
THE INHERENT QUEUING DELAY OF

PARALLEL PACKET SWITCHES

(Extended Abstract)

Hagit Attiya∗ and David Hay
Department of Computer Science
Technion — Israel Institute of Technology
Haifa 32000, Israel

{hagit,hdavid}@cs.technion.ac.il

Abstract The parallel packet switch (PPS) is extensively used as the core of con-
temporary commercial switches. This paper investigates the inherent
queuing delay and delay jitter introduced by the PPS’s demultiplexing
algorithm, relative to an optimal work-conserving switch.

We show that the inherent queuing delay and delay jitter of a sym-
metric and fault-tolerant N ×N PPS, where every demultiplexing algo-
rithm dispatches cells to all the middle-stage switches is Ω(N), if there
are no buffers in the PPS input-ports. If the demultiplexing algorithms
dispatch cells only to part of the middle-stage switches, the queuing
delay and delay jitter are Ω(N/S), where S is the PPS speedup. These
lower bounds hold unless the demultiplexing algorithm has full and im-
mediate knowledge of the switch status. When the PPS has buffers in its
input-ports, an Ω(N/S) lower bound holds if the demultiplexing algo-
rithm uses only local information, or the input buffers are small relative
to the time an input-port needs to learn the switch global information.

Keywords: Inverse multiplexing, Leaky-bucket traffic, Packet switching, Clos net-
works, Queuing delay, Delay jitter, Load balancing

1. Introduction

The need to support a large variety of applications with quality of service
(QoS) guarantees demands high-capacity high-speed switching technologies [5].
An N ×N packet switch routes packets arriving on N input-ports at rate R to
N output-ports working at rate R. Packets are stored and transmitted in the

∗Part of the work was performed while this author was at Dune Networks.

139

(c) 2004 IFIP

Figure 1. A 5 × 5 PPS with 2 planes in its center stage, without buffers in the
input-ports

switch as fixed-size cells; fragmentation and reassembly are done outside of the
switch. Cells arrive to the switch as a collection of flows from one input port to
the same output-port; the switch should preserve the order of cells within a flow
and not drop cells. Since there may be conflicts between different flows, certain
amount of buffering within the switch may be needed. The location of the
buffers, their sizes, and their management, depend on the specific architecture
of the switch.

Switching cells in parallel is a natural approach to build switches with very
high external line rate, and with large number of ports. A prime example of
this approach is the parallel packet switch (in short, PPS) model [14], which
is based on an architecture used in inverse multiplexing systems [12, 11], and
especially on the inverse multiplexing for ATM (IMA) technology [2, 6]. The
feasibility of the PPS and IMA architectures motivated commercial vendors to
implement them at the heart of their switching architecture.

A parallel packet switch (PPS) is a three-stage Clos network [8], with K < N
switches in its center stage, also called planes. Each plane is an N ×N switch
operating at rate r < R, and is connected to all the input-ports on one side,
and to all the output-ports on the other side (see Figure 1). The speedup
S of the switch is the ratio of the aggregate capacity of the internal traffic
lines, connected to an input- or output-port, to the capacity of its external
line, namely, S = Kr

R . Iyer and McKeown [15] consider a variant of the PPS
architecture, called input-buffered PPS, having finite buffers in its input-ports
in addition to buffers in its output-ports.

Perhaps the key issue in the design of a PPS is balancing the load of switching
operations among the middle-stage switches, and by that utilizing the parallel
capabilities of the switch. Load balancing is performed by a demultiplexing
algorithm, whose goal is to minimize the concentration of a disproportional
number of cells in a small number of middle-stage switches.

140

(c) 2004 IFIP

Demultiplexing algorithms can be classified according to the amount and
type of information they use. The strongest type of demultiplexing algorithms
are centralized algorithms, in which every demultiplexing decision is done based
on global information about the status of the switch. Unfortunately, these
algorithms must operate at a speed proportional to the aggregate incoming
flows rate, and therefore, they are impractical. At the other extreme, fully-
distributed demultiplexing algorithms rely only on the local information in the
input-port.1 Due to their relative simplicity, they are common in contemporary
switches. A middle ground is what we call u Real-time distributed (u-RT)
demultiplexing algorithms, in which a demultiplexing decision is based on the
local information and global information older than u time slots. Obviously,
every fully distributed algorithm is also a u real-time distributed algorithm.

