x)=\sum_{k=1}^{N} \alpha_{k} \Phi_{k}(x)
\]

Now we can write easily:

\section*{Approximation via Basis Functions}

If \(u:[a, b] \rightarrow \mathbb{R}\) is an approximation to \(f\), then
\[
F(f, a, b) \approx F(u, a, b)
\]

Let \(u(x)\) be a linear combination of basis functions \(\Phi_{k}(x)\) :
\[
u(x)=\sum_{k=1}^{N} \alpha_{k} \Phi_{k}(x)
\]

Now we can write easily:
\[
F(f, a, b) \approx \int_{a}^{b} u(x)=
\]

\section*{Approximation via Basis Functions}

If \(u:[a, b] \rightarrow \mathbb{R}\) is an approximation to \(f\), then
\[
F(f, a, b) \approx F(u, a, b)
\]

Let \(u(x)\) be a linear combination of basis functions \(\Phi_{k}(x)\) :
\[
u(x)=\sum_{k=1}^{N} \alpha_{k} \Phi_{k}(x)
\]

Now we can write easily:
\[
F(f, a, b) \approx \int_{a}^{b} u(x)=\int_{a}^{b} \sum_{k=1}^{N} \alpha_{k} \Phi_{k}(x)=
\]

\section*{Approximation via Basis Functions}

If \(u:[a, b] \rightarrow \mathbb{R}\) is an approximation to \(f\), then
\[
F(f, a, b) \approx F(u, a, b)
\]

Let \(u(x)\) be a linear combination of basis functions \(\Phi_{k}(x)\) :
\[
u(x)=\sum_{k=1}^{N} \alpha_{k} \Phi_{k}(x)
\]

Now we can write easily:
\[
F(f, a, b) \approx \int_{a}^{b} u(x)=\int_{a}^{b} \sum_{k=1}^{N} \alpha_{k} \Phi_{k}(x)=\sum_{k=1}^{N} \alpha_{k} \int_{a}^{b} \Phi_{k}(x)
\]

Define „,hat functions" as basis functions via

Define „,hat functions" as basis functions via
\[
\Phi_{n, i}=\Phi\left(\frac{x-x_{n, i}}{h_{n}}\right)
\]

Define „,hat functions" as basis functions via
\[
\Phi_{n, i}=\Phi\left(\frac{x-x_{n, i}}{h_{n}}\right)
\]
- \(\Phi(x):=\max \{1-|x|, 0\}\)

Define „,hat functions" as basis functions via
\[
\Phi_{n, i}=\Phi\left(\frac{x-x_{n, i}}{h_{n}}\right)
\]
- \(\Phi(x):=\max \{1-|x|, 0\}\)
- mesh size \(h_{n}:=2^{-n}\)

Define „,hat functions" as basis functions via
\[
\Phi_{n, i}=\Phi\left(\frac{x-x_{n, i}}{h_{n}}\right)
\]
- \(\Phi(x):=\max \{1-|x|, 0\}\)
- mesh size \(h_{n}:=2^{-n}\)
- grid points \(x_{n, i}=i \cdot h_{n}\)

Define „,hat functions" as basis functions via
\[
\Phi_{n, i}=\Phi\left(\frac{x-x_{n, i}}{h_{n}}\right)
\]
- \(\Phi(x):=\max \{1-|x|, 0\}\)
- mesh size \(h_{n}:=2^{-n}\)
- grid points \(x_{n, i}=i \cdot h_{n}\)


Let \(V_{N}\) be the space of the continuous, on grid \(h_{n}\) piecewise linear functions \(u:[0,1] \rightarrow \mathbb{R}\) with \(u(0)=u(1)=0\). Then

Let \(V_{N}\) be the space of the continuous, on grid \(h_{n}\) piecewise linear functions \(u:[0,1] \rightarrow \mathbb{R}\) with \(u(0)=u(1)=0\). Then
\[
\Psi_{N}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n}\right\}
\]

Let \(V_{N}\) be the space of the continuous, on grid \(h_{n}\) piecewise linear functions \(u:[0,1] \rightarrow \mathbb{R}\) with \(u(0)=u(1)=0\). Then
\[
\Psi_{N}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n}\right\}
\]
is a generator system for \(V_{N}\) (but for \(N>1\) not a basis).

