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Abstract In this paper, we consider a sink location in a dynamic network which consists
of a graph with capacities and transit times on its arcs. Given a dynamic network
with initial supplies at vertices, the problem is to find a vertexv as a sink in the
network such that we can send all the initial supplies tov as quickly as possible.
We present anO(n log2 n) time algorithm for the sink location problem in a
dynamic network of tree structure, wheren is the number of vertices in the
network. This improves upon the existingO(n2)-time bound. As a corollary, we
also show that the quickest transshipment problem can be solved inO(n log2 n)
time if a given network is a tree and has a single sink. Our results are based on
data structures for representing tables (i.e., sets of intervals with their height),
which may be of independent interest.

Keywords: Dynamic flows, location problem, tree networks.

1. Introduction

We consider dynamic networks that include transit times on arcs. Each arca
has the transit timeτ(a) specifying the amount of time it takes for flow to travel
from the tail to the head ofa. In contrast to the classicalstaticflows, flows in
a dynamic network are calleddynamic. In the dynamic setting, the capacity of
an arc limits the rate of the flow into the arc at each time instance. Dynamic
flow problems were introduced by Ford and Fulkerson [6] in the late 1950s (see
e.g. [5]). Since then, dynamic flows have been studied extensively. One of the
main reasons is that dynamic flow problems arise in a number of applications
such as traffic control, evacuation plans, production systems, communication
networks, and financial flows (see the surveys by Aronson [2] and Powell,
Jaillet, and Odoni [14]). For example, for building evacuation [7], vertices
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v ∈ V model workplaces, hallways, stairwells, and so on, and arcsa ∈ A
model the connection link between the adjacent components of the building.
For an arca = (v, w), the capacityu(a) represents the number of people who
can traverse the link corresponding toa per unit time, andτ(a) denotes the
time it takes to traversea from v to w.

This paper addresses the sink location problem in dynamic networks: given
a dynamic network with the initial supplies at vertices, find a vertex, called a
sink, such that the completion time to send all the initial supplies to the sink
is as small as possible. In this setting of building evacuation, for example, the
problem models the location problem of an emergency exit together with the
evacuation plan for it.

Our problem is a generalization of the following two problems. First, it can
be regarded as a dynamic flow version of the 1-center problem [13]. In partic-
ular, if the capacities are sufficiently large, our problem represents the 1-center
location problem. Secondly, our problem is an extension of the location prob-
lems based on flow (or connectivity) requirements in static networks, which
have received much attention recently [1, 10, 16].

We consider the sink location problem in dynamictree networks. This is
because some production systems and underground passages form almost-tree
networks. Moreover, one of the ideal evacuation plans makes everyone to be
evacuated fairly and without confusion. For such a purpose, it is natural to
assume that the possible evacuation routes form a tree. We finally mention
that the multi-sink location problem can be solved by solving the (single-)sink
location problem polynomially many times [12]. It is known [11] that the
problem can be solved inO(n2) time by using a double-phase algorithm, where
n denotes the number of vertices in the given network. We show that the
problem is solvable inO(n log2 n) time.

Our algorithm is based on a simple single-phase procedure, but uses so-
phisticated data structures for representing tablesg i.e., sets of time intervals
[θ1, θ2) with their heightg(θ1) to perform three operationsAdd-Table (i.e.,
adding tables),Shift-Table(i.e., shifting a table), andCeil-Table(i.e., ceiling
a table by a prescribed capacity). We generalize interval trees (standard data
structures for tables) by attaching additional parameters and show that using
the data structures, we can efficiently handle the above-mentioned operations.
Especially, we can merge tablesgi in O((

∑
i di) log2(

∑
i di)) time, where we

say thattablesgi are mergedif gi’s are added into a single tableg after shifting
and ceiling tables are performed, anddi denotes the number of intervals ingi.
This result implies anO(n log2 n) time bound for the location problem. We
mention that our data structures may be of independent interest and useful for
some other problems which manage tables.

