
���������
	
������ � ����� ������������ ����� ���
����� �
�����
����� �!� "#� � � ������� 	
�
� 	
� $%��� "#& � ����� �����!� '

(*),+.-�/1032543032567)8-79;:=<?>A@CB�),D1EF+G432H67),IJ>AKL:=M7),6=0N),OQPR25OAOA25IG-S289H:
TU0V+;WS0VX;XG)ZY[2H6�2H+ 9 :=),OA\^]_2HX;25+?Y`03\AB�)baS2H+ 9
9.cedLfhgVijgVkHgNl_monUpSq5lomGrolsgViutwvGx7yzm;{}|~kHgNlsr_�Lt�iulsd~thlw�A�_p8��SkHrsi�teqJ�
�J�G�;� �CkHreiuthqJ�=�b��i�gj��lsrsx vGdL�
�e� �s� � �s�s���s���h�s���e�w�s���s�;�8�s���s�j���G��� �. 7�¢¡w�s�L£~� �w¤V¥ �o¦��e§s¥ �s�
KCyzmG{}|LkHgNlsr¨�©d�ªGijd8lwlersijd�ª1vGdL�¬«lsgV�AmGrw®.f�¯CvJ°omGrov;g3mGre±³²�p,c¢´�µ��z�_p,�¶�SkHrsi�teqJ�
�J�G�;� �CkHreiuthqJ�=�b��i�gj��lsrsx vGdL�
�s�j� �s�s�e�s�s£b¦N� ��¥ �w��¥ �o¦��h§�¥ �s�

Abstract In this paper we study the SRDM problem motivated by a variety of practical
applications. We are given · jobs with integer release times, deadlines, and
processing times. The goal is to find a non-preemptive schedule such that all
jobs meet their deadlines and the number of machines needed to process all jobs
is minimum. If all jobs have equal release times and equal deadlines, SRDM
is the classical bin packing problem, which is ¸º¹ -complete. The slack of a
job is the difference between its release time and the last possible time it may
be started while still meeting its deadline. We show that instances consisting of
jobs with slack at most one can be solved efficiently. We close the resulting gap
by showing that the problem already becomes ¸º¹ -complete if slacks up to »
are allowed. Additionally, we consider several variants of the SRDM problem
and provide exact and approximation algorithms.

¼F½ ¾À¿ÂÁ�Ã�Ä?ÅÇÆRÈ©Á�É�ÄU¿

In this paper we study the SCHEDULING WITH RELEASE TIMES AND DEAD-
LINES ON A MINIMUM NUMBER OF MACHINES (SRDM) problem: Given Ê
jobs, each associated with a release time, a deadline, and a processing time,
what is the minimum number of identical machines that a non-preemptive
schedule needs such that all jobs meet their deadlines?

Ë
Work partially supported by the EU Thematic Network APPOL II, IST-2001-32007, with funding provided

by the Swiss Federal Office for Education and Science.

209

(c) 2004 IFIP

The task to process all given jobs within certain time frames and minimize
the number of needed machines has recently gained new interest [5] and ap-
plies to many practical applications. For example, consider a workshop with
a variable number of repairmen. In the morning the boss gets a number of re-
quests from customers. Each customer has a certain time window in which a
repairman is allowed to visit. If there is no traveling time between customers,
the SRDM problem is equal to finding the minimum number of repairmen
needed for this day. If all time windows are equal, SRDM is the classical bin
packing problem [8, 10]. On the other hand, if the time window of each cus-
tomer is exactly the repair time, the number of needed repairmen is the same
as the clique number of the corresponding interval graph.

The variant of SRDM where the goal is to decide whether all jobs can be
scheduled on one machine is known as “sequencing with release times and
deadlines”. It is strongly ��� -complete [10]. This implies that there cannot be
an approximation algorithm for SRDM with ratio ����� for any �	��
 .
�������������������

Machine scheduling problems have been the subject of ex-
tensive research and numerous publications (see [11] for references). Recently
two variants of machine scheduling problems have gained a lot of interest:
real-time scheduling [1–3], and the job interval selection problem (JISP) [6,
9, 14]. For the real-time scheduling problem the input consists of Ê jobs and

machines. Each of the jobs is associated with a release time, a deadline, a
weight, and a processing time on each of the machines. The goal is to find
a non-preemptive schedule that maximizes the sum of the weights of the jobs
that meet their deadlines. The input of the JISP consists of a set of Ê jobs and
an integer value ! . Each job consists of a number of intervals on the real line.
The goal is to select a subset of intervals with maximum cardinality such that
at most one interval is selected for each job, and for any point " on the real line
at most ! intervals containing " are selected. An optimum schedule for these
two problems in general just processes a subset of all jobs.

For the real-time scheduling problem constant approximation algorithms are
known. In [2] Bar-Noy et al. presented an LP-based approach, whereas in [1]
and [3] Bar-Noy et al., and Berman and DasGupta proposed combinatorial al-
gorithms. If the number of machines for the JISP is one, Spieksma proved
in [14] MAXSNP-hardness for this problem and proved that a greedy algo-
rithm gives a � -approximation. In [6] Chuzhoy et al. presented an #%$�&'#��)(�* -
approximation algorithm for JISP.