Let \(V_{N}\) be the space of the continuous, on grid \(h_{n}\) piecewise linear functions \(u:[0,1] \rightarrow \mathbb{R}\) with \(u(0)=u(1)=0\). Then
\[
\Psi_{N}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n}\right\}
\]
is a generator system for \(V_{N}\) (but for \(N>1\) not a basis).
We use the hierachical basis:

Let \(V_{N}\) be the space of the continuous, on grid \(h_{n}\) piecewise linear functions \(u:[0,1] \rightarrow \mathbb{R}\) with \(u(0)=u(1)=0\). Then
\[
\Psi_{N}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n}\right\}
\]
is a generator system for \(V_{N}\) (but for \(N>1\) not a basis).
We use the hierachical basis:
\[
\Psi_{N}^{H}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n} \mid i \text { odd }\right\}
\]

Let \(V_{N}\) be the space of the continuous, on grid \(h_{n}\) piecewise linear functions \(u:[0,1] \rightarrow \mathbb{R}\) with \(u(0)=u(1)=0\). Then
\[
\Psi_{N}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n}\right\}
\]
is a generator system for \(V_{N}\) (but for \(N>1\) not a basis).
We use the hierachical basis:
\[
\Psi_{N}^{H}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n} \mid i \text { odd }\right\}
\]
\(W_{n}:=\operatorname{span}\left\{\Phi_{n, i} \mid \alpha_{n, i}=0\right.\) for all even \(\left.i\right\}\)

Let \(V_{N}\) be the space of the continuous, on grid \(h_{n}\) piecewise linear functions \(u:[0,1] \rightarrow \mathbb{R}\) with \(u(0)=u(1)=0\). Then
\[
\Psi_{N}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n}\right\}
\]
is a generator system for \(V_{N}\) (but for \(N>1\) not a basis).
We use the hierachical basis:
\[
\Psi_{N}^{H}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n} \mid i \text { odd }\right\}
\]
\(W_{n}:=\operatorname{span}\left\{\Phi_{n, i} \mid \alpha_{n, i}=0\right.\) for all even \(\left.i\right\} \Rightarrow V_{N}=V_{N-1} \oplus W_{N}\)

Let \(V_{N}\) be the space of the continuous, on grid \(h_{n}\) piecewise linear functions \(u:[0,1] \rightarrow \mathbb{R}\) with \(u(0)=u(1)=0\). Then
\[
\Psi_{N}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n}\right\}
\]
is a generator system for \(V_{N}\) (but for \(N>1\) not a basis).
We use the hierachical basis:
\[
\Psi_{N}^{H}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n} \mid i \text { odd }\right\}
\]
\[
\begin{aligned}
W_{n}:= & \operatorname{span}\left\{\Phi_{n, i} \mid \alpha_{n, i}=0 \text { for all even } i\right\} \Rightarrow V_{N}=V_{N-1} \oplus W_{N} \\
& \Rightarrow V_{N}=\oplus_{n=1}^{N} W_{n}
\end{aligned}
\]

Let \(V_{N}\) be the space of the continuous, on grid \(h_{n}\) piecewise linear functions \(u:[0,1] \rightarrow \mathbb{R}\) with \(u(0)=u(1)=0\). Then
\[
\Psi_{N}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n}\right\}
\]
is a generator system for \(V_{N}\) (but for \(N>1\) not a basis).
We use the hierachical basis:
\[
\Psi_{N}^{H}:=\bigcup_{n=1}^{N}\left\{\Phi_{n, i}: 1 \leq i<2^{n} \mid i \text { odd }\right\}
\]
\[
\begin{aligned}
W_{n}:= & \operatorname{span}\left\{\Phi_{n, i} \mid \alpha_{n, i}=0 \text { for all even } i\right\} \Rightarrow V_{N}=V_{N-1} \oplus W_{N} \\
& \left.\Rightarrow V_{N}=\oplus_{n=1}^{N} W_{n} \text { (inductive argument with } V_{1}=W_{1}\right)
\end{aligned}
\]

\section*{The hierachical basis for \(W_{1}, W_{2}\) and \(W_{3}\)}


\section*{Approximation}


\section*{Representation in hierachical basis}

Let \(v \in V_{N}\) be a vector:

\section*{Representation in hierachical basis}

Let \(v \in V_{N}\) be a vector:
\[
v(x)=\sum_{n=1}^{N} \sum_{i=1}^{2^{n}-1} \alpha_{n, i} \Phi_{n, i}(x)
\]

