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Carbon is one of the most interesting elements and plays a unique role in
nature. It exists in many allotropes, some known from ancient times (diamonds)
and some which were discovered in the last decades (fullerenes, nanotubes).
The two-dimensional form of carbon, called Graphene, is the most recently
discovered modification. This first two-dimensional material has very peculiar
electronic properties, that make it interesting both for fundamental research
and possible applications.
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1 Introduction

Carbon exists in many modifications: three-dimensional crystals (diamond,
graphite), one-dimensional nanotubes and zero-dimensional fullerenes. The two-
dimensional graphene was thought not to exist1, because thermal fluctuations
should destroy any long-range correlation in one or two dimensions. Because
of its simplicity Graphene has been a perfect subject for theoretical studies.
Planar, hexagonal arrangements of carbon atoms - graphene - is the start-
ing point in all calculations on carbon nanotubes, fullerenes and graphite. In
2004 a group of physicists from Manchester University, led by Andre Geim and
Kostya Novoselov found a way to extract a single layer of atoms from graphite2.
Graphene attracted the interest of many more scientists instantly, so that many
of the predicted electronic properties were verified in experiments.

Figure 1: atomic force microscope (AFM) image of graphite surface, 2x2 nm
(Exp. Phys. VI, Uni Augsburg)

2 Preparation of Graphene

2.1 top-down-approach

There are two fundamentally different approaches to prepare nanostructures,
like one single layer of atoms. In the top-down-approach you start with macro-
scopic structures and break them down into smaller ones. Novoselov and his
colleagues developed a technique they called ”micromechanical cleavage” to ex-
tract single sheets of atoms from three dimensional crystals. Graphite is a
crystal made of layers of graphene that are weakly coupled together by van-der-
Waals forces, which is exactly the property used in this technique.

The Manchester group started with an 1mm thick highly-oriented pyrolytic
graphite crystal, etched it down to a thickness of 5 µm and baked this crystal
to a glass surface. Then they peeled off the top layers using simple scotch tape,
released the flakes left on the glass in acetone and washed them on a silicon
wafer. After ultrasound cleaning in propanol only the thinnest flakes stick to
the SiO2.

1Landau & Lifshitz, Vol. 5
2after Novoselov et al., Science 306, 666 (2004)
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Figure 2: Wafer with graphene flakes, optical microscope (Novoselov et al.,
Science 306, 666 (2004)

Unfortunately the final step is the lengthy process of finding a suitable flake
of graphene. This is done with a combination of optical microscopes, scanning
electron micrographs (SEM) and atomic force microscopes (AFM). While this
technique is very cheap and very simple, the results cannot be predicted. It
perfectly suits the needs of laboratories, since it produces high quality graphene
flakes in the size of micrometers, but cannot be used when it comes to applica-
tions and real electronic devices.

2.2 bottom-up-approach

It is obvious that the straight forward top-down-approach cannot produce large
graphene layers (in the size of mm) that would be needed for chips or other
devices. The so called bottom-up-approach is much more interesting for techno-
logical applications. The idea is to grow single layers of graphene from carbon
atoms. The top-down approach avoided all issues with the stability of small
crystallites, that occur when graphene is grown from scratch. A better solution
is to grow on a bulk crystal of silicon-carbide (SiC).

The possibility to grow graphene layers on SiC was discovered when experi-
mentalists tried to put contacts on SiC crystals. The contacts were not very
good, but their quality improved when the setup was heated. Quizingly looking
under the contacts the physicists discovered graphite. They found out, that
under certain conditions the silicon atoms evaporate from heated SiC crystals
and that the remaining carbon atoms reconstruct to form a graphene/graphite
lattice. De Heer and his colleagues from the Georgia Institute of Technology
grew graphene layers on SiC and verified their 2D-electron gas behavior3

The advantage of this method, is that one obtains large ”graphene”-layers on
a substrate, which can be further processed with standard methods like lithog-
raphy, without labor-intensive harvesting of suitable flakes. The disadvantages
are that the monolayer crystal flakes are most vulnerable to damage while being
cooked up in the ovens (T ≈ 900K) and that their quality is not comparable to
graphene layers peeled off from graphite. The electron mobility, which is mainly
limited by defects, of grown graphene reaches 10.000 cm2/Vs, while peeled lay-
ers have shown mobilities up to 50.000 cm2/Vs. But still this approach could
be a route toward graphene-based nanoelectronics.