Very recently Chuzhoy and Naor [5] have studied the machine minimiza-
tion problem for sets of alternative processing intervals. The input consists of
Ê jobs and each of them is associated with a set of time intervals. A job is
scheduled by choosing one of its intervals. The objective is to schedule all
jobs on a minimum number of machines. Chuzhoy and Naor [5] have shown

210

(c) 2004 IFIP

that their machine minimization problem is �	&������������ Ê * -hard to approximate
unless ���	��
��������&¢Ê����������������������� �! * .
" � � �� �$# �&% � �%���('��)#

Each job of the input is associated with a release
time * , a deadline + , and a processing time , , where * , + , and , are integers and
+	�-*/.-, �)
 . The interval 0 *(12+�* is the window in which an interval of size ,
will be placed. If the size + �3* of the window is equal to , , the job occupies
the whole window. If the window of a job is larger than its processing time,
the choice of a schedule implies for each considered job shifting an interval
(the processing interval) into a position within a larger interval (the window).
Therefore, we use the notation of interval graphs and shiftable intervals [12]46587 *912+:1�,�; . The difference < 5 + �=* �>, is the slack and corresponds to the
maximum amount the interval can be moved within its window. The flexibility
of an interval in its window is described by the ratio ? 5A@CBEDF .

For every interval we have to select a legitimate position within its window.
This position is described by a placement GIHKJ�
L1NMOM�1P<RQ . The processing in-
terval according to a placement G is denoted by

4TS>5 0 *VU�GW1�*VU�G>UX, * . The
range within the window that the interval has to occupy for every placement is
the core. If the slack is smaller than the processing time, the core is the interval
0 + �Y,W1�*VUX, * , otherwise the core is empty.

For an Ê -tuple Z 5 & 4 9 1NMOM[1 4 * of shiftable intervals, \ 5 &]G 9 1NMOM^1_G *
defines a placement, where for (a`cbd` Ê the value G:e is the placement of
the shiftable interval

4 e . Both Z and \ together describe a finite collection
of intervals Zgf 5 J 4 Sihe j b 5 (^1NMOM^1�ÊTQ and can be interpreted as an interval
graph k . For the definition of interval graphs see [4]. Since one machine can
process only one job at a time, the maximum number of overlapping intervals
corresponds to the minimum number of machines needed to process all jobs.
This value is equal to the size of a maximum clique of the interval graph k and
can be determined by a sweepline algorithm in time l &¢Êm�����¬Ê * .

The domain
 of the input is the interval 0 *^npo�q�12+�nsrut * , where *inpo�q is the ear-
liest release time and + nsrut is the latest deadline. Let v &wZ f 1 " * be the number
of overlapping intervals at point "XHx
 . The maximum number of overlapping
intervals over all possible "	Hy
 is the height of Z f , which is denoted by
v &wZzf * . We denote the minimum height over all placements by { v &wZ * .

The SCHEDULING WITH RELEASE TIMES AND DEADLINES ON A MINI-
MUM NUMBER OF MACHINES (SRDM) problem is defined as follows:

INSTANCE: An Ê -tuple Z of shiftable intervals.
SOLUTION: A placement \ .
MEASURE: The height of the interval set ZVf .

The decision version of the problem is SRDM &�! * . An instance is a yes-
instance, if and only if a placement \ exists such that the height of the corre-
sponding set of intervals is less or equal to ! .

211

(c) 2004 IFIP

The interval graph of all non-empty cores of the shiftable intervals in Z
is the core graph. Analogously, the window graph is the interval graph of the
windows of Z . The maximum cliques of the core and window graphs obviously
determine lower and upper bounds for { v &wZ * .

In this paper we will present algorithms which use the maximum slack
(< nsrut) and maximum flexibility (? nsrut) over all shiftable intervals. The height
function of a placement \ for Z is a function
�� ��� , where "XHx
 is mapped
to the number of intervals of Z f which contain the point " .
��� �	� � #����['�
 � �[' � #

In this paper, we give several exact and approxima-
tion algorithms for the SRDM problem and special cases of it. We start with
presenting exact algorithms for the SRDM problem. In Section 2.1 we give a
polynomial time algorithm for instances with < nsrut 5 (. Then we develop two
dynamic programs for the decision version SRDM &�! * . The first one considers
instances where the maximum slack is smaller than the minimum processing
time. Its running time is exponential in ! . The second can be used for any in-
stance. Its running time is exponential in the maximum number of overlapping
windows.

In Section 3 we describe several approximation algorithms. We explain how
filling machine by machine leads to a � &������FÊ * -approximation to SRDM. For
restricted instances we develop algorithms with a constant approximation ratio.
We show that for small windows even an arbitrary placement is a good approx-
imation. The Greedy Best Fit algorithm is an asymptotic -approximation for
instances with equal processing times. This algorithm can be extended for
instances with a restricted ratio of processing times. For the general case we
show that the number of machines determined by this algorithm can differ from
the optimum value by a factor of � &�� ���¬Ê * . In addition we study a few special
cases. We present an asymptotic �9M�� � -approximation algorithm for SRDM in-
stances where all jobs have equal release times. If the window graph is a clique
we present an asymptotic (��9M� -approximation.