1.1 Evaluating PPS Performance. Switch architectures are evaluated
by their ability to provide different QoS guarantees. Important figures are the
maximum/average queuing delay of cells (i.e., delay resulting from queuing
cells within the switch) and the switch’s throughput. Another interesting per-
formance number is the per-flow delay jitter (or cell delay variation), namely,
the maximal difference in queuing delay between two cells in the same flow [25,
24, 20].

The performance of a PPS is measured by comparison to an optimal work-
conserving (greedy) switch, operating at rate R [7, 19, 18]. A work-conserving
switch guarantees that if a cell is pending for output port j at time-slot2 t, then
some cell leaves from output-port j at time-slot t. This property prevents an
output-port from being idle unnecessarily, and by that, maximizes the switch
throughput and minimizes its average cell delay.

The switch used for the comparison is called a shadow switch or a reference
switch, and it receives exactly the same stream of flows as the PPS; namely,
at any given time, the two switches receive the same cells, with the same
destinations, on the same input-ports. We assume that this reference switch
minimizes the queuing delay of cells (or minimizes the delay jitter, in case we
measure the relative delay jitter). A primary candidate for a reference switch is
an output-queued switch operating at rate R. This is the reason this comparison
is sometimes referred to as the ability of the PPS to mimic an output-queued
switch [14, 15, 21].

The relative queuing delay considers only the delay resulting from queuing
within the PPS switch and neglects factors such as different propagation delays
over the PPS and the reference switche, or the different number of stages. It
captures the influence of the parallelism of the PPS on the performance of the
switch, depending on the different demultiplexing algorithms, and ignores the
specific PPS hardware implementation.

1These are also called independent demultiplexing algorithms [13].
2A time-slot is the time required to transmit a cell at rate R.

141

(c) 2004 IFIP

1.2 Our Results. Our main contributions are lower bounds on the rela-
tive queuing delay and relative delay jitter of the PPS when the switch is not
flooded. We employ leaky-bucket constrained flows [23] to restrict the arrival of
cells to the switch: In every time interval of length τ , the number of cells ar-
riving to the switch and sharing the same input-port or the same output-port
is bounded by τR + B , where B is a fixed burstiness factor [5]. Compar-
ison between a PPS and a flooded output-queued switch is vague, since the
flooded switch either introduces unbounded queuing delay or drops cells. In
Section 5, we show that the lower bounds do not hold for certain classes of non
leaky-bucket flows that flood the switch.

A bufferless PPS (i.e., without buffers at the input-ports) with fully-
distributed demultiplexing algorithm induces the highest relative queuing delay
and relative delay jitter. If some plane is utilized by all the demultiplexors, we
prove a lower bound of

(

R
r − 1

)

N time slots on the relative queuing delay
and relative delay jitter. Even in the unrealistic and failure-prone case where
the demultiplexing algorithm statically partitions the planes among the de-
multiplexors, the relative queuing delay and relative delay jitter are at least
(

R
r − 1

)

N
S time-slots. Both lower bounds employ leaky-bucket flows with no

bursts.
A bufferless PPS with u-RT demultiplexing algorithm (for any u) has relative

queuing delay and relative delay jitter of at least
(

1− u r
R

)

uN
S time-slots, under

leaky-bucket flows with burstiness factor of u2 N
K − u, where u = min{u, 1

2

R
r }.

In contrast, Iyer et al. [14] show that there is a bufferless PPS with centralized
demultiplexing algorithm with zero relative queuing delay, provided that the
switch has speedup S ≥ 2.

An input-buffered PPS can support more elaborate demultiplexing algo-
rithms, since an arriving cell can either be transmitted to one of the middle
stage switches, or be kept in the input-buffer. Under a u-RT demultiplex-
ing algorithm, a switch with speedup S ≥ 2 and input-buffers larger than
u, can employ a centralized algorithm (e.g., [14]). This demonstrates that a
lower bound of Ω(N/S) time-slots does not hold when the input-buffers are
sufficiently large. In contrast, a fully-distributed demultiplexing algorithm in-
troduces relative queuing delay and relative delay jitter of at least

(

1 − r
R

)

N
S

time-slots, for any buffer size under leaky-bucket flows with no bursts.
Our lower bound results show that the PPS architecture does not scale with

increasing number of external ports. This is significant since great effort is
currently invested in building switches with a large number of ports (where
N = 512 or even 1024). Note that large relative queuing delays usually imply
that the buffer sizes at the middle-stage switches or at the external ports should
be large as well, so that the cells can be queued.

