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DFT?

DENSITY FUNCTIONAL THEORY is a method to successfully
describe the behavior of atomic and molecular systems and is
used for instance for:

structural prediction of chemical compounds
simulation of chemical reactions
folding of proteins
. . .

This method is used a lot nowadays and even on high end
computers computations can take up to months. But these
computations are absolutely necessary in modern chemistry,
pharmacy and also physics.
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Empiric Potentials

Classically atoms and molecules can be simulated rather
easy with potentials, which can be derived from statistical
physics.

Advantages

low computational effort
so it is possible to simulate a large amount of particles
easy to implement

Disadvantages

mostly pairwise potentials
do not represent the true interaction of particles
small scale effects (bonding etc.) cannot be simulated

So we need to take quantum mechanical behavior into
account.
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Classical Mechanics - Quantum Mechanics

Classical Mechanics
every system is determined by ~x and ~p
every state can be measured and predicted exactly
state and measurement of a system are the same

But some effects cannot be explained with the Classic Model

Black Body Radiation
Self Interaction of Electrons
The Photoelectric Effect
. . .

And this effects can only be described by Quantum Physics!
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Quantum Mechanics?

in Quantum Mechanics Newton’s Laws do not apply in
the same way

Heisenberg’s Uncertainty Principle

∆x∆p ≥ ~
2

(1)

where ∆x is the uncertainty in position and ∆p is the
uncertainty in momentum
~ = h

2π is the reduced Planck constant

position and momentum can only be measured to a
certain energy difference
an nearly exact measurement for x results in a very fuzzy
result for p and vice versa
the measurement itself changes the state of the object
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Wave Function ψ

Quantum objects can only be described as Wave Functions ψ

Properties

ψ ∈ C (2)∫
ψψ∗d~x = 1 (3)

Eq.(3) has to be fullfilled, because ψψ∗ represents a
probability density.

ψ can be:
a finite or infinite vector ~ψ
a function with a finite or infinite number of variables
ψ(x1, . . . , xn, . . . )
can be defined in spacial dimensions (ψ(~x))and
momentum space (ψ(~p))
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Schrödinger Equation

basis formulation

general Schrödinger Equation

i~
∂

∂t
ψ(~x, t) = Hψ(~x, t) (4)

but we just need the

stationary solution

Eiψi(~x) = Hψi(~x) (5)

Ei are Eigenvalues with the eigenvectors ψi

H is an Operator acting on ψ
all ψi are perpendicular to each other
ψ0 with the lowest energy E0 represents the ground state



DFT

Christoph Kowitz

Introduction

Basics in Quantum
Mechanics
Wave Function

Schrödinger Equation

Born-Oppenheimer Approx

DFT

Self Consistent Field
(SCF) Cycle

Numerical Effort

Post Processing

Hamilton Operator H

The Hamilton Operator returns the kinetic and potential
energy of a system. Classically we would derive the
Hamiltonian by the sum of kinetic and potential energy, but in
quantum mechanics the kinetic energy is evaluated by the
Laplacian (Differential Operator)

H = −1
2

∆ + V(~x) (6)

so that the Schrödinger equation looks like

Hψi = −1
2

∆ψi + Vψi (7)
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Analytical Calculation

Solving the Schrödinger equation analytically is only possible
for hydrogen like systems as H, He+, Li2+. . .
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Born-Oppenheimer-Approximation

In a molecule the wave function ψ depends on the
position of the electrons (~x) and the atomic nuclei (~R) and
the spin of the electrons (~σ)
the problem has so 3Ne + 3Nn dimensions
The nuclei are much heavier (at least ≈2000 times)than
the electrons and so they are not as mobile as the
electrons

Born-Oppenheimer-Approximation

The nuclei are treated as static in the molecule so that the
electrons move in a system of of non-moving nuclei.

This step reduces the original dimensionality to 3Ne
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Main Goal

Finding Electronic Structure

energy states
occupation numbers
electron distribution

Geometry Optimization

conformation changes
oscillation spectra
simulation of Van-der-Waals forces

Molecular Dynamics

direct simulation of reactions
fully dynamic observation of the molecule
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Other simulation techniques

Hartree-Fock
direct usage of ψ to calculate potentials and energies
advantage: allows further refinement of done calculation
(not possible in DFT)
disadvantage: doesn’t include the electron correlation
and computational expensive

Configuration Interaction

precise method
but computational extremely intensive→ just used for
small systems

So DFT is our method of choice for larger molecular systems,
because all necessary properties of the system are based on
a single scalar function→ computational advantage.
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Hohenberg - Kohn Theorems

First theorem
All properties of a system with the Born-Oppenheimer
approximation are determined by the electron density ρ

ρ(~x) =
∑

i

ψiψ
∗
i (8)

where ψi are the solutions of the Schrödinger equation

Second Theorem

E(ρ) ≥ E(ρ0) (9)

The Energy functional E is for any valid state always larger
than the one for the ground state

So the Kohn-Sham approach is just based on the 3
dimensional electron density ρ(~x) and we avoid to compute
with high-dimensional wave functions.
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Kohn-Sham Functions

They are derived from the Schrödinger equation:

Hσψσ = (Hkin + Vne + Vcoul + Vxc)ψσ

= (−1
2
∆ +

∑
n

Zn

|~x− ~Rn|
+

∫
ρ(~x′)
|~x−~x′|

d~x′ + Vxc(ρ))ψσ

= εσψσ

one equation for each spin component of σ
ψσ are the Kohn-Sham orbital functions
they are one electron wave functions
Vxc is the Exchange correlation potential
all properties do just depend on the density ρ
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Energy Calculation

The energy computation is necessary for the post processing
and for the iteration of the exchange correlation potential.