\section*{Representation in hierachical basis}

Let \(v \in V_{N}\) be a vector:
\[
v(x)=\sum_{n=1}^{N} \sum_{i=1}^{2^{n}-1} \alpha_{n, i} \Phi_{n, i}(x)
\]

The program HierachicalBasis(N) should convert \(v(x)\) into the hierachical basis: \((N>1)\)

\section*{Representation in hierachical basis}

Let \(v \in V_{N}\) be a vector:
\[
v(x)=\sum_{n=1}^{N} \sum_{i=1}^{2^{n}-1} \alpha_{n, i} \Phi_{n, i}(x)
\]

The program HierachicalBasis(N) should convert \(v(x)\) into the hierachical basis: \((N>1)\)
\[
v(x)=\sum_{n=1}^{N} \sum_{i=1}^{2^{n}-1} \alpha_{n, i}^{\prime} \Phi_{n, i}(x)
\]
with \(\alpha_{n, i}^{\prime}=0\) for all even \(i\).

\section*{Program HierachicalBasis(N)}

\section*{function HierachicalBasis(N)}

\section*{Program HierachicalBasis(N)}

\section*{function HierachicalBasis(N) \\ \[
\text { for } n=N-1, \ldots, 1 \text { : }
\]}

\section*{Program HierachicalBasis(N)}
function HierachicalBasis(N)
for \(n=N-1, \ldots, 1\) :
for \(i=1, \ldots, 2^{n}-1\) :

\section*{Program HierachicalBasis(N)}
function HierachicalBasis(N)
\[
\text { for } n=N-1, \ldots, 1 \text { : }
\]
\[
\text { for } i=1, \ldots, 2^{n}-1:
\]
\[
a_{n+1,2 i-1}-=a_{n+1,2 i} / 2
\]
\[
a_{n+1,2 i+1}-=a_{n+1,2 i} / 2
\]

\section*{Program HierachicalBasis(N)}
function HierachicalBasis(N)
for \(\mathrm{n}=\mathrm{N}-1, \ldots, 1\) :
for \(i=1, \ldots, 2^{n}-1\) :
\(a_{n+1,2 i-1}-=a_{n+1,2 i} / 2\)
\(a_{n+1,2 i+1}-=a_{n+1,2 i} / 2\)
\(a_{n, i}+=a_{n+1,2 i}\)

\section*{Program HierachicalBasis(N)}
function HierachicalBasis(N)
for \(\mathrm{n}=\mathrm{N}-1, \ldots, 1\) :
for \(i=1, \ldots, 2^{n}-1\) :
\(a_{n+1,2 i-1}-=a_{n+1,2 i} / 2\)
\(a_{n+1,2 i+1}-=a_{n+1,2 i} / 2\)
\(a_{n, i}+=a_{n+1,2 i}\)
\(a_{n+1,2 i}=0\)

\section*{Program HierachicalBasis(N)}
\[
\begin{aligned}
& \text { function HierachicalBasis(N) } \\
& \text { for } \mathrm{n}=\mathrm{N}-1, \ldots, 1: \\
& \text { for } \mathrm{i}=1, \ldots, 2^{n}-1: \\
& a_{n+1,2 i-1}-=a_{n+1,2 i} / 2 \\
& a_{n+1,2 i+1}-=a_{n+1,2 i} / 2 \\
& a_{n, i}+=a_{n+1,2 i} \\
& a_{n+1,2 i}=0
\end{aligned}
\]

To prove the correctness of HierachicalBasis(N), the programm must be written in a form Hoare Calculation can handle with:
function HierachicalBasis_Hoare(N)

\section*{function HierachicalBasis_Hoare(N)}
\(\mathrm{n}=\mathrm{N}-1\)
while \(\mathrm{n} \neq 0\)

\section*{function HierachicalBasis_Hoare(N)}
\(\mathrm{n}=\mathrm{N}-1\)
while \(\mathrm{n} \neq 0\)
i = 1
while i \(\neq 2^{n}\)

\section*{function HierachicalBasis_Hoare(N)}
\(\mathrm{n}=\mathrm{N}-1\)
while \(\mathrm{n} \neq 0\)
i = 1
while i \(\neq 2^{n}\)
\[
\begin{aligned}
& a_{n+1,2 i-1}=a_{n+1,2 i-1}-a_{n+1,2 i} / 2 \\
& a_{n+1,2 i+1}=a_{n+1,2 i+1}-a_{n+1,2 i} / 2 \\
& a_{n, i}=a_{n, i}+a_{n+1,2 i} \\
& a_{n+1,2 i}=0
\end{aligned}
\]

