Technische Universität München Institut für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Peter Ullrich Dmytro Chibisov SS 2005 Übungsblatt 8 8. Juni 2005

Algorithmische Algebra I

(Abgabe: Mittwoch, 15.6.05, in der Vorlesung)

Aufgabe 1

Sei $I \subseteq \mathbb{Q}[X_1, ..., X_N]$ ein Ideal. Implementieren Sie in CoCoA (ohne Verwendung der Dimensionsberechnung) die Prozedur IsFinite(I:IDEAL), die als Ausgabe 1 liefert, falls V(I) endlich ist, und 0 sonst.

Aufgabe 2

Sei $I \subseteq \mathbb{Q}[x,y]$. Implementieren Sie in CoCoA die Prozedur QBasis(I:IDEAL), die die Basis des Q-Vektorraumes $\mathbb{Q}[x,y]/(\mathrm{LT}(\sqrt{I}))$ (als Liste) liefert, falls V(I) endlich ist, und eine leere Liste sonst. Finden Sie ein Ideal $I \subseteq \mathbb{Q}[x,y]$ mit $\dim_{\mathbb{Q}} \mathbb{Q}[x,y]/(\mathrm{LT}(\sqrt{I})) \neq \dim_{\mathbb{Q}} \mathbb{Q}[x,y]/(\mathrm{LT}(I))$.

Hinweis: In CoCoA kann man das Radikal eines Ideals mit Radical(I:IDEAL) berechnen.

Aufgabe 3

Sei R ein Ring. Zeigen Sie:

- (a) Je zwei verschiedene maximale Ideale $\mathfrak{m}_1 \neq \mathfrak{m}_2$ von R sind teilerfremd.
- (b) Ist \mathfrak{m} ein maximales Ideal von R, so gilt $\sqrt{\mathfrak{m}} = \mathfrak{m}$.
- (c) Sei I ein Ideal von R, und es gelte $I = \bigcap_{j \in A} \mathfrak{m}_j$, wobei $A \neq \emptyset$ eine Indexmenge und jedes \mathfrak{m}_j ein maximales Ideal ist. Dann gilt $\sqrt{I} = I$.
- (d) Speziell sei R = k[X] der Polynomring in einer Unbestimmten X, k sei ein Körper. Genau dann ist I = (f) ein maximales Ideal, wenn f irreduzibel in k[X] ist.

Aufgabe 4

Sei $f(X) = (X - a)^2 + b^2 \in \mathbb{R}[X]$ mit $a, b \in \mathbb{R}, b \neq 0$. Zeigen Sie:

- (a) Das Ideal $I = (f) \subseteq \mathbb{R}[X]$ ist ein maximales Ideal von $\mathbb{R}[X]$ und es gilt $I \neq \mathfrak{m}_c$ für jedes $c \in \mathbb{R}$. (Bem.: In $\mathbb{R}[X]$ gibt es somit maximale Ideale, die nicht von der Form $\mathfrak{m}_c = (x c)$ $(c \in \mathbb{R})$ sind.)
- (b) Sei $J=(f)_{\mathbb{C}}$ das von f in $\mathbb{C}[X]$ erzeugte Ideal. Zeigen Sie, dass es maximale Ideale \mathfrak{m}_i von $\mathbb{C}[X]$ (i=1,2) gibt mit $J=\mathfrak{m}_1\cap\mathfrak{m}_2$. Ist J ein maximales Ideal von $\mathbb{C}[X]$? (Begründung). Bestimmen Sie zudem die algebraische Menge $V(J)\subseteq\mathbb{C}$.