We remark that our location problem for general dynamic networks can be
solved in polynomial time by solving the quickest transshipment problemn
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times. Here the quickest transshipment problem is to find a dynamic flow
that zeroes all given supplies and demands within the minimum time, and is
polynomially solvable by an algorithm of Hoppe and Tardos [8]. However,
since their algorithm makes use of submodular function minimization [9, 15]
as a subroutine, it requires polynomial time of high degree. As a corollary of
our result, this paper shows that the quickest transshipment problem can be
solved inO(n log2 n) time if the given network is a tree and has a single sink.

The rest of the paper is organized as follows. The next section provides some
preliminaries and fixes notation. Section 3 presents a simple single-phase algo-
rithm for the sink location problem, and Section 4 discusses our data structures
and shows the complexity of our single-phase algorithm with our data struc-
tures. Finally, Section 5 gives some conclusions.

Due to the space limitations, some proofs have been omitted.

2. Definitions and Preliminaries

Let T = (V, E) be a tree with a vertex setV and an edge setE. Let
N = (T, c, τ, b) be a dynamic flow network with the underlying undirected
graph being a treeT , wherec : E → R+ is a capacity function representing
the least upper bound for the rate of flow through each edge per unit time,
τ : E → R+ a transit time function, andb : V → R+ a supply function.
Here,R+ denotes the set of all nonnegative reals and we assume the number
of vertices inT is at least two.

This paper addresses the problem of finding a sinkt ∈ V such that we can
send given initial suppliesb(v) (v ∈ V \ {t}) to sinkt as quickly as possible.
Suppose that we are given a sinkt in T . Then,T is regarded as an in-tree
with root t, i.e., each edge ofT is oriented toward the roott. Such an oriented
tree with roott is denoted by~T (t) = (V, ~E(t)). Each oriented edge in~E(t)
is denoted by the ordered pair of its end vertices and is called an arc. For
each edge{u, v} ∈ E, we writec(u, v) andτ(u, v) instead ofc({u, v}) and
τ({u, v}), respectively. For any arce ∈ ~E(t) and anyθ ∈ R+, we denote by
fe(θ) the flow rate entering the arce at timeθ which arrives at the head ofe at
time θ + τ(e). We callfe(θ) (e ∈ ~E(t), θ ∈ R+) a continuous-time dynamic
flow in ~T (v∗) (with a sink v∗) if it satisfies the following three conditions,
whereδ+(v) and δ−(v) denote the set of all arcs leavingv and enteringv,
respectively.

(a) (Capacity constraints): For any arce ∈ ~E(t) andθ ∈ R+,

0 ≤ fe(θ) ≤ c(e). (1)

(b) (Flow conservation): For anyv ∈ V \ {v∗} andΘ ∈ R,
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∑

e∈δ+(v)

∫ Θ

0
fe(θ)dθ −

∑

e∈δ−(v)

∫ Θ

τ(e)
fe(θ − τ(e))dθ ≤ b(v). (2)

(c) (Demand constraints): There exists a timeΘ ∈ R+ such that
∑

e∈δ−(v∗)

∫ Θ

τ(e)
fe(θ − τ(e))dθ −

∑

e∈δ+(v∗)

∫ Θ

0
fe(θ)dθ =

∑

v∈V \{v∗}
b(v). (3)

As seen in (b), we allow intermediate storage (or holding inventory) at each
vertex. For a continuous-time dynamic flowf , let θf be the minimum timeθ
satisfying (3), which is called thecompletion time for f . We further denote
by C(v∗) the minimumθf among all continuous dynamic flowsf in ~T (v∗).
We study the problem of computing a sinkv∗ ∈ V with the minimumC(v∗).
This problem can be regarded as a dynamic version of the 1-center location
problem (for a tree) [13]. In particular, ifc(v, w) = +∞ (a sufficiently large
real) for each edge{v, w} ∈ E, our problem represents the 1-center location
problem [13].

We remark that dynamic flows can be restricted to those having no interme-
diate storage without changing optimal sinks of our problem (see discussions
in [6, 8, 11], for example).

3. A Single-Phase Algorithm

This section presents a simpleO(n2) algorithm with a single phase. Be-
cause of the simplicity, it gives us a good basis for developing a faster algo-
rithm. In fact, we can construct añO(n) algorithm based on this framework,
which is given in the next section.