Since the SRDM problem is easy to solve if < nsrut is 0 or (, we aim to
understand instances where the slack is bounded. We will prove in Section 4
that the problem is already ��� -hard for instances with every fixed < nsrut .�� .

A full version of this paper can be found in [7].

�Â½ ���#È}É�� ¿ÂÁ��1Ä���Æ³Á�É�ÄU¿����GÄÂÃ �"!#� È}É�$%�'&($)�*�+�

Although the SRDM problem is ��� -hard in general, some problem in-
stances can be solved efficiently. In this section we propose a polynomial time
algorithm for cases with < nsrut 5 (and we present two dynamic programs for
restricted instances of SRDM. The first approach deals with instances with
small slack compared to the processing times, whereas the second has a poly-

212

(c) 2004 IFIP

nomial running time if the maximum number of overlapping windows is con-
stant.

�Â½�¼ � �^Ä����R¿ Ä�� É�$%��� É�� �	� ��
¬ÄÂÃ=ÉsÁ��� �JÄ Ã
SRDM

� ÉsÁ��� $��RÉ�� Æ�� � ��$FÈ����

Next we present a polynomial time algorithm for SRDM instances with
< nsrut 5 (.
������� �!�"�#

The SRDM problem with maximum slack at most (can be
solved in polynomial time.

Proof. We solve the decision version SRDM &�! * and use binary search to
determine the minimum value for ! . Let the input instance Z 5 & 4 9 1NMOM^1 4 *
with domain
 contain

shiftable intervals with slack (, and Ê � shiftable

intervals with slack
 . If the height of the cores is greater than ! , SRDM &�! *
is a no-instance.

The placement of a shiftable interval
4X5y7 *912+:1�,�; with slack (is either
 or

(. Hence, the corresponding interval contains either the point *�&]G 5
 * or + � (
&]G 5 (�* . This observation leads to the following network flow formulation.
Initially, the network contains nodes $ and % , representing the source and the
sink. For every shiftable interval

4 e in Z & (`&bm`!Ê * with slack (we add a
node $ie . Next we introduce a node %'& for every integer value "-H=
 where the
number of overlapping windows at point " is strictly larger than the number
of overlapping cores at " . The number of %(& is at most � . The source $
is connected by an edge of capacity (to all nodes $ e representing a shiftable
interval

7 *ieO12+ReO12+Re � * e � (i; . The node $(e has two outgoing edges, having
capacity (, to the nodes % D h and % @ h B 9 . There is an edge from every %'& to the
sink % . Its capacity is the difference between ! and the height of the cores at " .

A flow on edge &)$ieu1*%+& * determines a unique placement of the shiftable in-
terval

4 e such that it contains " . The capacity on edge &,% & 1*% * guarantees that
v &wZ f 1 " * is at most ! for all " H
 . Thus, a maximum flow of size

from

$ to % returns a placement \ for the input Z such that v &wZVf *X` ! . If the
maximum flow is less than

, { v &wZ * is greater than ! . The decision version

SRDM &�! * can be solved in time l &¢Ê K �����FÊ * using the maximum flow algo-
rithm presented by Sleator and Tarjan [13].

�Â½ � -.�R¿ $/� É�È0��Ã�Ä/
ÂÃ $/� �JÄ Ã.1 $_Á� �¨Ã �ÂÁAÉ�2 ¾À¿���Á*$¬¿RÈ �+�

In the following we only consider instances Z for SRDM &�! * where the
maximum slack < nsrut is less than the minimum processing time , npo�q . For those
instances the sequence of the jobs on one machine is already determined by
their release dates. Thus, if the shiftable intervals & 7 * 9 12+ 9 1�, 9 ;_1NMOM�1 7 * 12+ 1�, ; *
are ordered by non-decreasing *[e values, then it is possible to schedule the first

213

(c) 2004 IFIP

jobs on ! machines if and only if the first

 � (jobs can be scheduled in
such a way that there exists at least one machine with enough remaining idle
time to process the

-th job afterward.

We recursively compute table � , where ����&�� 9 1NMuM^1�����* indicates for
 . (

whether it is possible to schedule the first

jobs such that for all � , (m`	�d` ! ,
machine � finishes its last job no later than ��
 . We start with � � &�� 9 1NMuM^1�����* 5������

for all integers � 9 1NMOM�1�� � within the domain and recursively define

����&�� 9 1NMuM^1�����* 5� �
�� 9 & &���� B 9 &�� 9 1NMOM^1���
 B 9 1���
 � ,���1���
�� 9 1NMOM�1���� *�� *��gUX,�� `���
m`�+�� * &���� B 9 &�� 9 1NMOM�1���
 B 9 12+�� � ,���1���
�� 9 1NMOM�1���� *�� ��
	��+�� * *_M
The value of � &�+ nsrut 1NMuM^12+ nsrut * , where + nsrut is the right endpoint of the

domain, indicates if all jobs can be scheduled on ! machines. If ! denotes the
width of the domain of the given shiftable intervals, the total effort to calculate
the whole table is l &¢Ê#"$! � " ! * , where the last factor ! results from evaluating
the right hand side of the recursion above. So we have the following theorem:

������� �!�"&%
For an instance of SRDM &�! * with < nsrut(' , npo�q there exists a

dynamic program that computes the optimum solution with running time l &¢Ê)"
! � " ! * , where ! denotes the width of the domain of the instance.

