
CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

15 Max-Flow Algorithms and Applications (November 15)

15.1 Recap

Fix a directed graph G = (V,E) that does not contain both an edge u → v and its reversal v → u,
and fix a capacity function c : E → IR+. For any flow function f : E → IR≥0, the residual capacity
is defined as

cf (u → v) =

c(u → v)− f(u → v) if u → v ∈ E

f(v → u) if v → u ∈ E

0 otherwise

.

The residual graph Gf = (V,Ef), where Ef is the set of edges whose non-zero residual capacity is
positive.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15
s t

10

10

5

10/10

515 5

10

5

15
5

10
10

A flow f in a weighted graph G and its residual graph Gf .

In the last lecture, we proved the Max-flow Min-cut Theorem: In any weighted directed graph
network, the value of the maximum (s, t)-flow is equal to the cost of the minimum (s, t)-cut. The
proof of the theorem is constructive. If the residual graph contains a path from s to t, then we
can increase the flow by the minimum capacity of the edges on this path, so we must not have the
maximum flow. Otherwise, we can define a cut (S, T) whose cost is the same as the flow f , such
that every edge from S to T is saturated and every edge from T to S is empty, which implies that
f is a maximum flow and (S, T) is a minimum cut.

s t

10

10

5

10/10

515 5

10

5

15
5

10
10

s t

10/20

5/10

5/10

5/5

10/10

5/15

0/10

10/20

0/15

An augmenting path in Gf and the resulting (maximum) flow f ′.

15.2 Ford-Fulkerson

It’s not hard to realize that this proof translates almost immediately to an algorithm, first developed
by Ford and Fulkerson in the 1950s: Starting with the zero flow, repeatedly augment the flow along
any path s ; t in the residual graph, until there is no such path.

If every edge capacity is an integer, then every augmentation step increases the value of the
flow by a positive integer. Thus, the algorithm halts after |f∗| iterations, where f∗ is the actual

1

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

maximum flow. Each iteration requires O(E) time, to create the residual graph Gf and perform
a whatever-first-search to find an augmenting path. Thus, in the words case, the Ford-Fulkerson
algorithm runs in O(E|f∗|) time.

If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts. However, if we allow irrational capacities,
the algorithm can loop forever, always finding smaller and smaller augmenting paths. Worse yet,
this infinite sequence of augmentations may not even converge to the maximum flow! One of the
simplest example of this effect was discovered by Uri Zwick.

Consider the graph shown below, with six vertices and nine edges. Six of the edges have some
large integer capacity X, two have capacity 1, and one has capacity φ = (

√
5 − 1)/2 ≈ 0.618034,

chosen so that 1 − φ = φ2. To prove that the Ford-Fulkerson algorithm can get stuck, we watch
the residual capacities of the three horizontal edges as the algorithm progresses. (The residual
capacities of the other six edges will always be at least X − 3.)

t

s

X X X

X X
X

φ11

A B C

Uri Zwick’s non-terminating flow example, and three augmenting paths.

The Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown in the
large figure above. The three horizontal edges,, in order from left to right, now have residual
capacities 1, 0, φ. Suppose the horizontal residual capacities are φk−1, 0, and φk for some non-
negative integer k.

1. Augment along B, adding φk to the flow; the residual capacities are now φk+1, φk, 0.

2. Augment along C, adding φk to the flow; the residual capacities are now φk+1, 0, φk.

3. Augment along B, adding φk+1 to the flow; the residual capacities are now 0, φk+1, φk+2.

4. Augment along A, adding φk+1 to the flow; the residual capacities are now φk+1, 0, φk+2.

Thus, after 4n + 1 augmentation steps, the residual capacities are φ2n−2, 0, φ2n−1. As the number
of augmentation steps grows to infinity, the value of the flow converges to

1 + 2
∞∑
i=1

φi = 1 +
2

1− φ
= 4 +

√
5 < 7,

even though the maximum flow value is clearly 2X + 1.

2

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

Picky students might wonder at this point why we care about irrational capacities; after all, com-
puters can’t represent anything but (small) integers or (dyadic) rationals exactly. Good question!
One reason is that the integer restriction is literally artificial ; it’s an artifact of actual computa-
tional hardware1, not an inherent feature of the abstract mathematical problem. Another reason,
which is probably more convincing to most practical computer scientists, is that the behavior of the
algorithm with irrational inputs tells us something about its worst-case behavior in practice given
floating-point capacities—terrible! Even with very reasonable capacities, a careless implementation
of Ford-Fulkerson could enter an infinite loop simply because of round-off error!