The algorithm computes two tables,Arriving TableAv andSending Table
Sv for each vertexv ∈ V . Let us assume that a sinkt is given for a while, in
order to explain them. Arriving TableAv represents the sum of the flow rates
arriving at vertexv as a function of timeθ, i.e.,

∑

e∈ ~E(t):e=(u,v)

fe(θ − τ(e)) + ηθ(v), (4)

wherefe(θ) = 0 holds for anye ∈ ~E(t) and θ < 0, andηθ(v) = b(v)
∆

if 0 ≤ θ < ∆; otherwise 0. Here,∆ denotes a sufficiently small positive
constant. Intuitively,ηθ(v) denotes the initial supply atv. Sending TableSv

represents the flow rate leaving vertexv as a function of timeθ, i.e.,

f(v,w)(θ), (5)

where(v, w) ∈ ~E(t).
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Let us consider a tableg : R+ → R+ , which represents the flow rate in
time θ ∈ R+. Here, we assumeg(θ) = 0 for θ < 0. Since our problem can
be solved by sending out as much amount of flow as possible from each vertex
toward an optimal sink (which will be computed), we only consider the table
g which is representable as

g(θ) =





0 if θ < θ1

g(θi) if θi ≤ θ < θi+1 for i = 1, · · · , k − 1
0 if θ ≥ θk,

(6)

whereθi < θi+1 andg(θi) 6= g(θi+1) for i = 1, . . . , k. Thus, we represent
such tablesg by a set of intervals (with their height), i.e.,

((−∞, θ1), 0), ([θi, θi+1), g(θi)) (i = 1, 2, · · · , k), (7)

whereθk+1 = +∞ andg(θk) = 0.
Intuitively, our single-phase algorithm first constructs Sending TableSv for

each leafv to sendb(v) to its adjacent vertex. Then the algorithm removes a
leafv∗ from T such that the completion time ofSv is the smallest, sinceT has
an optimal sink other thanv∗. If some vertexv becomes a leaf of the resulting
treeT , then the algorithm computes Sending TableSv to send all the supplies
that have already arrived atv to an adjacent vertexp(v) of the resulting treeT ,
by using Sending Tables for the verticesw (6= p(v)) that are adjacent tov in
the original tree. The algorithm repeatedly applies this procedure toT until T
becomes a single vertext, and outputs such a vertext as an optimal sink.

Algorithm Single-Phase
Input: A tree networkN = (T = (V, E), c, τ, b).
Output: An optimal sinkt that has the minimum completion timeC(t) among all vertices of

T .
Step 0: Let W := V , and letL be the set of all leaves ofT . For eachv ∈ L, construct Arriving

TableAv.
Step 1: For eachv ∈ L, construct fromAv Sending TableSv to go through(v, p(v)), where

p(v) is a vertex adjacent tov in T . Compute the timeTime(v, p(v)) at which the flow
based onSv is completely sent top(v).

Step 2: Compute a vertexv∗ ∈ L minimizing Time(v, p(v)), i.e.,Time(v∗, p(v∗))= minv∈L

Time(v, p(v)). Let W := W \ {v∗} andL := L \ {v∗}.
If there exists a leafv of T [W ] such thatv is not contained inL,
then: (1) Let L := L ∪ {v}.

(2) Construct Arriving TableAv from the initial supplyηθ(v) and Sending
TableSw for the verticesw that are adjacent tov in T and have already
been removed fromW .

(3) Compute fromAv Sending TableSv to go through(v, p(v)) wherep(v)
is a vertex adjacent tov in T [W ], and computeTime(v, p(v)).

Step 3: If |W | = 1, then outputt ∈ W as an optimal sink. Otherwise, return to Step 2. 2

HereT [W ] denotes a subtree ofT induced by a vertex setW . Note thatp(v)’s
in Steps 1 and 2 are uniquely defined, sincev’s are leaves ofT [W ].
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We then have the following lemma, though we skip the proof.

Lemma 1 AlgorithmSingle-Phase outputs an optimal sinkt. 2

If we construct Arriving and Sending Tables explicitly, each tableg can
be computed in time linear in the total number of intervals in the tables from
which g is constructed. Since the number of intervals in each table is linear in
n,1 Algorithm Single-Phase requiresO(n2) time. In Section 4, we present
a method to represent these tables implicitly, and develop anO(n log2 n) time
algorithm for our location problem.