�Â½+* -.�R¿ $/� É�È0��Ã�Ä/
ÂÃ $/� �JÄ Ã-, ÄUÆR¿RÅ��¨Å/. Æ��10#� Ã Ä%�
243 � Ã ��$)! ! É�¿
65 É�¿RÅRÄ � �

������� �!�"87
The problem SRDM &�! * can be solved in time l &¢Ê9" & < nsrut U

(�*;:<"�=&� ���>= * , where = is the maximum number of overlapping windows and
Ê the number of shiftable intervals.

Proof. W.l.o.g. we assume that the window graph for a given Ê -tuple Z of
shiftable intervals

7 * 9 12+ 9 1�, 9 ;_1NMuM�1 7 * 12+ 1�, ; is connected. Let J?� 9 1NMOM[1���@CQ be
the sorted set of all distinct left window endpoints, with $ ` Ê . For b 5 (^1NMOM^1 $
let A e 5 J�� j *
 `B� e ' +
 Qd�yJ (^1NMOM�1�ÊTQ be the set of all indices of shiftable
intervals whose windows contain ��e . A local placement C for ��e is a mapping
A)e � �)� where C &D� * ` +E
 �-*�
 � ,F
 describes job � ’s placement.

We say that a local placement C for �2e is feasible if the resulting height of
the local placement is at most ! , and either b 5 (or there exists a feasible
local placement G for � e B 9 such that G &D��* 5 C�&D� * for all �dHHA e B 9�I A e .

The program checks for increasing b 5 (^1NMuM�1 $ the feasibility of all possible
local placements for ��e . The information which is relevant for the next step
is stored in a table. Assume there exists a feasible local placement CJ@ for ��@ .
If $

5 (then CK@ is a placement of all jobs in Z . Otherwise there exists a
feasible local placement C @ B 9 for � @ B 9 such that C @ and C @ B 9 place the jobs
with indices from AL@ B 9 I AM@ in the same way. Iteratively we know there exists

214

(c) 2004 IFIP

a sequence C 9 1NMOM^1 C @ of feasible placements for � 9 1NMOM^1��;@ which represents a
placement for all jobs. On the other hand, if we are given a placement \ for
the input Z such that v &wZgf *>`�! , the restriction of \ to AL@ gives a feasible
local placement for � @ . Details of the running time analysis are omitted due to
space restrictions.

*1½ ��! ! Ã�Ä �RÉ�� $_ÁAÉ�ÄÂ¿�� ��
 Ä Ã=ÉsÁ��� � �JÄ Ã
SRDM

In this section, we develop and analyze approximate solutions. We start
with an intuitive approach of iteratively filling machines. We show that an
arbitrary placement is a good approximation if

�������F ��� 	 is small. We develop the
Greedy Best Fit algorithm, which is a good approximation for instances where
the processing times do not differ very much. A lower bound for this algorithm
is presented as well. Finally, we study approximation algorithms for instances
where all windows have one common point.

*1½�¼ �
�������������(� ! !RÃAÄ � É�� $_ÁAÉ�ÄÂ¿ � ��
¬ÄÂÃ=ÉsÁ���

A greedy � -approximation algorithm for the job interval selection problem
(JISP) is presented in [14]. To solve the SRDM problem we use this algorithm
and successively load machines with jobs until no job is left over.
������� �!�"��

Iteratively filling the machines using a constant approximation
algorithm for JISP leads to a � &�� ���FÊ * -approximation algorithm for SRDM.

*1½ � ¾À¿���Á $¬¿ È � � � ÉsÁ� � � $%� � 5 É�¿ ÅRÄ � �

If the ratio of the maximum slack < nsrut and the minimum processing time
, npo�q is small, an arbitrary placement of all shiftable intervals is already a good
approximation for SRDM.
������� �!�"��

An arbitrary placement is a & U (�* -approximation for SRDM,
where

 5�� K �������F ��� 	 � .
Proof. The proof is by contradiction. Assume that, for an Ê -tuple Z of shiftable
intervals with <Cnsrut` � K "P,$npo�q , there exists a placement \ and a point " such

that v &wZ f 1 " * . & U (�*K" { v &wZ * U (.
Let ! �8Z be the subset of shiftable intervals whose windows contain " .