15.3 Edmonds-Karp: Fat Pipes

The Ford-Fulkerson algorithm does not specify which alternating path to use if there is more than
one. In 1972, Jack Edmonds and Richard Karp analyzed two natural heuristics for choosing the
path. The first is essentially a greedy algorithm:

Choose the augmenting path with largest bottleneck value.

It’s a fairly easy to show that the maximum-bottleneck (s, t)-path in a directed graph can be
computed in O(E log V) time using a variant of Jarńık’s minimum-spanning-tree algorithm, or of
Dijkstra’s shortest path algorithm. Simply grow a directed spanning tree T , rooted at s. Repeatedly
find the highest-capacity edge leaving T and add it to T , until T contains a path from s to t.
Alternately, once could emulate Kruskal’s algorithm—insert edges one at a time in decreasing
capacity order until there is a path from s to t—although this is less efficient.

We can now analyze the algorithm in terms of the value of the maximum flow f∗. Let f be any
flow in G, and let f ′ be the maximum flow in the current residual graph Gf . (At the beginning of
the algorithm, Gf = G and f ′ = f∗.) Let e be the bottleneck edge in the next augmenting path.
Let S be the set of vertices reachable from s through edges with capacity greater than c(e) and let
T = V \ S. By construction, T is non-empty, and every edge from S to T has capacity at most
c(e). Thus, the cost of the cut (S, T) is at most c(e) · E. On the other hand, ‖S, T‖ ≥ |f |, which
implies that c(e) ≥ |f |/E.

Thus, augmenting f along the maximum-bottleneck path in Gf multiplies the maximum flow
value in Gf by a factor of at most 1− 1/E. In other words, the residual flow decays exponentially
with the number of iterations. After E · ln|f∗| iterations, the maximum flow value in Gf is at most

|f∗| · (1− 1/E)E·ln|f∗| < |f∗|e− ln|f∗| = 1.

(That’s Euler’s constant e, not the edge e. Sorry.) In particular, if all the capacities are integers,
then after E · ln|f∗| iterations, the maximum capacity of the residual graph is zero and f is a
maximum flow.

We conclude that for graphs with integer capacities, the Edmonds-Karp ‘fat pipe’ algorithm
runs in O(E2 log E log|f∗|) time.

15.4 Dinits/Edmonds-Karp: Short Pipes

The second Edmonds-Karp heuristic was actually proposed by Ford and Fulkerson in their original
max-flow paper, and first analyzed by the Russian mathematician Dinits (sometimes transliterated
Dinic) in 1970. Edmonds and Karp published their independent and slightly weaker analysis in
1972. So naturally, almost everyone refers to this algorithm as ‘Edmonds-Karp’.

1...or perhaps the laws of physics. Yeah, right. Whatever. Like reality actually matters in this class.

3

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

Choose the augmenting path with fewest edges.

The correct path can be found in O(E) time by running breadth-first search in the residual graph.
More surprisingly, the algorithm halts after a polynomial number of iterations, independent of of
the actual edge capacities!

The proof of this upper bound relies on two observations about the evolution of the residual
graph. Let fi be the current flow after i augmentation steps, let Gi be the corresponding residual
graph. In particular, f0 is zero everywhere and G0 = G. For each vertex v, let level i(v) denote the
unweighted shortest path distance from s to v in Gi, or equivalently, the level of v in a breadth-first
search tree of Gi rooted at s.

Our first observation is that these levels can only increase over time.

Lemma 1. level i+1(v) ≥ level i(v) for all vertices v and integers i.

Proof: The claim is trivial for v = s, since level i(s) = 0 for all i. Choose an arbitrary vertex
v 6= s, and let p → · · · → u → v be a shortest path from s to v in Gi+1. (If there is no
such path, then level i+1(v) = ∞, and we’re done.) Because this is a shortest path, we have
level i+1(v) = level i+1(u) + 1, and the inductive hypothesis implies that level i+1(u) ≥ level i(u).

We now have two cases to consider. If u → v is an edge in Gi, then level i(v) ≤ level i(u) + 1,
because the levels are defined by breadth-first traversal.

On the other hand, if u → v is not an edge in Gi, then v → u must be an edge in the ith
augmenting path. Thus, v → u must lie on the shortest path from s to t in Gi, which implies that
level i(v) = level i(u)− 1 ≤ level i(u) + 1.