4. Implicit Representation for Arriving and Sending Tables

Since AlgorithmSingle-Phase requiresΘ(n2) time if explicit represen-
tations are used for tables, we need sophisticated data structures which can be
used to represent Arriving/Sending Tablesimplicitly. We adopt interval trees
for them, which are standard data structures for a set of intervals. Note that
Single-Phase only applies to tablesAv and/orSv the following three basic
operations:Add-Table(i.e., adding tables),Shift-Table(i.e., shifting a table),
andCeil-Table(i.e., ceiling a table by a prescribed capacity). It is known that
interval trees can efficiently handle operationsAdd-TableandShift-Table(see
Section 4). However, standard interval trees cannot efficiently handle operation
Ceil-Table. This paper develops new interval trees which efficiently handle all
the three operations.

Data Structures for Implicit Representation

This section explains our data structures for representing tables which are
obtained from interval trees by attaching several parameters to handle the three
operations efficiently. Letg be a table represented as

Ii = ([θi, θi+1), g(θi)) (i = 0, 1, · · · , k), (8)

whereθ0 = −∞, θk+1 = +∞, andg(θ0) = g(θk) = 0,2 and letBTg de-
note a binary tree forg. We denote the root byrBT and the height ofBT by
height(BT ). The binary treeBTg has an additional parametertbase to repre-
sent how muchg is shifted right. Thistbase is used for operationShift-Table
by updatingtbase to tbase + µ, whereµ denotes the time to shift the table
right. Moreover, each nodex in BTg has five nonnegative parametersbase(x),
ceil(x), he(x), tr(x), andtl(x) with tl(x) ≤ tr(x), and each leaf hase(x)
in addition, where these parameters will be explained later. A leafx is called
active if tl(x) < tr(x) anddummyotherwise. The time intervals of a tableg
correspond to the active leaves ofBTg bijectively. We denote by#(BT ) the
number of active leaves ofBT .
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Initially (i.e., immediately after constructingBT g by operationMake-
Tree given below),BTg contains no dummy leaf and hence there exists a
one-to-one correspondence between the time intervals ofg and leaves ofBTg.
Moreover, for each leafx corresponding toIi in (8), we havetl(x) = θi,
tr(x) = θi+1, base(x) = g(θi) and ceil(x) = +∞, and for each internal
nodex, tl(x)= miny∈Leaf (x) tl(y), tr(x)= maxy∈Leaf (x) tr(y), base(x) = 0
and ceil(x) = +∞. Here,Leaf (x) denotes the set of all leaves which are
descendants ofx. Namely,tl(x) andtr(x), respectively, represent the start and
the end points of the interval corresponding tox, andbase(x) andceil(x), re-
spectively, represent the flow rate and the upper bound for the flow rate in the
time interval corresponding tox.

Operation MakeTree (g: table)
Step 1: Let tbase := 0.
Step 2: Construct a binary balanced treeBTg whose leavesxi correspond to the time interval

Ii of g in such a way that the leftmost leaf corresponds to the first intervalI0, the next
one corresponds to the second intervalI1, and so on.

Step 3: For each leafxi corresponding to intervalIi = [θi, θi+1), base(x) := g(θi), tl(x) :=
θi andtr(x) := θi+1.

Step 4: For each internal nodex, base(x) := 0, andtl(x) := miny∈Leaf (x) tl(y) andtr(x) :=
maxy∈Leaf (x) tr(y).

Step 5: For each nodex, ceil(x) := +∞.
Step 6: For each leafx, sete(x), and for each nodex, sethe(x), wheree(x) andhe(x) shall

be explained later. 2

We can easily compute a tableg from BTg constructed byMakeTree. It
should also be noted that a binary treeBT g is not unique, i.e., distinct trees
may represent the same tableg.

As mentioned in this section,Shift-Tablecan easily be handled by updating
tbase. We now considerAdd-Table, i.e., constructing a tableg by adding two
tablesg1 andg2, where we regard an addition ofk tables ask − 1 successive
additions of two tables. Let us assume that#(BTg1) ≥ #(BTg2), that is,g1

has at least as many intervals asg2. Our algorithm constructsBTg by adding
all intervals (corresponding to active leaves) ofBTg2 one by one toBTg1 . Each
addition of an interval([θ1, θ2), c) to BTg1 , denoted byAdd(BT1; θ1, θ2, c),
can be performed as follows.