Note that due to space limitations proofs are omitted throughout the paper.
For detailed proofs and further discussion, the reader is referred to [3].

1.3 Related Work. The CPA centralized demultiplexing algorithm [14]
allows a PPS with speedup S ≥ 2 to mimic an FCFS output-queued switch with

142

(c) 2004 IFIP

zero relative queuing delay. This algorithm is impractical for real switches,
because it gathers information from all the input-ports in every scheduling
decision. A fully-distributed version of this algorithm [15] mimics a FCFS
output-queued switch with relative queuing delay of

⌈

N R
r

⌉

time-slots.
Another family of fully-distributed algorithms, called fractional traffic dis-

patch (FTD) [17], works with switch speedup S ≥ K
dK/2e , and their relative

queuing delay is at least 2NR/r time-slots. An extension to the FTD algo-
rithms is introduced in Section 5, in which there is zero relative queuing delay
as long as all the queues in all the planes are not empty.

Arbitrated crossbar switches [22] are prime examples of u−RT demultiplexing
algorithms. In these switches, a request is made by the input-port, and the cell
is sent once a grant is received back from the arbiter. This implies that global
information is used by the arbiter, with a certain delay. Cells are queued in the
input-port buffers while waiting for a grant. Input-port buffers should operate
at the external line rate R, and therefore must reside on chip. This limits their
size and causes large values of u to be impractical.

Earlier research presents lower bounds on the speedup required for an input-
queued switch to exactly mimic a reference output-queued switch. Chaung et al.
[7] show that a combined input-output-queued switch needs speedup ≥ 2 − 1

N
in order to mimic an output-queued switch. This worst-case lower bound proof
does not assume any statistical distribution on the arrival of packets to the
switch; it uses specific input-flows with burstiness factor N .

2. Formal Model for Parallel Packet Switches

To prove lower bounds on the behavior of the PPS, a formal model of the
switch is needed.

We assume that cells arrive to the switch and leave it in discrete time-slots.
Since a time-slot is the time it takes to transmit a cell at rate R, in each time-
slot at most one cell arrives to each input-port, and at most one cell leaves any
output-port. The internal lines of the switch operate at lower rate r < R; for
simplicity, we assume that R

r = dR
r e, and denote this value by r′. This lower

rate r enforces constraints on the switch [14]: A cell sent from an input-port i
to a plane k, is transmitted over r′ time-slots; transmission takes place in the
first time-slot of this period, and then the line between i and k is not utilized
in the next r′−1 time-slots. We refer to this constraint as the input constraint.
Violating it causes a traffic rate greater than r on the internal line between an
input-port and a plane. The output constraint is defined analogously, on the
internal lines between the planes and the output-ports.

Recall that the relative queuing delay includes only queuing effects and
excludes the different propagation delay between the two switches. This is
achieved by assuming that cells are transmitted from/to the plane in the first
time-slot. To neglect delays caused by the additional stage of the PPS, a cell
can leave the PPS in the same time-slot it arrives to the output-port, provided
that no other cell is leaving the same output-port on this time-slot.

143

(c) 2004 IFIP

The behavior of the dispatching algorithm in every input-port is modeled as
a deterministic state machine, called demultiplexor. Demultiplexors in different
input-ports may have different states set; we denote by Si the states sets of the
demultiplexor residing in input-port i. A state is applicable if it can be reached
in execution of the demultiplexor.

A switch configuration is comprised of states of all the demultiplexors, and
the content of all the buffers in the switch at a given time. A configuration is
applicable if it can be reached in a legal execution of the switch. Since the switch
does not have a predetermined initial configuration, we assume that for every
pair of applicable configurations C1, C2, there is an incoming traffic that causes
the switch to transit from C1 to C2 (i.e, the set of applicable configurations
induces strongly-connected graph).

When there are no buffers in the input-ports, a cell arriving to the switch is
immediately demultiplexed to one of the center stage switches, as modeled by
the following definition:

Definition 1 The demultiplexing algorithm of the demultiplexor residing at
a bufferless input-port i is the function Di : {1, . . . , N} × Si → {1, . . . , K},
which gives a plane number, according to the incoming cell destination and the
demultiplexor’s state.

