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The Problem Hoare Rules Numerical Quadrature

A �rst example

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

How can we prove, that for x , y ∈ N0:

result(x,y) = x + y
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function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :

x = 0 ⇒ result(0,y) =︸︷︷︸
x==0

y , and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
⇒ result(x+1,y) =︸︷︷︸

else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y �
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A second example

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

How can we prove, that for x , y ∈ N0:

result_2(x,y) = x + y

As easy as in the �rst example?
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function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

Try to prove the assertion by induction on x :

x = 0 ⇒ result_2(0,y) = y and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
result_2(x+1,y) = . . . It doesn't work!
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What is the problem?

There's no recursive run of result_2.

Number of while-loop-iterations depends on x .

Values of x , y are changing during running time.

⇒ Mathematical methods of proof won't last!

⇒ We need new tools!
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Challenges

Let P be a given program. We want to prove, that

1 P terminates for all valid inputs.

2 P works for a given domain in that way it is built for.

Both tasks are as hard as the Halting Problem.

You must prove them for every single P.

In the following algorithms the termination is assumed.
⇒ We just meet challenge 2 using Hoare Calculation . . .
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C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia

�I conclude that there are two ways of constructing a

software design: One way is to make it so simple that

there are obviously no de�ciencies and the other way is to

make it so complicated that there are no obvious

de�ciencies.�
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Hoare-Triple

{P} S {Q}

P, Q predicates with values true or false

S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔
If the predicate {P} is true immediately before execution of S, then
immediately S has terminated, the predicate {Q} is true.

Notation: X
Y

:⇔ X ⇒ Y
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Hoare Rule 1: Skip-Axiom

true
{A} skip {A}

skip means the program with no commands.
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Hoare Rule 2: Axiom of Assignment

true
{Aβ/x} x :=β {A}

Aβ/x is predicate A, but x instead of β.
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Hoare Rule 3: Rule of Composition

{A} S1 {B} ∧ {B} S2 {C}
{A} S1,S2 {C}
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Hoare Rule 4: Rule of Conditional Branching

{A ∧ B} S1 {Q} ∧ {A ∧ ¬B} S2 {Q}
{A} if B then S1 else S2 end if {Q}
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Hoare Rule 5: Rule of Iteration

{I ∧ B} S {I}
{I} while B loop S end loop {I ∧ ¬B}

Such an I is called loop-invariant.
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Hoare Rule 6: Rule of Consequence

A⇒ A' ∧ {A'} S {B'} ∧ B'⇒ B

{A} S {B}
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Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y
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while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .
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Numerical Quadrature

Let f : [a, b] → R be su�ciently smooth (e.g. f ∈ C 2).

The functional of the de�nite integral is given by

F (f , a, b) :=

∫
b

a

f (x) dx

Numerical Quadrature means:
Calculate an approximation for the numerical value of F (f , a, b).
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The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals:

⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞



The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals: ⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞



The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals: ⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞



The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals: ⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞



The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals: ⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞



The Problem Hoare Rules Numerical Quadrature

Hierachical Decomposition

To approximate F (f , a, b) we start with the Trapezoidal-Rule:

F (f , a, b) ≈ T (f , a, b) = (b − a) · f (a) + f (b)

2

There is a residuum S(f , a, b) with:

F (f , a, b) = T (f , a, b) + S(f , a, b)
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b − a
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· h



The Problem Hoare Rules Numerical Quadrature

Now decompose S(f , a, b) into a triangle D with projected heigh

h = f

(
a + b

2

)
− f (a) + f (b)

2

The area of D is given by:

D(f , a, b) =
b − a

2
· h



The Problem Hoare Rules Numerical Quadrature

Now decompose S(f , a, b) into a triangle D with projected heigh

h = f

(
a + b

2

)
− f (a) + f (b)

2

The area of D is given by:

D(f , a, b) =
b − a

2
· h



The Problem Hoare Rules Numerical Quadrature

Now decompose S(f , a, b) into a triangle D with projected heigh

h = f

(
a + b

2

)
− f (a) + f (b)

2

The area of D is given by:

D(f , a, b) =
b − a

2
· h



The Problem Hoare Rules Numerical Quadrature

The new residuum can be determined by using this idea recursively:

S(f , a, b) = D(f , a, b) + S(f , a,
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Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑
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De�ne �hat functions� as basis functions via

Φn,i = Φ

(
x − xn,i

hn

)

Φ(x) := max{1− |x |, 0}
mesh size hn := 2−n

grid points xn,i = i · hn
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Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).
We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i} ⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn (inductive argument with V1 = W1)
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The hierachical basis for W1, W2 and W3
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Approximation
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Representation in hierachical basis

Let v ∈ VN be a vector:

v(x) =
N∑

n=1

2n−1∑
i=1

αn,iΦn,i (x)

The program HierachicalBasis(N) should convert v(x) into the
hierachical basis: (N > 1)

v(x) =
N∑

n=1

2n−1∑
i=1

α′n,iΦn,i (x)

with α′
n,i = 0 for all even i .
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Program HierachicalBasis(N)

function HierachicalBasis(N)

for n = N-1,. . .,1 :

for i = 1,. . .,2n − 1 :

an+1,2i−1 - = an+1,2i/2

an+1,2i+1 - = an+1,2i/2

an,i + = an+1,2i
an+1,2i = 0

To prove the correctness of HierachicalBasis(N), the programm
must be written in a form Hoare Calculation can handle with:
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function HierachicalBasis_Hoare(N)

n = N-1

while n 6= 0

i = 1

while i 6= 2n

an+1,2i−1 = an+1,2i−1 − an+1,2i/2

an+1,2i+1 = an+1,2i+1 − an+1,2i/2

an,i = an,i + an+1,2i

an+1,2i = 0

i = i+1
n = n-1
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Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!
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End of presentation

Thank you for your attention!
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