We first modifyBTg1 to B̃Tg1 that has (active) leavesx andy such that
tl(x) = θ1 and tr(y) = θ2 if there exist no such leaves. Then we add an
interval ([θ1, θ2), c) to the resulting̃BTg1 . One of the simplest way is to add
c to all leaves of̃BTg1 such that the corresponding intervals are included in
[θ1, θ2). However, this takesO(n) time, sinceBTg1 may haveO(n) such
intervals. We therefore addc only to their representatives.

Note that the time interval[θ1, θ2) can be represented by the union of dis-
joint maximal intervals iñBTg1 , i.e., the set of incomparable nodes iñBTg1 ,
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denoted byrep(θ1, θ2). We thus updatebase of B̃Tg1 as follows

base(x) := base(x) + c for all x ∈ rep(θ1, θ2). (9)

We remark that this is a standard technique for interval tree. By successively
applying this procedure to new interval treẽBTg1 and each of the remaining
intervals inBTg2 , we can constructBTg with g = g1 + g2.

For an interval treeBT and an active leafx of BT , let y1(= x), y2, · · · ,
ys(= rBT ) denote the path fromx to the rootrBT . The procedure given
above shows that the height of an active leafx representing the flow rate of the
corresponding interval can be represented as

h(x) =
s∑

i=1

base(yi). (10)

OperationAdd(BTg1 ; θ1, θ2, c) can be handled inO(height(BTg1)) time, since
|rep (θ1, θ2)| ≤ 2height (BTg1). This means thatBTg can be constructed from
BTg1 andBTg2 in O (#(BTg2) log n) time by balancing the tree after each
addition. Moreover, operationsAdd-Table in Algorithm Single-Phase can
be performed inO(n log2 n) time in total, since we always add a smaller table
to a larger one (see Section 4 for the details). ThusAdd-Tablecan be performed
efficiently.

However, operationsCeil-Table in Algorithm Single-Phase requireΘ
(n2) time in total, since the algorithm containsΘ(n) Ceil-Table, each of which
requiresΘ(n) time, even if we use interval trees as data structures for tables.
Therefore, when we boundBT by a constantc, we omit modifyingtl, tr, and
base, and keepc asceil(rBT ) = c. Clearly, this causes difficulties to overcome
as follows.

First,h(x) in (10) does not represent the actual height any longer. Roughly
speaking, the actual height isc if c ≤ h(x), andh(x), otherwise. We call
h(x) the tentative heightof x in BT , and denote bŷh(x) the actual height
of x. Let us consider a scenario that an interval([θ1, θ2), c′) is added toBT
after bounding it byc. Let x be an active leaf such that (i) the corresponding
interval is contained in[θ1, θ2) and (ii) the actual height isc, immediately after
boundingBT by c. Then we note that the actual height ofx is c + c′ after the
scenario, which is different from bothh(x) andc. To deal with such scenarios,
we updateceil to compute the actual heightĥ(x) efficiently (See more details
in the subsequent sections). The actual heightĥ(x) can be computed as

ĥ(x) = h(x)− max
y∈path(x,rBT )

{0,
( ∑

z∈path(x,y)

base(z)
)
−ceil(y)}, (11)

wherepath(x, y) denotes the path fromx toy. Intuitively, for a nodeyk in BT ,
ceil(yk) represents the upper bound of the height of active leavesx ∈ Leaf (yk)
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within the subtree ofBT whose root isyk. Thus
∑k

i=1 base(yi)−ceil(yk) has
to be subtracted from the heighth(x) if

∑k
i=1 base(yi) − ceil(yk) > 0, and

the actual height̂h(x) is obtained by subtracting their maximum. Note that
ĥ(x) = h(x) holds for all active leavesx of a tree constructed byMakeTree.

