Selected Topics in Computational Biology

Due: 03.05.2005 after the lecture

Exercise 1 (10 points)

a) Construct the suffix trie for the string CTGCCTGA, including all suffix links.

b) What does the suffix tree for this string look like?

Exercise 2 (10 points)

As in Algorithm 1 seen in the lecture, let
\[s_1 = t_1 \cdots t_{i-1}, s_2 = t_2 \cdots t_{i-1}, \ldots, s_i = \text{root}, s_{i+1} = \perp \]
be the boundary path. Let \(j \) be the smallest index such that \(s_j \) is not a leaf. Let \(j' \) be the smallest index such that \(s_j' \) has a \(t_i \)-transition. Prove that \(2 \leq j \leq j' \leq i + 1 \) and explain the relevance of the quantities \(j \) and \(j' \) for efficiently constructing the suffix trie.

Exercise 3 (10 points)

Consider a suffix trie. Let \(f() \) be the suffix-function. Prove that, if \(\pi \) is not a leaf then \(f(\pi) \) is not a leaf, either.

Programming Task

Familiarize yourself with pointers and structures in the C language.
(See, for example, Brian W. Kernighan, Dennis M. Ritchie. The C Programming Language. 2nd Edition, Prentice Hall PTR, Englewood Cliffs, NJ, 1988.)

Try to implement a dynamic queue with basic functionalities.