This definition is extended for the input-buffered PPS variant: When a cell
arrives, the demultiplexor either sends the cell to one of the planes or keeps it in
its buffer. In every time-slot, the demultiplexor sends any number of buffered
cells to the planes, provided that the rate constraints on the lines between the
input-port and any plane are preserved.

We refer to the buffer residing at input-port i with finite size s as a vector
bi ∈ {1, . . . , N,⊥}s. An element of this vector contains the destination of the
cell stored at the corresponding place in the buffer. Empty places in the buffer
are indicated with ⊥ in the vector. The size of the buffer at input-port i is
denoted |bi|.

The demultiplexor state machine is changed to include the state of the input-
port buffer. B denotes the set of the applicable buffer’s states, and Bi includes
the applicable states of the buffer residing in input-port i. We refer to the set
of states of the ith demultiplexor as Si × Bi. A switch configuration describes
also the input-buffers content.

Definition 2 The demutliplexing algorithm of the demultiplexor residing at
input-port i with input-buffer, is the function Di : {1, . . . , N,⊥} × Si × Bi →
{1, . . . , K,⊥}|bi|+1.

This function receives as input the destination of the incoming cell (⊥ if no cell
arrives), and the state of the demultiplexor. The function returns a vector of
size |bi| + 1 stating through which plane to send the cell in the corresponding
place in the buffer; the last element of the vector refers to the incoming cell; ⊥
indicates that the corresponding cell remains in the buffer.

144

(c) 2004 IFIP

3. The Relative Queuing Delay of a Bufferless PPS

The relative queuing delay of a PPS heavily depends on the information
available to the demultiplexing algorithm. CPA [14] is a centralized demul-
tiplexing algorithm with zero relative queuing delay, assuming the PPS has
speedup S ≥ 2 and the reference output-queued switch follows a global FCFS
discipline.3 Practical demultiplexing algorithms must operate with local, or
out-dated, information about the status of the switch: flows waiting at other
input-ports, contents of the planes’ buffers, etc. As we shall see, such algorithms
incur non-negligible queuing delay.

Our lower bounds are obtained using feasible flows that do not flood the
switch, obeying the leaky-bucket constrained flows model [23]. We require only
that the combined rate of flows sharing the same input-port or the same output-
port does not exceed the external rate of that port by more than a fixed bound
B, which is independent of time [5].

Definition 3 An (R, B) leaky-bucket traffic satisfies the following expression
for every time-slot t, integer τ ≥ 1, input-port i, and output-port j:

Ai(t, t + τ) ≤ τR + B and Bj(t, t + τ) ≤ τR + B

where Ai(t1, t2) is the number of cells arriving to input-port i during time in-
terval [t1, t2), and Bj(t1, t2) is the number of cells destined for output-port j,
arriving to the switch during time-interval [t1, t2).

The burstiness factor of the traffic B is also an upper bound on the size of
the buffer needed for any work-conserving switch [9].

In our lower bounds, the relative queuing delay is exhibited when cells that
are supposed to leave the optimal reference switch one after the other, are
concentrated in a single plane. We describe the concentration scenario by the
following lemma:

Lemma 4 Assume output-port j’s buffer is empty at time t, and that m cells
destined for the same output-port j arrive to the switch during time-interval
[t, t+ s), out of them c ≤ m are sent through the same plane. Assume also that
the incoming traffic is (R, B) leaky-bucket, and no cells destined for j arrive to
the switch during time interval [t + s, t + m). Then:
(1) The relative queuing delay of the PPS is at least c R

r − (s + B) time-slots.

(2) The relative delay jitter of the PPS is at least c R
r − (s + B) time-slots.

Proof: We compare the queuing delay of the cells in the PPS and in the
reference switch. Since the reference switch is work-conserving, all m cells
leave the switch exactly m time-slots after the first cell is dispatched. On
the other hand, a PPS completes this execution after at least cr′ time-slots,

3i.e., cells should leave the switch in the same order they arrived, regardless of the flow they
are in.

145

(c) 2004 IFIP

because c cells are sent to the same plane, and only one cell can be sent from
this plane to the output-port every r′ time-slots. Hence, the relative queuing
delay is at least cr′ − m time-slots. Since the incoming traffic is (R, B) leaky-
bucket, m ≤ s + B. Because r′ = R

r , the relative queuing delay is at least

cr′ − m ≥ cr′ − (s + B) = cR
r − (s + B) time-slots, proving (1).