3C. Berger et al., J. Phys. Chem. B 108, 19912(2004)
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3 Atomic and Electronic Structure

3.1 atomic structure of graphene

As already mentioned graphene is a planar, hexagonal crystal of carbon atoms.
The next-neighbor distance is a = 2.45Å. The unit cell holds two carbon atoms,
which belong to two different sublattices A and B. The A atoms are connected
only to B atoms and vice versa, this is called a bipartite lattice.

Figure 3: atomic structure of graphene, bipartite lattice

3.2 electronic band structure of graphene

The Brillouin zone of graphene is also a honeycomb lattice and also has the
bipartite symmetry. In the momentum space we see what is really behind this
symmetry: If we change the role of K and K’ lattice points we actually reverse
our time (flipping a K vector gives a K’ vector). The time reversal is also con-
nected to the chirality of particles: reversing time changes the roles of particles
and antiparticles (electron and holes in our case). So the K and K’ states are not
equivalent (e.g. an electronic state in K forces the K’ state to be positronic).
This correlation will get more important in the discussion of the anomalous
quantum Hall effect.

Figure 4: Brillouin zone with conic point
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The electronic band structure of graphene shows a very interesting conic
point at the K and K’ points in the Brillouin zone. The linear bands cross
exactly at the Fermi energy, so that there is only one state, which can be treated
as a hole or as an electron. Since there are no conducting states at the Fermi
level, graphene behaves like a gapless semiconductor (also called semi-metal).

Figure 5: electronic band structure of graphene

4 Description as Dirac Fermions

Around the K (K’) point the interpretation in terms of ”effective” mass is im-
possible and requires a different approach. As mentioned before, the electronic
energy spectrum around the K and K’ points is linear, just like a light cone.
The dispersion relation can be approximated with the following formula
(where vF ≈ 106 m/s):

Figure 6: ”light cone”

E(k) = vF |k −K| (1)

The Hamiltonian near K (K’) can be approximated
with (where q = k −K)

HK =
(

0 vF (qx − iqy)
vF (qx + iqy) 0

)
(2)
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This Dirac Hamiltonian usually describes massless relativistic Fermions (e.g.
neutrinos). The 2x2 structure comes from the 2 atoms in the unit cell. Just
like in the free Dirac equation there is a new degree of freedom: spin. In our
case this is some sort of pseudo spin, which is not related to the real physical
spin. The Hamiltonian can be rewritten, so that it is a projection of momentum
(always measured from the K point) on spin operators:

HK =
(

0 vF (qx − iqy)
vF (qx + iqy) 0

)
= vF

(
σx σy

) (
qx

qy

)
(3)

Pseudo spin can be either parallel or anti parallel to the momentum (relative
to K). Furthermore pseudo spin is coupled to the chirality, parallel orientaton
means it is an electronic state and anti parallel means it is a positronic state
(hole). We also see, that the Pauli matrices (pseudo spin operators) commute
with the Hamiltonian, which means pseudo spin is conserved (since there are
no potentials that operate on spin).

5 Anomalous Quantum Hall Effect

The anomalous and the normal quantum Hall Effect (QHE) is the quantiza-
tion of conductivity of a thin (or even two-dimensional) conductor in magnetic
field. Quantum Hall effects are usually observed at low temperatures, but with
graphene they can be studied at room temperatures. The setup is the following:

Figure 7: SEM picture (false colors) of the device used , L = 200nm ( Novoselov
et al., Nature 2005 )

When the two-dimensional conductor is exposed to an magnetic field perpen-
dicular to the conductor, the continuous energy bands split into discrete energy
levels, the so called Landau levels.

Here is a common example of the Landau quantization: The Harmonic potential
(free electron gas, see Figure 8) has equidistant energy levels:

En = ±h̄ωc

(
n +

1
2

)
(4)

The ± stands for the electron/hole degree of freedom.
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Figure 8: energy dispersion E(k) of free electron gas, and at conic point with
landau quantization

In our case we have a linear dispersion relation, which is described by the rela-
tivistic Dirac equation. Landau quantization also happens, but the energy levels
are not equidistant:

En = ±

√
2 |e|Bh̄vF

2

(
n +

1
2
± 1

2

)
(5)

The first ± again represents electron-like or hole-like states, while the second ±
represents the pseudo spin. The fundamental difference between the graphene
Landau levels and those of the harmonic potential is the zero energy level in
graphene. This level is pinned and does not depend on the magnetic field. To
see what makes this level so special, we must have a look at degeneracy (we do
not consider the real spin). Since we have two cones K and K’, all Landau levels
should be realizable two times. It was stated earlier that the pseudo spins of
both K and K’ cones are correlated, that means there is only one electronic state
at the Fermi level. So there is only one possibility to realize the zero energy
(n = 0 and pseudo spin down). The following plot shows QHE measurement in
single layer graphene:

Figure 9: red curve: conductivity in xy direction; green curve: conductivity in
xx direction; inset: normal quantum hall effect (in bi-layer graphene) (Novoselov
et al., Nature 2005)

The first step in the anomalous QHE is half-integer sized while all other steps
are full-integer steps. This verifies that the spectrum is truly linear, and that
the theoretic description with the Dirac equation is appropriate.
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6 Tunneling of Chiral Particles

Since graphene is a semi metal, with electronic bands that cross in excatly one
point, the conductivity with the Fermi level going through the conic point should
drop to zero at low temperatures, where there should be no excited conducting
states. But the fact is that conductivity doesn’t drop below a minimum which
is on the order of the minimal conductivity e2

h̄ .

Figure 10: conductivity of graphene at a low temperature (Novoselov et al.,
Nature 2005)

Usually one and two-dimensional electron systems should crystalize at low tem-
peratures. This effect is called Anderson localization: any wavefunctions in a
small random potential in one or two dimensions is exponentially dampened.
So when the system is cooled down to that point when the kinetic energy is of
the order of the random potential strength, the electrons localize and do not
contribute to the conductivity. This seems not to happen in graphene, which
means that the random potential barriers somehow do not influence the elec-
trons in graphene.

Furthermore it is observed that the graphene samples, which are by far not
perfect, are pretty resistant to impurities. Therefore we can assume that po-
tential barriers are somehow transparent to graphene. As it was stated earlier,
pseudo spin is conserved, that means that backscattering is forbidden. Flipping
of spin cannot happen, because the particle doesn’t flip its pseudo spin. As-
sume an electron hits a potential barrier. Since it’s an electron its pseudospin
is parallel to its momentum. If this electron was scattered back, the pseudospin
would become antiparallel, which means the electron would become a positron
(this cannot happen).

The next figure illustrates how an electron in graphene can tunnel trough
any potential barrier (bands of different color belong to different pseudo-spin σ
orientations).
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Figure 11: Chiral tunneling in graphene (Novoselov and A. K. Geim, Nature
2006)

In relativistic physics there is the so called Klein Paradox. It states that when
a potential barrier exceeds the energy required to create a particle-antiparticle
pair it becomes transparent, and is perfectly transparent at infinite size. This is
so because a potential that is repulsive for particles is attractive for antiparti-
cles, which means that there are antiparticle states inside the potential barrier.
In graphene the gap between electrons and positrons is zero, which means that
any potential is transparent for graphene (at least for momenta at the conic
points K and K’).

This allows ballistic transport, electrons can transport current without being
scattered. Up to now ballistic current was measured in graphene over serveral
microns (which is actually the size of the samples), which is actually the holy
grail of nanometer-scale electronic engineering.

7 Graphene Devices

A direct application would be a gas sensor, since graphene has an exposed sur-
face. Although it is chemically inert, it’s conductivity is strongly dependent
on the defects. Molecules/atoms from the air can be adsorbed and change the
electronic conductivity immediately. With this method even one single molecule
can be detected and the surrounding atmosphere can be monitored in real time.

Graphene also has very peculiar electronic properties, e.g. the ballistic trans-
port. This makes the electron mobility in graphene very high which is 20.000
cm2/Vs to 50.000 cm2/Vs at 100K. It is only limited by the quality of the
samples. The mobility is quite high compared to silicon, which is the base for
current chips, 600-1000 cm2/Vs at room temperatures. Growing graphene on
SiC is very promising when it comes to nanometer-scale electronic applications,
since the graphene layers comes with its own substrate and can be easily pro-
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cessed with lithography.
Another advantage of graphene is its two-dimensional nature. Since the Fermi
energy is easily controlled by the gate voltage applied to the substrate, one
can build high electron mobility transistors (which use a 2D-electron gas) im-
medeatly.

8 Conclusions

Finally one can say that graphene is of interest for both fundamental research
and possible applications. Graphene gives an interesting bridge between con-
densed matter and the quantum field theory, since it allows the study of rel-
ativistic effects in a bench-top setup. It shows peculiar electronic effects, like
the anomalous QHE, the absence of Anderson localization and allows ballistic
transport. There are even more possibilities with bi-layer graphene, which has
a harmonic spectrum at K and K’ points, but still no energy gap between elec-
trons and positrons. There is still much to study about this high-tech electronic
material, that was obtained in the 21st century - using scotch tape.
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