We next note that there exists no one-to-one correspondence between active
leaves inBT and time intervals of the table thatBT represents, if we just set
ceil(rBT ) = c. In this case, the table is updated too drastically to efficiently
handle the operations afterwards. Thus by modifyingBT (as shown in the
subsequent subsections), we always keep the one-to-one correspondence, i.e.,
the property that any two consecutive active leavesx andx′ satisfy

ĥ(x) 6= ĥ(x′). (12)

We finally note that, for an active leafx, tl(x) andtr(x) do not represent
the start and the end points of the corresponding interval. Letx be an active
leaf inBT that does not correspond to the first interval or the last interval. For
such anx, let x− andx+ denote active leaves inBT which are left-hand and
right-hand neighbors ofx, respectively, i.e.,

tr(x−) = tl(x), tl(x+) = tr(x). (13)

Then the start and the end points of the corresponding interval can be obtained
by

t̂r(x) = tbase + tr(x) + (tr(x)− tl(x))× h(x)− ĥ(x)

ĥ(x)− ĥ(x+)
(14)

t̂l(x) = t̂r(x−). (15)

Heret̂r(x) andt̂l(x) are well-defined from 12. For active leavesx andy cor-
responding to the first interval and the last interval, we havet̂l(x) = −∞,
t̂r(x) = tl(x+), t̂l(y) = t̂r(y) andt̂r(y) = +∞.

It follows from (11), (14), and (15) that̂h(x), t̂r(x), andt̂l(x) can be com-
puted frombase, ceil, tr(x), andtl(x) in O(height(BT )) time. In order to
check (12) efficiently, each active leafx has

e(x) =





max{0, h(x)− h(x+)} × tr(x+)− tr(x)
tr(x+)− tl(x)

if x+ exists,

+∞ otherwise,
(16)

and each nodex has

he(x) = max
y∈Leaf A(x)

{
( ∑

z∈path(x,y)

base(z)
)
−e(y)}, (17)

whereLeaf A(x) denotes the set of active leaves that are descendants ofx, and
path (x, y) denotes the set of nodes on the path fromx to y. Thus we have the
following lemma.
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Lemma 2 Let BT be a binary tree in whicĥh(x) 6= ĥ(x+) holds for every
active leafx. After boundingBT by a constantc,

(i) ĥ(x) 6= ĥ(x+) holds for an active leafx if and only ifx satisfiesh(x) −
e(x) < c, and

(ii) all active leavesx in BT satisfyĥ(x) 6= ĥ(x+) if and only ifhe(rBT ) < c.
2

Moreover, we can compute an active leafx with ĥ(x) = ĥ(x+) in O(height
(BT )) time by scanninghe(x) from the rootrBT . Note thathe(x) can be
obtained by the following bottom-up computation.

he(x) =
{

base(x)− e(x) if x is a leaf,
max{he(x1), he(x2)}+ base(x) otherwise,

(18)

wherex1 and x2 denote the children ofx. This means that preparing and
updatinghe’s can be handled efficiently.

In summary, we always keep the following conditions for binary treesBTg

to represent tablesg. Note thatBT satisfies the conditions.

(C0) For any nodex, BT maintainstl(x), tr(x), ceil(x), base(x), andhe(x).
For any leafx, BT maintainse(x) in addition.

(C1) Any nodex satisfiestl(x) ≤ tr(x). Any internal nodex satisfiestl(x)
= miny∈Leaf (x) tl(y), andtr(x) = maxy∈Leaf (x) tr(y).

(C2) Any active leafx satisfiestr(x) = tl(x+).
(C3) Any active leafx satisfieŝh(x) 6= ĥ(x+).
(C4) Any active leafx satisfieŝh(x) ≥ h(x)− e(x).

A binary treeBT is calledvalid if it satisfies conditions (C0)∼ (C4). For
example, a binary treeBT constructed byMakeTree is valid.

Operation Normalize

As discussed in Section 4, we represent a tableg as a valid binary balanced
treeBT . For an active leafx, our algorithm sometimes need to updateBT to
get one havingaccuratex, i.e.,baseandceil are updated so that

base(y) :=
{

0 for a proper ancestory of x− or x

ĥ(y) for y = x− or x
(19)

ceil(y) := +∞ for an ancestory of x− or x (20)

tr(y) = tl(y+) := t̂r(y) for y = x− or x.