Let a be the last of the c cells sent from the plane to the output-port and
let i′ be the input-port from which a is sent. By the definition of a, it arrives
to the PPS no later than time-slot t + s − 1, and leaves the PPS not before
time-slot t + cr′.

Now assume that there is a cell a′, in the same flow (i′, j), which arrives
to the PPS when all the buffers are empty. Clearly, if no other cell destined
for output-port j arrives with cell a′, a′ leaves the PPS exactly one time-slot
after its arrival. Hence, the delay jitter introduced by the PPS is at least
[(t + cr′) − (t + s − 1)] − 1 = cr′ − s time-slots.

Recall that the maximum buffer size needed for any work-conserving switch
to work under (R, B) leaky-bucket traffic is B. Therefore a work-conserving
switch, which serve the incoming cells in a FCFS manner (e.g. FCFS output-
queued switch) introduces queuing delay, and therefore also delay jitter, of at
most B time-slots. Thus, the relative delay jitter between the PPS and the
reference switch is at least (cr′ − s)−B = cR

r − (s+B) time-slots, proving (2).

The concentration scenario, described in Lemma 4, does not depend on the
scheduling policies of the planes, which may be optimal. It only assumes that
cells are not dropped.

We start by considering the most practical demultiplexing algorithm, in
which every input-port makes independent dispatching decisions.

Definition 5 A fully-distributed demultiplexing algorithm demultiplexes a
cell, arriving at time t, according to the input-port’s local information in time
interval [0, t].

The state transition function of the ith bufferless demultiplexor operating under
fully-distributed demultiplexing algorithm is Si : Si × {1, . . . , N} → Si. That
is, the demultiplexor state transitions depend only on the previous state of the
demultiplexor and the destination of the incoming cell. If no cell arrives to
a specific input-port in bufferless PPS, its demultiplexor does not change its
state.

The relative queuing delay of a PPS with fully-distributed demultiplexing
algorithm strongly depends on the number of demultiplexors that can send a
cell, destined for the same output-port, through the same plane. To capture
this switch characteristic, we call a demultiplexing algorithm d-partitioned if
there is a plane k and an output-port j, such that at least d demultiplexors
send a cell destined for output-port j through plane k in one of their applicable
configurations.

146

(c) 2004 IFIP

i3 i4i1

No operations

i2 id

Each demux.
in state σi

Config. C

One cell
destined for

each demux.
j arrive to

Empty
buffers

Figure 2. Schematic view of the proof of Theorem 6.

Theorem 6 A bufferless PPS, with d-partitioned fully-distributed demultiplex-
ing algorithm, has relative queuing delay and relative delay jitter of

(

R
r − 1

)

d
time-slots, under traffic without bursts.

Proof: By the definition of a d-partitioned demultiplexing algorithm, there
is an output-port j and a plane k, so that at least d demultiplexors send a cell
destined for j through k in some applicable configuration. Let I = {i1, i2, . . . id}
be the set of these demultiplexors, and let σi ∈ Si be the state of demultiplexor
i ∈ I in configuration Ci, just before a cell is sent to plane k.

Consider traffic A from an arbitrary applicable configuration C which leads
the switch to configuration Ci; such traffic exists since C and Ci are applicable,
and recall that there is a traffic that causes the switch to transit between any
two applicable configurations. Let Ai be a traffic in which cells arrive to input-
port i exactly in the same time-slots as in traffic A. Since the demultiplexing
algorithm is fully-distributed, demultiplexor i transits into σi. Note that in Ai

at most one cell arrives to the switch in every time-slot, therefore this traffic
has no bursts.

Now consider LB, a sequential composition of the traffics Ai, where i ∈ I .
LB begins from configuration C, and sequentially for every i ∈ I , the same cells
arrive to the switch in the same time-slots as in traffic Ai, until demultiplexor
i reaches state σi. Then, no cells arrive to the switch until all the buffers
in all the planes are eventually empty. Finally, d cells destined for output-
port j arrive, one after the other, to different input-ports i ∈ I (one cell in

147

(c) 2004 IFIP

each time-slot). Since the demultiplexing algorithm is fully-distributed, each
demultiplexor i ∈ I remains in state σi, and all the cells are sent through the
same plane k (see Figure 2).

LB has no bursts, and the last d cells that arrive to the switch under traffic
LB arrive during d consecutive time-slots. By substituting in Lemma 4, we get
that the relative queuing delay and relative delay jitter are at least

(

R
r − 1

)

d
time-slots.