Using an optimum solution, this subset can be partitioned into at most { v &wZ *
sets ! 9 1NMOM[1"!$# such that the height of !Ee is 1. By \ e for b 5 (^1NMuM�1�� we denote
the restriction of \ to the set !Ee . Using an averaging argument we know that
for the placement \ there exists one %6H3J (^1NMuM�1��PQ with v &�! f�&' 1 " *I. U�� .
The number $ of elements in ! ' must be at least

 U�� . Consider a placement(
of the shiftable intervals in ! ' with v &�!�)' * 5 (. W.l.o.g. we assume the

elements in ! ' are sorted such that *(e9U+*Te ' * e � 9 U+*Te � 9 for b 5 (^1NMOM^1 $ � (.

215

(c) 2004 IFIP

We consider the points ! 5 * 9 Um, 9 U * 9 .�+ 9 �/< 9 and
� 5 *E@̂ U *�@ `�* @RUY< @ .

By definition of ! ' at least

intervals can be placed between ! and
�

, hence� � ! . "�, npo�q . Since all windows in ! ' contain " we know + 9 � "a. *E@ .
We obtain

 " , npo�q ` � � !I` * @9U < @ � &�+ 9 �=< 9 * ' < @EU < 9 `���"�< nsrut , which
contradicts our hypothesis.

1½+ � � ����Ã �+�¨Å � , �+��Á��QÉsÁ � ��
 Ä Ã=ÉsÁ���
If the ratio between the longest and shortest processing time is bounded

we propose the Greedy Best Fit (GBF) algorithm. This algorithm processes
the shiftable intervals Z in order of increasing window size. For a job

4
the

algorithm calculates for every placement G the maximum height inside the
interval

4 S
. From the subset of placements which lead to the lowest height, it

chooses the leftmost.

� 5��
for

4 5y7 *912+:1�,�;gHxZ in order of increasing window size do
for G 5
L1NMOM�1�* �a+ � , do v nsrut 0 G
	 5�����

&������ v & � 1 " * end for
v npo�q 5������ J(v nsrut 0 G
	 j G 5
L1NMOM^1�* � + �=, Q
*�� 5������ J[G j G 5
L1NMOM�1�* �a+ � , and v nsrut 0 G
	 5 v npo�q Q
add

4����
to

�
end for

Algorithm 1: GBF-Algorithm

For the analysis of the GBF algorithm, we define the work of a set of in-
tervals � in 0 � 1 � 	 as the value !#"$ v &��E1 " *�+ " . We start with the case where all
processing times are equal.

������� �!�"&%
For a SRDM instance Z with equal processing times the GBF

algorithm returns a placement \ such that v &wZ f * `	 " { v &wZ * U (.
Proof. Let

�
be the intervals placed by the GBF algorithm. Denote v 5

v & � * . Consider the first shiftable interval
4a5	7 *912+ 1�,�; in Z whose placement

increases the height to v . Denote by �x� �
the set of all intervals which have

been placed so far, not including
4

, i.e. v &���* 5 v � (and v & J 4 S Q('6��* 5 v
for all placements G . The size of

4
’s window is ! 5 +	�a* . Let �*):� � denote

the subset of intervals whose intersection with 0 *(12+�* is non-empty and denote
by + the work of �) in 0 *[12+�	 . Since the size of the windows of all intervals in
�,) is not greater than ! , even an optimal solution has to place them between
*��	! and + U�! . It follows { v &wZ * ..-/10 .

To obtain a lower bound on + , we construct a set of intervals �
)) with the
following properties: the height of �2)) is v � (, any placement of

4
increases the

height to v , and the work of �3)) is minimal. Since the placement of
4

increases

216

(c) 2004 IFIP

the height, there is no range of length , between * and + with height at most
v�� � . Hence, there must be peaks of height v ��(at least every , ��(points

within the interval 0 *(12+,	 . Thus �)) consists of � 5�� 0 B � F B 9 !K F B 9�� peaks of height

v�� (and width , and we get a lower bound + .�� "�& v � (�*�"2, . From the
definition of � we have !�`�� "�&'�_, ��(�*�U , � (` &'� "�� U (�*�"P, . Since� is a positive integer, with the bounds on ! and + we have { v &wZ * . -/10 .� �
	 B 9 !/�� � K � � 9 ! . 	 B 9

The idea of the proof above can be extended to instances with different
processing times by constructing the peaks of intervals of size , nsrut and calcu-
lating their work as if they were of size , npo�q . This results in
������� �!�"��

GBF has asymptotic approximation ratio " F �����F ��� 	 for SRDM.

If we partition a given instance of SRDM into subinstances such that the
ratios between the maximal and the minimal processing times are bounded by
#�� ��M���(�� , we obtain
������� �!�"��

There exists an asymptotic # " � � ��� F �����F ��� 	�� � -approximation al-

gorithm to SRDM.