\section*{function HierachicalBasis_Hoare(N)}
\(\mathrm{n}=\mathrm{N}-1\)
while \(\mathrm{n} \neq 0\)
i = 1
while i \(\neq 2^{n}\)
\[
\begin{aligned}
a_{n+1,2 i-1} & =a_{n+1,2 i-1}-a_{n+1,2 i} / 2 \\
a_{n+1,2 i+1} & =a_{n+1,2 i+1}-a_{n+1,2 i} / 2
\end{aligned}
\]
\[
a_{n, i}=a_{n, i}+a_{n+1,2 i}
\]
\[
a_{n+1,2 i}=0
\]
\[
i=i+1
\]
\[
\mathrm{n}=\mathrm{n}-1
\]

\section*{Why to use Hierachical Basis}

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high):

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon\)

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials:

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\)

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\) (Simpsons-Rule)

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\) (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory requirements \(M \propto N^{d}\left(N=\operatorname{dim} V_{N}\right)\)

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\) (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory requirements \(M \propto N^{d}\left(N=\operatorname{dim} V_{N}\right)\)
\(\Rightarrow\) exponential increasing with \(d\)

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\) (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory requirements \(M \propto N^{d}\left(N=\operatorname{dim} V_{N}\right)\)
\(\Rightarrow\) exponential increasing with \(d\)
With hierachical basis:

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\) (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory requirements \(M \propto N^{d}\left(N=\operatorname{dim} V_{N}\right)\)
\(\Rightarrow\) exponential increasing with \(d\)
With hierachical basis: \(M \propto N \cdot(\ln N)^{d-1}\)

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\) (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory requirements \(M \propto N^{d}\left(N=\operatorname{dim} V_{N}\right)\)
\(\Rightarrow\) exponential increasing with \(d\)
With hierachical basis: \(M \propto N \cdot(\ln N)^{d-1}\)
\(\Rightarrow\) New problem:

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\) (Simpsons-Rule)

For high-dimensional functions (dimension \(d\) ) the memory requirements \(M \propto N^{d}\left(N=\operatorname{dim} V_{N}\right)\)
\(\Rightarrow\) exponential increasing with \(d\)
With hierachical basis: \(M \propto N \cdot(\ln N)^{d-1}\)
\(\Rightarrow\) New problem: Program code very complicated!

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\) (Simpsons-Rule)

For high-dimensional functions (dimension \(d\) ) the memory requirements \(M \propto N^{d}\left(N=\operatorname{dim} V_{N}\right)\)
\(\Rightarrow\) exponential increasing with \(d\)
With hierachical basis: \(M \propto N \cdot(\ln N)^{d-1}\)
\(\Rightarrow\) New problem: Program code very complicated! How to be sure, there are no deficiencies?

\section*{Why to use Hierachical Basis}
- Adaptive stop criterion (via projected high): \(\alpha_{n, i}<\epsilon \Rightarrow\) STOP
- The global error can be estimated by \(\Delta F \leq \epsilon(b-a)\)
- For second-degree polynomials: \(S=\frac{4}{3} D\) (Simpsons-Rule)

For high-dimensional functions (dimension \(d\) ) the memory requirements \(M \propto N^{d}\left(N=\operatorname{dim} V_{N}\right)\)
\(\Rightarrow\) exponential increasing with \(d\)
With hierachical basis: \(M \propto N \cdot(\ln N)^{d-1}\)
\(\Rightarrow\) New problem: Program code very complicated! How to be sure, there are no deficiencies?
\(\Rightarrow\) Hoare Calculation!

\section*{References}
- Michael Gellner: Der Umgang mit dem Hoare-Kalkül zur Programmverikfikation
- Volker Claus: Einführung in die Informatik 2005/06 - Kapitel 7: Semantik von Programmen
- Samuel Kerschbaumer: The Hoare Logic - Providing Numerical Algorithms (2006)
- Peter Heinig: Program Verification using Hoare Logic - An Introduction
- Michael Bader, Stefan Zimmer: Hierarchische Zerlegung (eindimensional)

\section*{End of presentation}

\section*{Thank you for your attention!}```