Statically partitioning the planes among the different demultiplexors is
failure-prone. For example, if demultiplexor sends cells only through d < K
planes, a damage in one plane (or the internal lines connected to it) causes
more cell dropping than if all K planes are utilized. Therefore, fault toler-
ance dictates each demultiplexor may send a cell destined for any output-port
through any plane. For such unpartitioned (or N -partitioned) fully-distributed
demultiplexing algorithms, Theorem 6 immediately implies:

Corollary 7 A bufferless PPS, with unpartitioned fully-distributed demul-
tiplexing algorithm, has relative queuing delay and relative delay jitter of
(

R
r − 1

)

N time-slots, under leaky-bucket traffic without bursts.

Iyer and McKeown [15] present an unpartitioned fully-distributed demulti-
plexing algorithm, which allows a bufferless PPS with speedup S ≥ 2 to mimic
a FCFS output-queued switch with a relative queuing delay of dNK

S e = dR
r Ne

time-slots. This result implies that Θ
(

R
r N

)

is a tight bound on the relative
queuing delay of a bufferless PPS with speedup S ≥ 2 operating under a fully-
distributed demultiplexing algorithm.

Even with static partitioning, the PPS input constraint implies that each
demultiplexor must send incoming cells through at least r′ planes4. This implies
that each plane is used by r′ N

K demultiplexors, on the average. Hence, there

is a plane k that is used by at least r′ N
K = R

r
N
K demultiplexors in order to

dispatch cells destined for a certain output-port j. These observations imply
the following lower bound:

Theorem 8 A bufferless PPS, with fully-distributed demultiplexing algorithm,
has relative queuing delay and relative delay jitter of

(

R
r − 1

)

N
S time-slots,

under leaky-bucket traffic without bursts.

Note that centralized demultiplexing algorithms and fully-distributed de-
multiplexing algorithms are both extreme considering the amount of global in-
formation they use. The first kind has perfect knowledge of the switch status,
and the second uses no global information at all. An interesting middle-ground
is the following class of demultiplexing algorithms:

Definition 9 A u real-time distributed (u-RT) demultiplexing algorithm is
an algorithm that demultiplexes a cell, arriving at time t, according to the

4In this extreme case, failure even in one plane, immediately causes cells dropping

148

(c) 2004 IFIP

input-port’s local information in time interval [0, t], and to the switch’s global
information in time interval [0, t − u].

The state transition function of the ith bufferless demultiplexor operating
under u-RT demultiplexing algorithm is Si(t) : Si ×Ct−u+1 ×{1, . . . , N} → Si,
where t is the time-slot in which Si is applied, C is the set of all applicable
switch configurations, and Ct−u+1 is the cross-product of t − u + 1 such sets,
one for each time-slot in the interval [0, t − u]. Note that a demultiplexor
state transition may depend on other demultiplexors’ state transitions, and on
incoming flows to other input-ports, as long as these events occurred u time-
slots before the state transition. A state of demultiplexor can change even if
no cell arrives to the input-port.

The additional global information reduces the relative queuing delay. For
example, when a 1-RT demultiplexing algorithm is operating under (R, 0) leaky-
bucket traffic, it practically has full information about the switch status, and
therefore it can emulate a centralized algorithm. Yet, lack of information about
recent events yields non-negligible relative queuing delay, caused by leaky-
bucket traffic with a non-zero burst:

Theorem 10 A bufferless PPS, with u-RT demultiplexing algorithm has rela-
tive queuing delay and relative delay jitter of

(

1 − u r
R

)

uN
S , under leaky-bucket

traffic with burstiness factor u2 N
K − u, where u = min{u, 1

2

R
r }.

By substituting the minimal value u = 1, we get the following general result
for any real-time distributed demultiplexing algorithm:

Corollary 11 A bufferless PPS, with any real-time distributed demultiplexing
algorithm, has relative queuing delay and relative delay jitter of

(

1 − r
R

)

N
S

time-slots, under leaky-bucket traffic with burstiness factor N
K − 1.

4. The Relative Queuing Delay of an Input-Buffered

PPS

When measuring relative queuing delay in an input-buffered PPS, the queu-
ing of cells both in the input-ports’ buffers and the planes’ buffers of the PPS
should be compared to the queuing of cells in the output-ports’ buffers of the
reference switch. Generally, input buffers increase the flexibility of the demul-
tiplexing algorithms, which leads to weaker lower bounds.