In fact, we perform this operation, when we insert a leafx or change the param-
etersceil(x), base(x), tr(x), andtl(x) of a leafx. The following operation,

260

(c) 2004 IFIP



calledNormalize, updatesBT as above, and also maintains the balance of
BT (i.e.,height(BT ) = O(log n)).

Operation Normalize(BT, x : an active leaf)
Step 1: Updatebase andceil by the following top-down computation along the path fromrBT

to the parent ofy for y = x− or x. For a nodez on the path and its childrenz1 andz2,

base(zi) := base(zi) + base(z), ceil(zi) := min{ceil(zi) + base(z), ceil(z)},
base(z) := 0, ceil(z) := +∞.

Step 2: If x was added toBT immediately before this operation, then rotateBT in order to
keep the balance ofBT .

Step 3: Fory = x, x−, if base(y) > ceil(y), thentr(y) = tl(y+) := t̂r(y) andbase(y) :=
ceil(y). Otherwiseceil(y) := +∞.

Step 4: For y = x−, x, x+, updatetl, tr, e, andhe by the bottom-up computation along the
path fromy to rBT . 2

Note that nodes may be added toBT (by operationSplit in the next sec-
tion), but are never removed fromBT , although some nodes become dummy.
This simplifies the analysis of the algorithm, since removing a node fromBT
requires the rotation ofBT that is not easily implemented.

It is not difficult to see that the treeBT ′ obtained byNormalize is valid,
satisfies (20), and represents the same table asBT . Moreover, since the lengths
of the paths in Steps 1 and 4 areO(height(BT )), BT ′ can be computed from
BT in O(height(BT )) time. Thus we have the following lemma.

Lemma 3 LetBT be a valid binary balanced tree representing a tableg, and
let x be an active leaf ofBT . ThenBT ′ obtained byNormalize(BT, x) is
a valid binary balanced tree that representsg and satisfies(20). Furthermore,
BT ′ is computable fromBT in O(height(BT )) time. 2

Add-Table

This section shows how to add two binary balanced treesBTg1 andBTg2

for tablesg1 andg2. We have already mentioned an idea of our Add-Table after
describing operationMakeTree. Formally it can be written as follows.

Input: Two valid binary balanced treesBTg1 andBTg2 for tablesg1 andg2.
Output: A valid binary balanced treeBTg for g = g1 + g2.
Step 1: If #(BTg1) ≥ #(BTg2), thenBT1 := BTg1 andBT2 := BTg2 . OtherwiseBT1 :=

BTg2 andBT2 := BTg1 .
Step 2: For each active leafx ∈ BT2, computêtl(x), t̂r(x) andĥ(x), and call operationAdd

for BT1, t̂l(x), t̂r(x), andĥ(x). 2

Operation Add(BT, θ1, θ2, c)
Step 1: Call Split(BT, θ1 − tBT

base) andSplit (BT, θ2 − tBT
base), wheretBT

base denotes the
parametertbase for BT .

Step 2: For a nodex in rep(θ1 − tBT
base, θ2 − tBT

base), base(x) := base(x) + c, ceil(x) :=
ceil(x) + c, andhe(x) := he(x) + c.

Step 3: For a nodex such thattl(x) = θ1 − tBT
base, call Normalize(BT, x).
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If base(x−) = base(x) (i.e., ĥ(x−) = ĥ(x)), then

y := x−,

tr(y) = tl(y+) := tr(y+) (i.e.,y+ becomes dummy). (21)

and callNormalize(BT, y) andNormalize(BT, y+).
Step 4: For a leafy such thattr(y) = θ2 − tBT

base, call Normalize(BT, y).

If base(y) = base(y+) (i.e., ĥ(y) = ĥ(y+)), then updatetr(y), tl(y+) andtr(y+) as
21, and callNormalize(BT, y) andNormalize(BT, y+). 2

Steps 3 and 4 are performed to keep (12). Note thathe(x) is updated in Step
2 for all nodes inrep(θ1−tBT

base, θ2−tBT
base). It follows from (18) thathe(y) must

be updated for all proper ancestorsy of a node inrep(θ1 − tBT
base, θ2 − tBT

base).
Since a proper ancestory of some node inrep(θ1−tBT

base, θ2−tBT
base) is a proper

ancestor of the nodex such thattl(x) = θ1 − tBT
base or tr(x) = θ2 − tBT

base, all
suchhe(y)’s are updated in Steps 3 and 4 by operationNormalize.

