Artificial heart valves

Arvid Kühl
Max Schaldach-Stiftungsprofessur für Biomedizinische Technik
Friedrich-Alexander-Universität Erlangen-Nürnberg

March 29, 2011
Overview

- Introduction
- Classification
- History
- Fabrication
- Problems
- Comparison
- Conclusion
There are four valves in the human heart for guiding the blood flow.

- 2 atrioventricular valves
- 2 semilunar valves
Indications for heart valve repair/replacement:

- Congenital deformation
- Valve stenosis
- Valve insufficiency/regurgitation

~ 95,000 heart valve surgeries/year worldwide
Classification

<table>
<thead>
<tr>
<th>Mechanical Heart Valves (MHV)</th>
<th>Biological Heart Valves (BHV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caged-ball valve</td>
<td>Tissue / leaflet-based Xeno- / Allograft</td>
</tr>
<tr>
<td>Tilting-disk valve</td>
<td>Stent-framed</td>
</tr>
<tr>
<td>Bileaflet valve</td>
<td>Stentless</td>
</tr>
<tr>
<td>Trileaflet valve</td>
<td></td>
</tr>
</tbody>
</table>
First successful operation of a mitral valve stenosis

1923
First successful implant of an artificial heart-valve (MHV)
First successful open heart operation using a heart-lung-machine
History

1960

Starr-Edwards caged-ball valve (MHV)
Discovery of pyrolytic carbon

1963
First pulmonary allograft transplant (BHV)
First pyrolytic carbon valve (MHV)
History

Bjork-Shiley tilting-disk valve (MHV)

1969
History

1979

St. Jude Medical bileaflet valve (MHV)
History

First pericardial valve (BHV)

1981
First stentless pericardial valve (BHV)
First percutaneous valve replacement (BHV)
Fabrication

- No standard procedure
- Difficult biological processes
- No in-vitro testing

Selection

- Fixation
- Decellularization
- Neutralization
- Material improvement
- Assembly
Fabrication

- Selection
- Fixation
- Decellularization
- Neutralization
- Material improvement
- Assembly

Pericardium sheet

Glutaraldehyde (GA)
Fabrication

Selection

Fixation

Decellularization

Neutralization

Material improvement

Assembly

Fixated sheet

Washing

SDS

Triton X-100

Tween 80

Altered tissue
Fabrication: decellularization

Native porcine pericardium with hematoxylin and eosin stain (mag. 300x)

Bovine pericardium with hematoxylin and eosin stain (mag. 300x)
Fabrication

Selection

Fixation

Decellularization

Neutralization

Material improvement

Assembly

GA-fixated sheet

Uncombined aldehydes

Amino oleic acid (AOA)

Alternative: heating
Fabrication

Selection
Fixation
Decellularization
Neutralization
Material improvement

Assembly

Pericardium sheet
Fibre orientation
Thickness
Cutting & sewing
Problems

<table>
<thead>
<tr>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problems

<table>
<thead>
<tr>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Coagulation</td>
<td></td>
</tr>
<tr>
<td>- Cell damage</td>
<td></td>
</tr>
<tr>
<td>- Tissue irritation</td>
<td></td>
</tr>
</tbody>
</table>

![Caged-ball valve]

Blood vessel
Problems

<table>
<thead>
<tr>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulation</td>
<td></td>
</tr>
<tr>
<td>Cell damage</td>
<td></td>
</tr>
<tr>
<td>Tissue irritation</td>
<td></td>
</tr>
</tbody>
</table>

![Caged-ball valve](image)

- Blood vessel
- Caged-ball valve
Problems

<table>
<thead>
<tr>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Coagulation</td>
<td></td>
</tr>
<tr>
<td>- Cell damage</td>
<td></td>
</tr>
<tr>
<td>- Tissue irritation</td>
<td></td>
</tr>
</tbody>
</table>

![Tilting-disk valve](image)

Blood vessel

![Blood vessel](image)
Problems

<table>
<thead>
<tr>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Coagulation</td>
<td></td>
</tr>
<tr>
<td>- Cell damage</td>
<td></td>
</tr>
<tr>
<td>- Tissue irritation</td>
<td></td>
</tr>
</tbody>
</table>

Tilting-disk valve
Problems

<table>
<thead>
<tr>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Coagulation</td>
<td></td>
</tr>
<tr>
<td>▪ Cell damage</td>
<td></td>
</tr>
<tr>
<td>▪ Tissue irritation</td>
<td></td>
</tr>
</tbody>
</table>

![Blood vessel](image)

Bileaflet valve
<table>
<thead>
<tr>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Coagulation</td>
<td></td>
</tr>
<tr>
<td>▪ Cell damage</td>
<td></td>
</tr>
<tr>
<td>▪ Tissue irritation</td>
<td></td>
</tr>
</tbody>
</table>

Trileaflet valve

Blood vessel
Problems

<table>
<thead>
<tr>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Coagulation</td>
<td>- Calcification</td>
</tr>
<tr>
<td>- Cell damage</td>
<td></td>
</tr>
<tr>
<td>- Tissue irritation</td>
<td></td>
</tr>
</tbody>
</table>

![Trileaflet valve](image)

![Blood vessel](image)
Problems

<table>
<thead>
<tr>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Coagulation</td>
<td>- Calcification</td>
</tr>
<tr>
<td>- Cell damage</td>
<td></td>
</tr>
<tr>
<td>- Tissue irritation</td>
<td></td>
</tr>
<tr>
<td>Blood vessel</td>
<td>Anti-calcification treatment</td>
</tr>
<tr>
<td>Trileaflet valve</td>
<td>Calcified leaflets removal</td>
</tr>
<tr>
<td></td>
<td>Percutaneous implantation</td>
</tr>
</tbody>
</table>
Mechanical heart valves

- **Advantages**
 - Long-term stability / durability
 - Good biocompatibility
 - No anticoagulation needed
 - Better opening / closing behavior
 - Unobstructed blood flow
 - Allow minimally invasive procedure

Biological heart valves

- **Disadvantages**
 - Lifelong anticoagulation therapy
 - No guaranteed longterm stability
 - Unnatural opening / closing behavior
 - Prone to inflammation
 - Obstructed blood flow
 - Prone to calcification
 - Clicking noises
 - Involvement in biological processes

Comparison

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Mechanical heart valves</th>
<th>Biological heart valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disadvantages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

Future topics:

- Increasing long-term stability of biological valves
- Understanding calcification processes
- Focus on percutaneous implantation

Biological heart valves will replace mechanical valves eventually.
Thank you for your attention!