Energy

E = Ekin + Enn + Ene + Ecoul + Exc (10)

= Hkinψσ +
∑
i>j

ZiZj

|~Ri − ~Rj|
+

∫
ρVned~x (11)

+
1
2

∫
ρVcould~x +

∫
ρεxcd~x

Again we have an exchange correlation part εxc in there.



DFT

Christoph Kowitz

Introduction

Basics in Quantum
Mechanics

DFT
Basic Principle

Kohn-Sham Functions

Energy

Exchange Correlation Energy

Self Consistent Field
(SCF) Cycle

Numerical Effort

Post Processing

Exchange Correlation Energy Exc

Exc

should catch the error we make by representing the
system as a sum of one electron wave functions
is the only not exactly known propertie of DFT

If we would know Exc exactly we would be able to describe a
microscopical system exactly as well!

Calculation of Exc

can be guessed
can be approximated iteratively
its calculation is one main part of DFT

Exchange correlation potential:

Vxc =
δExc

δρ
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Numerical Algorithm

Right now we have the basic ingredients to calculate the
energy and electron structure of a system. We will now
discuss the numerical algorithm and the problems there.

Main problem:

V = V(ρ) = V(ρ(ψ) < ψ = ψ(V)

Solution:
Iterative scheme which leads to self-consistency of ρ.
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Self Consistent Field (SCF) Cycle

1 choose set of basis functions w
2 set initial ρ
3 calculate Vclass = Vcoul + Vne

4 determine Vxc

5 build Hamilton matrix H
6 solve Kohn-Sham equation Hψ = (Hkin + Vclass + Vxc)ψ
7 determine occupation numbers niof the orbitals ψi

8 calculate ρ =
∑

niψ
∗
i ψ

9 if the convergence criteria are not met: GOTO 3
else: calculate energy E and do postprocessing
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Set of Basis Functions

Slater Functions

f (~x−~x′)e−α|~x−~x
′| (12)

f can be any function like spherical harmonics or cartesian
polynomials.

commonly used and quite exact
set of orthogonal functions
they are LCAO (Linear Combination of Atomic Orbitals)
→ superposition of atomic orbitals represent the orbitals
of the whole molecule (exponential part)
asymptotic behavior is close to the exact orbital functions

Disadvantages

They are numerically not easy to handle, because they
require a numerical integration



DFT

Christoph Kowitz

Introduction

Basics in Quantum
Mechanics

DFT

Self Consistent Field
(SCF) Cycle
Basis Functions

Exchange Correlation Energy

Eigenproblem

Numerical Effort

Post Processing

Gaussian Functions

Gaussian function

f (~x−~x′)e−α|~x−~x
′|2 (13)

easy to integrate analytically
superposition of more than one Gauss function is
necessary to represent one orbital
their asymptotic behavior is not as good as that of the
Slater functions
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Exchange Correlation Energy I

There is no strict way to determine them, but there are
different approaches:

LDA (Local Density Approximation)

Exc =
∫
ρεxc(ρ(~x))dV (14)

simple approximation
its just using the density at a certain position ~r
still useful for determination of equilibrium structures,
harmonic frequencies or charge moments

LSA (Local spin-density Approximation)

Exc =
∫
ρεxc(ρ↑(~x)ρ↓(~x))dV (15)

rather useful for molecules with odd number of electrons
allow symmetry breaking of the spins
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Exchange Correlation Energy II

GGA (Generalized Gradient Approximation)

Exc =
∫
ρεxc(ρ↑(~x), ρ↓(~x),∇ρ↑(~x),∇ρ↓(~x))dV (16)

are right now most commonly used
but they are much harder to implement (εxc is a rather
complicated function)
more precise in general, especially for bonding energies

The choice of is differs with the system we like to simulate.
There is a vast amount of functionals, each useful for another
molecular system. With εxc we can compute Vxc and so H
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Building the Hamilton Matrix

Now we can calculate the Hamilton matrix H

Hij =
∫

wiHwjdV (17)

and solve the Eigenproblem

Hψ = εψ (18)

We get:

The Orbitals as linear combination of the basis functions and
electron density

ψi =
∑

n

wnψim ρ =
∑

i

ψ∗i ψi (19)
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Numerical Effort

Diagonalisation

O(N3) operations necessary (N number of basis
functions)
one can use symmetries to reduce the problemsize

SCF
numerically very intensive
contains the diagonalisation in every iteration
calculation of exchange correlation energies and
potentials is also expensive

Post Processing

There also exist a number of post processing methods, which
itself are already very computational intensive, even if
classical models are used.

The parallelization and portation of this problems to super
computers is absolutely necessary!
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Post Processing

Chemical Reaction
In a chemical reaction, the system gets from the outside a
activation energy. This energy pushes the system to a
transition state, from which it goes to another state on the
other side of the transition state.

These transition states are crucial for chemistry, because they
mark exactly the activation energy needed for a molecule
reaction.
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Eigenmodes

One can approximate the energy landscape around a
configuration ~R quadratically.

With that we can:
calculate the eigenmodes of a system
determine oscillation spectra
compare them to experiments
good quality check
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