The GBF algorithm can be implemented using � nested for loops. The way
we presented it in Algorithm 1 its running time depends on the size of the
domain. With some changes the algorithm can be implemented in time l &¢Ê / * .� ��� �! � � # �#" ���%$ �� ��'&(*) �,+V' �.-

Unfortunately for general in-
stances the GBF algorithm does not have a constant approximation ratio.
������� �!�"�/

The height of the GBF algorithm can differ from the optimum
by a factor of �	&������FÊ * .
1½10 &ÄÂ¿���Á $¬¿ÂÁ ��! ! Ã�Ä �RÉ�� $_ÁAÉ�ÄÂ¿ �GÄÂÃ &Ä � ! ��� Á�

5 É�¿ ÅRÄ � �`Ã $)! � �
If the release times of all shiftable intervals are equal and all deadlines are

equal as well, we have the classical bin packing problem ([8, 10]). For this
problem constant approximation algorithms and asymptotic polynomial time
approximation schemes are known. Hence it would be interesting to generalize
these results to SRDM instances with a complete window graph.243 � � � � �����5) %6 '17�8)9-

In the following we investigate the case where
all release times are
 but the deadlines differ.
������� �!�"�#.:

If all release times of shiftable intervals are equal the Divide
Best Fit algorithm returns a placement \ with v &wZVf *z` 9K &;��U=< > * "�{ v &wZ *�U (.

217

(c) 2004 IFIP

For ? � 5 9K "�& (�U < > * partition the given instance Z into
Z � 5 J 7
L12+E1�,:; H=Z j @F .�? � Q and Z�@ 5 J 7
L12+$1�, ;gHxZ j @F ' ? � Q .
Use the GBF algorithm for Z � .
for

4 H=ZL@ do place
4

at the rightmost position end for

Algorithm 2: Divide Best Fit Algorithm

Proof. The Divide Best Fit algorithm splits Z into two sets according to their
flexibility values. The set Z � denotes relatively flexible shiftable intervals
where the ? values are at least ? � . The remaining shiftable intervals ZK@ are
relatively stiff.

For the flexible set Z � the GBF algorithm traverses the shiftable intervals by
increasing right endpoints. It places the intervals as far to the left as possible
such that the height is minimized. This algorithm leads to a collection of inter-
vals

� � with height ALG � . It is not difficult to see that { v &wZ � * can be bounded
by { v &wZ � *x.����

B 9
� �

"�& ALG � � (�* . In the stiff set Z�@ all intervals are placed
at their rightmost position. The resulting height is at most twice the optimum
height.Using the lower bound on { v &+A � * we obtain the stated approximation.

Obviously, the Divide Best Fit algorithm can be adapted to solve problem
instances where the release times differ and all deadlines are equal.� '�# � ��� $ �%���	��
) �(� �w' 3 � -

Next we want to generalize the problem
discussed in the previous section and consider instances Z 5 & 7 * 9 12+ 9 1�, 9 ;_1NMuM^17 * 12+ 1�, ; * of SRDM where all windows have a common point " . Thus, it
holds * e ` " ' + e for (Y`&bm` Ê . We partition Z into three disjoint subsets
Z 0 , Z� and Z�� . The set Z 0 contains all members

4 e of Z whose cores do not
contain " and for which the part of the window left of " is larger than the part
to the right of " ("��a*ie ��+Re � "). Similarly, the set Z�� contains all members4 e of Z whose cores do not contain " and for which " ��*^e ` +Re � " . The
remaining shiftable intervals are in Z	� and have cores overlapping in " . We
transform Z� into Z �� by setting all release times to " , and Z 0 into Z 0 � by
setting all deadlines to " . Now we use the Divide Best Fit algorithm to place
Z 0 � and Z ��� independently. Finally, we place the intervals in Z�� arbitrarily. To
analyze the approximation ratio of the described algorithm, we first show that
the height of the optimum solution for Z �� is at most three times the optimal
height for Z� .

� �"�"�� # #
The minimum height of Z �� can be bounded by { v &wZ ��� * ` �_{ v &wZ � * .

Proof. We change the optimum placement for Z�� such that the resulting place-
ment is feasible for the restricted instance Z �� and its height only increases by
a factor of three. We change the placements for all shiftable intervals placed
to the left of " . If an interval is placed completely to the left of " we replace

218

(c) 2004 IFIP

it with its mirror image where the mirror is at " . This is feasible since the part
of the window to the right of " is larger than its remaining part. This opera-
tion, carried out for all intervals to which it applies, increases the height of the
placement by a factor of at most � . If the interval is placed such that it contains
" , it is shifted to the right of " . This shifting can increase the height by another
{ v &wZ�� * . We have a new placement where all intervals are placed to the right of
" and its height is at most � "_{ v &wZ�� * .

The analogous result holds for Z 0 � , too. The height of the optimal placement
for Z is at least the minimum height for every single set Z 0 , Z�� , and A � . Using
Theorem 10, the placement computed by the algorithm for Z ��� has height at

most
9K &;�mU(< > *J"*� { v &wZ�� * U (, and similarly for Z 0 � . Since the domains of

Z 0 � and Z ��� are non-overlapping, the height of the overall solution computed

by the algorithm is at most
9K &;�gU < > *L" ���� J � { v &wZ 0 *_1 � { v &wZ�� *PQzU (U j Z�� j `9K &'�9�VU � < > *K" { v &wZ *WU (. This gives the following theorem.