Operation Split(BT, t : a nonnegative real)
Step 1: Find a nodex such thattl(x) ≤ t < tr(x).
Step 2: Call Normalize(BT, x−) andNormalize(BT, x).
Step 3: If tl(x) = t, then halt.
Step 4: For the nodey ∈ {x−, x} such thattl(y) ≤ t < tr(y), construct the left childy1 with

tl(y1) := tl(y), tr(y1) := t, base(y1) := 0 andceil(y1) := +∞, and construct the
right childy2 with tl(y2) := t, tr(y2) := tr(y), base(y2) := 0 andceil(y2) := +∞.

Step 5: Call Normalize(BT, y1) andNormalize(BT, y2). 2

We can see that the following two lemmas hold.

Lemma 4 LetBT be a valid binary balanced tree representing a tableg, and
let t be a nonnegative real. ThenBT ′ obtained by operationSplit(BT, t) is
a valid binary balanced tree representingg in O(height(BT )) time. 2

Lemma 5 LetBT be a valid binary balanced tree representing a tableg, and
let I = ([θ1, θ2), c) be a time interval. ThenAdd(BT, θ1, θ2, c) produces a
valid binary balanced tree representing the tableg + I, and moreover, it can
be handled inO(height(BT )) time. 2

Operation Ceil-Table

This section considers operationCeil-Table. Let BT be a valid binary bal-
anced tree representing a tableg and letc be an upper bound ofBT . As
mentioned in Section 4, we setceil(rBT ) = c, and modifyBT so that̂h(x) 6=
ĥ(x+) holds for any two consecutive active leavesx andx+.

Operation Ceil(BT, c : a positive real)

Step 1: Compute the leftmost active leafy such thath(y)− e(y) ≥ c by usinghe. If BT has
no such node, then go to Step 4.

Step 2: Call Normalize(BT, y) andNormalize(BT, y+),
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base(y) :=
base(y)(tr(y)− tl(y)) + base(y+)(tr(y+)− tl(y+))

tr(y+)− tl(y)
, and

tr(y) = tl(y+) := tr(y+).

Step 3: Call Normalize(BT, y) andNormalize(BT, y+). Return to Step1.

Step 4: For a rootrBT , ceil(rBT ) := c. 2

Lemma 6 LetBT be a valid binary balanced tree representing a tableg, and
let c be a nonnegative real. ThenBT ′ obtained by operationCeil(BT, c) is a
valid binary balanced tree representing the table obtained fromg by ceiling it
by c. 2

Step 3 concatenates two consecutive active leavesx and x+, wherex+

becomes dummy. We notice that the active leafx (which has already been
concatenated) may further be concatenated. This means thatĥ(x) = ĥ(x+)
may hold after successive concatenations, even if originalBT satisfieŝh(x) 6=
ĥ(x+).

Time complexity of Single-Phase with our data structures

We can see that all operationsAdd-Tables, Shift-Tables, andCeil-Tablescan
be done inO(n log2 n) time in total, though we skip its proof.

Theorem 7 The sink location problem in dynamic tree networks can be
solved inO(n log2 n) time. 2

This implies the following corollary.

Corollary 8 If a given network is tree and has a single sink,Single-
Phase can solve the quickest transshipment problem inO(n log2 n) time. 2

5. Conclusions

In this paper, we have developed anO(n log2 n) time algorithm for a sink
location problem for dynamic flows in a tree network. This improves upon an
O(n2) time algorithm in [11].

We have considered continuous-time dynamic flows that allow intermediate
storage at vertices. We note that optimal sinks remain the same, even if we do
not allow intermediate storage, and moreover, our algorithm can also be appli-
cable for discrete-time dynamic flows. Therefore, our sink location problem is
solvable inO(n log2 n) time for dynamic continuous-time/discrete-time flows
with/without intermediate storage.
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Notes
1. It was shown in [11] that the number of intervals is at most3n for discrete-timedynamic flows.

2. For simplicity, we write the first intervalI0 as([−∞, θ1), 0) instead of((−∞, θ1), 0).
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