The size of the input-buffers affects the relative queuing delay in an input-
buffered PPS under u-RT demultiplexing algorithms. A PPS that can store
u cells in each input-port is able to support a u-RT demultiplexing algorithm
that guarantees relative queuing delay of at most u time-slots, by simulating
the CPA algorithm [14].

Theorem 12 There is a u-RT demultiplexing algorithm for an globally FCFS
input-buffered PPS, with buffer size ≥ u and speedup S ≥ 2, and a relative
queuing delay of at most u time-slots.

149

(c) 2004 IFIP

This reduction gives an algorithm that may be impractical; yet, it demon-
strates that a lower bound of Ω(N/S) time-slots does not hold when the
input-buffers are sufficiently large. When buffers are smaller than u, it can
be shown that a globally FCFS input-buffered PPS has relative queuing de-
lay of

(

1 − r
R

)

N
S time-slots, under leaky-bucket traffic with burstiness factor

u(N
K − 1).
The following lower-bound holds for any fully distributed demultiplexing

algorithm, regardless of buffer size:

Theorem 13 An input-buffered PPS, with a fully-distributed demultiplexing
algorithm, has relative queuing delay and relative delay-jitter of

(

1 − r
R

)

N
S

time-slots, under leaky-bucket traffic without bursts.

5. The Relative Queuing Delay in Congested Periods

In this section we introduce a parameterized fully-distributed demultiplexing
algorithm for bufferless PPS that has zero relative queuing delay in congested
periods. A time period (t1, t2] is congested if for a certain output-port j, all the
queues of cells destined for this output-port in all the planes, are continuously
backlogged.

Theorem 14 A bufferless PPS has a parameterized fully-distributed demulti-
plexing algorithm, which introduce no relative queuing delay in congested peri-
ods, after a certain warm-up period.

The algorithm is an extension of the fractional traffic dispatch (FTD) demulti-
plexing algorithm [17]. In this fully-distributed demultiplexing algorithm, each
flow (i, j) is segmented into blocks of size hdR/re, where h > 1 is a parameter
of the specific algorithm. The cells in the flow (i, j) are dispatched, so that two
cells from the same block are not sent through the same plane.

This algorithm requires speedup S ≥ h in order to operate correctly. During
an initial warm-up period there is still relative queuing delay. This period can
be shortened by enlarging h. (See [3] for detailed analysis of this algorithm).

In the following proposition we show that the above proof does not contradict
Theorem 8 since the traffic which causes the congestion is not an (R, B) leaky-
bucket traffic:

Proposition 15 Any traffic that causes congestion in a PPS, under any de-
multiplexing algorithm described in the proof of Theorem 14, is not an (R, B)
leaky-bucket traffic, for any B independent of time and the duration of the
congested period.

Note that the definition of congestion depends on both the incoming traf-
fic to the switch, and the demultiplexing algorithm. Characterizing the non
leaky-bucket traffics that can cause congestion under certain demultiplexing
algorithms, and does not introduce relative queuing delay, is an open question.

150

(c) 2004 IFIP

6. Discussion

This paper studies the worst-case queuing delay and delay jitter induced by
the demultiplexing algorithm of a parallel packet switch, relative to an optimal
work-conserving switch. This competitive approach, typically used to evaluate
on-line algorithms, is appealing because it does not require stochastic charac-
terization of the incoming traffic.

Our results use Leaky-bucket traffic [5, 23] is used to avoid flooding the
switch. One can also use the metaphor of an adversary controlling the injection
of cells, as was done in the context of switching networks. Two models were
suggested to restrict the injected flows from flooding the network [1, 4]; our
flows satisfy these stronger restrictions as well.

Traffic shaping with low jitter may prefer non-work-conserving switches [10,
25], and therefore it is interesting to compare with such switches. When cells
are not dropped within the switch, a non-work-conserving reference switch can
degrade to work at rate r, making the comparison meaningless.

Jitter regulators that capture jitter control mechanisms, use an internal
buffer to shape the traffic [20, 16, 26]; in particular, Mansour and Patt-
Shamir [20] present competitive analysis of jitter regulators with bounded in-
ternal buffer size. It might be possible to translate our lower bounds on the
relative queuing delay to bounds on the size of this internal buffer.