������� �!�"�#�%
For SRDM instances Z where the window graph is a clique,

there exists an approximation algorithm such that the resulting height is at
most
9K &'�9� U �.< > * { v &wZ * U (.0³½ ��� ��� $FÃAÅÇ¿ � � �Ä%�

SRDM � ÉsÁ� � $�� É�� Æ�� � ��$FÈ ���

As shown in Section 2.1, the SRDM problem is easy to solve if the maxi-
mum slack is at most (. Furthermore a very simple approximation algorithm
can be found if the ratio between maximum slack and minimum processing
time is small. Hence, it seems as if small slack makes the problem easy. Sur-
prisingly, already if < nsrut 5 � the SRDM problem is ��� -hard.
������� �!�"�# 7

The SRDM problem with < nsrut 5 � is ��� -hard.

Proof. This proof is by reduction from 3-SAT [10]. The input is a set � of
variables and a Boolean formula 	 in conjunctive normal form. Every clause

contains � literals, where a literal is a variable or a negated variable in � .
3-SAT asks for an assignment to � such that 	 is satisfied. For a Boolean
formula 	 having

clauses, we construct a set of shiftable intervals Z such

that { v &wZ * 5 � if and only if 	 is satisfiable. W.l.o.g. we assume that every
variable in � occurs in 	 negated and not negated.

The construction of Z contains generators for variables, clause gadgets and
gadgets for copying values of literals. We are going to explain our construction
with help of Figure 1.
Generator: For every variable we construct a generator � with starting point� . In our example they are positioned left, indicated by light-grey boxes. A
generator is built out of four shiftable intervals. Two of them have a slack of
zero (are fixed). Both shiftable intervals with slack greater zero overlap one of

219

(c) 2004 IFIP

���

���

��

��

��

��
���
���

	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��

�������������������������
���

��

Generators Copy Gadgets Clause Gadgets

broken shiftable interval

PSfrag replacements

�
�

&��

&��

&��

&��

� & �

� &��

� &��
� & �

&����/&���� &��

&���� � &����/& �

� &���� � &����/&��

&���� � &���� � & �

� � � � � � � � � � � � � � � � � !"� � !#�
$ i ªGkHrol&%(')+* �-, * �., * �0/21)+* �-,43 * �., * � /�1) 3 * �-,53 * ��, * �0/21)+* ��,63 * �7,43 * � /
the fixed intervals by (unit. These two represent both literals of the variable.
Only one of its literals can be TRUE. An interval in its leftmost position is
interpreted as a literal set to TRUE. Otherwise the literal is set to FALSE.
� 5 & 7
L1 � U (^1 � U (i;_1 7
L1 � 1 � ;_1 7 � 1�* 9 1�* 9 � � �)(i;_1 7 � 1�* K 1�* K � � �)(i;8 9;: <

&�= � &
*

The endpoints * 9 1�* K of the windows are defined by a starting point of a copy
gadget, or by a clause. Since { v & � * 5 � , at least one of the intervals has to be
shifted to the right and represents a literal which is FALSE. Observe that both
shiftable intervals starting at � can be shifted to the right, and thus represent
false. Then the corresponding variable will not contribute to the result.
Copy Gadget for Values of Literals: In 	 a literal can occur more than once.
Thus, the construction of Z has to ensure that all shiftable intervals represent-
ing the same literal have the same value. To copy values of literals a copy
gadget with the following form is used:>y5 & 7@? 1 ? @ U ��1 ? @ � ? U (i;8 9;: <

original literal

1 7
L1 ? @ 1 ? @ ;8 9;: <
place holder

1 7@? @ 1 ? @ U �91 �R;_1 7@? @ U (^1 ? @ U ��1 �R;_1
7@? @ U ��1 ? @ U �91 (i;_1 7@? @ U ��1�* 9 1�* 9 � ? @ � ��;_1 7@? @ U ��1�* K 1�* K � ? @ � ��;8 9;: <

two copies

*

In the example these gadgets are depicted by boxes with round corners.
Within the copy gadget exists only one shiftable interval with slack � . The
value

? @ represents the starting point of the copy gadget.
To not exceed { v & > * 5 � the copy gadget has to work in the following way:

If the original literal is placed left, both copies can also be placed left without
exceeding height � . On the other hand, if the original interval is shifted to the

220

(c) 2004 IFIP

right, both copies have to be shifted to the right in order to obtain the minimum
height for this gadget.

