Elliptische Kurven-Kryptosysteme

Besprechung in der Übungsstunde am 02.02.05

Aufgabe 1

Sei C eine glatte, ebene Kubik. Das neutrale Element O der Gruppenstruktur auf C sei ein Wendepunkt von C, d.h. $\varphi(O, O) = O$. Zeigen Sie:

- (a) $P \oplus \varphi(P, O) = O$,
- (b) $P \oplus Q \oplus R = O \iff$ es gibt eine Gerade L mit $L \cdot C = P + Q + R$,
- (c) P ist Wendepunkt von $C \iff P \oplus P \oplus P = O$.

Aufgabe 2

Sei C eine glatte, ebene Kubik, gegeben in Weierstraßscher Normlform. Zeigen Sie, dass C im Unendlichen genau einen Punkt P besitzt, d.h. $C \cap H_{\infty} = \{P\}$. Bestimmen Sie die homogenen Koordinaten von P. Desweiteren zeigen Sie, dass P ein Wendepunkt von C ist.

Aufgabe 3

Zeigen Sie: Ist C eine glatte, ebene Kubik definiert über K und sind P, Q K-rationale Punkte von C, so ist auch $\varphi(P,Q)$ ein K-rationaler Punkt.

Aufgabe 4

- (a) Implementieren Sie die geometrische Addition auf glatten, ebenen Kubiken der Form $y^2 = x^3 + ax + b$ in LiDIA.
- (b) Für die Kurve $y^2 = x^3 + x + 1$ über \mathbb{F}_p mit $p = 10^{17} + 19$ und $P_0 = (0,1)$ berechne man $[2346532]P_0$ (= das 2346532-fache von P_0).