In both cases, we have level i+1(v) = level i+1(u) + 1 ≥ level i(u) + 1 ≥ level i(v). �

Whenever we augment the flow, the bottleneck edge in the augmenting path disappears from
the residual graph, and some other edge in the reversal of the augmenting path may (re-)appear.
Our second observation is that an edge cannot appear or disappear too many times.

Lemma 2. During the execution of the Dinits/Edmonds-Karp algorithm, any edge u → v disap-
pears from the residual graph Gf at most V/2 times.

Proof: Suppose u → v is in two residual graphs Gi and Gj+1, but not in any of the intermediate
residual graphs Gi+1, . . . , Gj , for some i < j. Then u → v must be in the ith augmenting path, so
level i(v) = level i(u)+1, and v → u must be on the jth augmenting path, so level j(v) = level j(u)−1.
By the previous lemma, we have

level j(u) = level j(v) + 1 ≥ level i(v) + 1 = level i(u) + 2.

In other words, the distance from s to u increased by at least 2 between the disappearance and reap-
pearance of u → v. Since every level is either less than V or infinite, the number of disappearances
is at move V/2. �

Now we can derive an upper bound on the number of iterations. Since each edge can disappear
at most V/2 times, there are at most EV/2 edge disappearances overall. But at least one edge
disappears on each iteration, so the algorithm must halt after at most EV/2 iterations. Finally,
since each iteration requires O(E) time, Dinits’ algorithm runs in O(V E2) time overall.

4

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

15.5 Maximum Matchings in Bipartite Graphs

Perhaps one of the simplest applications of maximum flows is in computing a maximum-size match-
ing in a bipartite graph. A matching is a subgraph in which every vertex has degree at most one,
or equivalently, a collection of edges such that no two share a vertex. The problem is to find the
largest matching in a given bipartite graph.

We can solve this problem by reducing it to a maximum flow problem as follows. Let G be
the given bipartite graph with vertex set V = U ∪W , such that every edge joins a vertex in U to
a vertex in W . We create a new directed graph G′ by (1) orienting each edge from U to W , (2)
adding two new vertices s and t, (3) adding edges from s to every vertex in U , and (4) adding edges
from each vertex in W to t. Finally, we assign every edge in G′ a capacity of 1.

Any matching M in G can be transformed into a flow fM in G′ as follows: For each edge (u, w)
in M , push one unit of flow along the path s → u → w → t. These paths are disjoint except at s
and t, so the resulting flow satisfies the capacity constraints. Moreover, the value of the resulting
flow is equal to the number of edges in M .

Conversely, consider any (s, t)-flow f in G′ computed using the Ford-Fulkerson augmenting
path algorithm. Because the edge capacities are integers, the Ford-Fulkerson algorithm assigns an
integer flow to every edge. (This is easy to verify by induction hint hint.) Moreover, since each edge
has unit capacity, the computed flow either saturates (f(e) = 1) or avoids (f(e) = 0) every edge
in G′. Finally, since at most one unit of flow can enter any vertex in U or leave any vertex in W ,
the saturated edges from U to W form a matching in G. The size of this matching is exactly |f |.

Thus, the size of the maximum matching in G is equal to the value of the maximum flow in G′,
and provided we compute the maxflow using augmenting paths, we can convert the actual maxflow
into a maximum matching. The maximum flow has value at most min{|U |, |W |} = O(V), so the
Ford-Fulkerson algorithm runs in O(V E) time .

s t

A maximum matching in a bipartite graph G, and the corresponding maximum flow in G′

15.6 Edge-Disjoint Paths

Similarly, we can compute the maximum number of edge-disjoint paths between two vertices s and
t in an graph using maximum flows. A set of paths in G is edge-disjoint if each edge in G appears
in at most one of the paths. (Several paths may pass through the same vertex, however.)

If we give each edge capacity 1, then the maxflow from s to t assigns a flow of either 0 or 1 to
every edge. Moreover, even if the original graph is undirected, the maxflow algorithm will assign a
direction to every saturated edge. Thus, the subgraph S of saturated edges is the union of several
edge-disjoint paths; the number of paths is equal to the value of the flow. Extracting the actual
paths from S is easy: Just follow any directed path in S from s to t, remove that path from S, and
recurse. The overall running time is O(V E), just like for maximum bipartite matchings.

5

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

Conversely, we can transform any collection of edge-disjoint paths into a flow by pushing one
unit of flow along each path from s to t; the value of the resulting flow is equal to the number of
paths in the collection. It follows that the maxflow algorithm actually computes the largest possible
set of edge-disjoint paths.

6