Observe that for every copy gadget we introduce one shiftable interval with
slack zero starting at zero. To simplify Figure 1 we split some of these intervals
into two parts. It is always possible to shift an interval representing a literal
to its right endpoint, even if it could also be placed left. This would set the
corresponding literal to FALSE. The important point is: if once a literal is set
to FALSE, all copies of this literal will represent FALSE as well.
The Clause Gadget: For every clause a clause gadget is constructed. In Fig-
ure 1 these gadgets are octagons and placed at the right end. Every gadget
is built out of three shiftable intervals representing literals and three shiftable
intervals with zero slack.
� 5 & 7@? 9 1 ?�� 1 ?�� � ? 9 �)(i;_1 7@? K 1 ?�� 1 ?�� � ? K �)(i;_1 7@? / 1 ?�� 1 ?�� � ? / ��(i;8 9;: <

literal intervals

1
7@?�� �)(^1 � 1 � � ?�� U (i;_1 7@?�� 1 � 1 � � ?�� ;_1 7@?�� 1 � 1 � � ?�� ; * for some

� � ?��
The starting points of the literals are defined either by a generator or by a

copy gadget. To not exceed { v & � * 5 � , at most � of the literals can be shifted
to the right (FALSE). Hence, at least one literal must not be shifted – and
represents a TRUE literal. A clause gadget

�
has its left starting point at an

appropriate position
?��

defined by the placement. As indicated in Figure 1, the
value

�
has to be the same value for all clauses in 	 .

Placement of Components: All gadgets have to be placed independently of
each other. As shown in the example, the starting points of the generators dif-
fer and the copy gadgets have their starting points one after the other without
influencing each other. At the right end of the domain the clause gadgets are
placed similar to the generators on the left. The formula 	 contains Ê different
variables,

clauses, and hence � literals. If there exists a placement \ for

Z such that Z f has height � , then the � -SAT formula 	 is satisfiable. Since
we placed all gadgets independently, it is essential that all generators and copy
gadgets have height two, and every clause gadget has height three. If no copy
gadget has height three, all literals set to FALSE at their generators are repre-
sented by a shifted interval at the corresponding clause gadget. Observe that
for every placement the height at point

� � (and
 is exactly � . Because
at most two intervals are allowed to be shifted at every clause gadget – to not
exceed the height – at least one interval of every clause gadget must not be
shifted. Thus, if the Boolean formula 	 is satisfiable, a placement \ for Z can
be found such that v &wZ f * is � . Otherwise { v &wZ * is at least � U (.

In the proof of Theorem 13 the maximum flexibility ? nsrut is � . We can
adapt the gadgets and the placements of the components such that we obtain
the following result:
������� �!�"�# �

The SRDM problem is ��� -hard for arbitrary ? nsrut � (.

221

(c) 2004 IFIP

�Â½ &ÄÂ¿RÈ ��Æ��zÉ�ÄU¿

We studied the SRDM problem, a scheduling problem motivated by a va-
riety of practical applications. We presented positive and negative results, but
there are still open questions. Is there an asymptotic PTAS or an approximation
algorithm with a constant approximation ratio for arbitrary problem instances?
Even if we cannot hope for a &'� � � * - approximation algorithm, an asymptotic
PTAS could still exist.
��� � # ������ ��� 7�L#��

We would like to thank Riko Jacob for many helpful
comments and suggestions.

1 �+� � Ã � ¿RÈ �+�
[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J.S. Naor, and B. Schieber. A unified approach to

approximating resource allocation and scheduling. Journal of the ACM, 48(5):1069–1090,
2001.

[2] A. Bar-Noy, S. Guha, J.S. Naor, and B. Schieber. Approximating the throughput of multi-
ple machines in real-time scheduling. SIAM Journal on Computing, 31(2):331–352, 2001.

[3] P. Berman and B. DasGupta. Multi-phase algorithms for throughput maximization for
real-time scheduling. Journal of Combinatorial Optimization, 4(3):307–323, 2000.

[4] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: a Survey. SIAM Monographs
on Discrete Mathematics and Applications, 1999.

[5] J. Chuzhoy and S. Naor. New hardness results for congestion minimization and machine
scheduling. accepted for STOC’04, 2004.

[6] J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for the job interval
selection problem and related scheduling problems. In IEEE Symposium on Foundations
of Computer Science, pages 348–356, 2001.

[7] M. Cieliebak, T. Erlebach, F. Hennecke, B. Weber, and P. Widmayer. Scheduling jobs on
a minimum number of machines. Technical Report 419, Institute of Theoretical Computer
Science, ETH Zürich, 2003.

[8] E.G. Coffman Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms for bin pack-
ing: A survey. In D. Hochbaum, editor, Approximation Algorithms for NP-hard Problems.
PWS, 1996.

[9] T. Erlebach and F.C.R. Spieksma. Interval selection: Applications, algorithms, and lower
bounds. Journal of Algorithms, 46(1):27–53, 2003.

[10] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and Com-
pany, New York, 1979.

[11] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing and
scheduling: Algorithms and complexity. In S.C. Graves, A.H.G. Rinnooy Kan, and P. Zip-
kin, editors, Handbooks in Operations Research and Management Science, volume 4,
pages 445–522. North-Holland, 1993.

[12] F. Malucelli and S. Nicoloso. Shiftable interval graphs. In Proc. 6th International Con-
ference on Graph Theory, 2000.

[13] D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal of Computer
and System Sciences, 26(3):362–391, 1983.

[14] F.C.R. Spieksma. Approximating an interval scheduling problem. In International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems, volume
1444, pages 169–180. Springer-Verlag LNCS, 1998.

222

(c) 2004 IFIP

	Select a link below
	Return to Main Menu
	Return to Previous View