We are currently looking for demultiplexing algorithms that match the lower
bounds presented in this paper. Our lower bounds present worst-case traffics
also for randomized demultiplexing algorithms, but it would be interesting to
study the distribution of the relative queuing delay when randomization is
employed.

References

[1] M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu.
Universal stability results for greedy Contention-Resolution protocols. Journal
of the ACM, 48(1):39–69, 2001.

[2] The ATM Forum. Inverse Multiplexing for ATM (IMA) specification, March
1999. Version 1.1, AF-PHY-0086.001.

[3] H. Attiya and D. Hay. The inherent queuing delay of parallel packet switches.
Technical Report CS-2004-02, Technion - Israel Institute of Technology, 2004.

[4] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Ad-
versarial Queueing Theory. Journal of the ACM, 48(1):13–38, 2001.

[5] A. Charny. Providing QoS guarantees in input buffered crossbar switches with
speedup. PhD thesis, Massachusetts Institute Of Technology, September 1998.

[6] F. M. Chiussi, D. A. Khotimsky, and S. Krishnan. Generalized inverse multi-
plexing of switched atm connections. In IEEE Globecom, 1998.

[7] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queueing
with a combined input output queued switch. In IEEE Conference on Computer
Communications (INFOCOM), pages 1169–1178, 1999.

151

(c) 2004 IFIP

[8] C. Clos. A study of non-blocking switching networks. Bell System Technical
Journal, pages 406–424, 1953.

[9] R. L. Cruz. A calculus for network delay, part I: Network elements in isolation.
IEEE Transactions on Information Theory, 37(1):114–131, January 1991.

[10] K.J. Chen C.S. Wu, J.C. Jiau. Characterizing traffic behavior and providing
end-to-end service guarantees within ATM networks. In IEEE Conference on
Computer Communications (INFOCOM), pages 336–344, 1997.

[11] J. Duncanson. Inverse multiplexing. IEEE Communications Magazine, 32(4):34–
41, April 1994.

[12] P. Fredette. The past, present, and future of inverse multiplexing. IEEE Com-
munications Magazine, 32(4):42–46, April 1994.

[13] S. Iyer. Analysis of a packet switch with memories running slower than the line
rate. Master’s thesis, Stanford University, May 2000.

[14] S. Iyer, A. Awadallah, and N. McKeown. Analysis of a packet switch with
memories running at slower than the line rate. In IEEE Conference on Computer
Communications (INFOCOM), pages 529–537, 2000.

[15] S. Iyer and N. McKeown. Making parallel packet switches practical. In IEEE
Conference on Computer Communications (INFOCOM), pages 1680–1687, 2001.

[16] S. Keshav. An Engineering Approach to Computer Networking. Addison-Wesley
Publishing Co., 1997.

[17] D. Khotimsky and S. Krishnan. Stability analysis of a parallel packet switch
with bufferless input demultiplexors. In IEE International Conference on Com-
munications (ICC), pages 100–106, 2001.

[18] L. Kleinrock. Queuing Systems, Volume II. Jhon Wiley&Sons, 1975.

[19] P. Krishna, N. S. Patel, A. Charny, and R.J. Simcoe. On the speedup required
for work-conserving crossbar switches. IEEE Journal on Selected Areas in Com-
munications, 17(6):1057–1066, June 1999.

[20] Y. Mansour and B. Patt-Shamir. Jitter control in Qos networks. IEEE/ACM
Transactions on Networking, 9(4):492–502, August 2001.

[21] B. Prabhakar and N. McKowen. On the speedup required for combined input
and output queued switching. Automatica, 35(12):1909–1920, December 1999.

[22] Y. Tamir and H.C. Chi. Symmetric crossbar arbiters for VLSI communication
switches. IEEE Transactions on Parallel and Distributed Systems, 4(1):13–27,
January 1993.

[23] J. S. Turner. New directions in communications (or which way to the information
age?). IEEE Communications Magazine, 24(10):8–15, October 1986.

[24] H. Zhang. Providing end-to-end performance guarantees using non-work-
conserving disciplines. Computer Communications: Special Issue on System Sup-
port for Multimedia Computing, 18(10), October 1995.

[25] H. Zhang. Service disciplines for guaranteed performance service in packet-
switched networks. Proceedings of the IEEE, 83(10):1374–1396, October 1995.

[26] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High
Speed Networks, 3(4), 1994.

152

(c) 2004 IFIP

	Select a link below
	Return to Main Menu
	Return to Previous View

