
9 Quantum Complexity Theory I

Just as the theory of computability had its foundations in the Church-Turing thesis, computa-
tional complexity theory rests upon a modern strengthening of this thesis, which asserts that
any “reasonable” model of computation can be efficiently simulated on a probabilistic Turing
machine (by “efficient” we mean here a runtime that is bounded by a polynomial in the runtime
of the simulated machine). For example, computers that can operate on arbitrary length words
in unit time, or that can exactly compute real numbers with infinite precision are unreasonable
models, since it seems clear that they cannot be physically implemented. It had been argued
that the Turing machine model is the inevitable choice once we assume that we can implement
only finite precision computational primitives. Given the widespread belief that NP 6= BPP, this
would seem to put a wide range of important computational problems (the NP-hard problems)
well beyond the capability of computers.

However, the Turing machine is an inadequate model for all physically realizable computing
devices for a fundamental reason: the Turing machine is based on a classical physics model of the
universe, whereas current physical theory asserts that the universe is quantum physical. Can we
get inherently new kinds of (discrete) computing devices based on quantum physics? The first
indication that such a device might potentially be more powerful than a probabilistic Turing ma-
chine appeared in a paper by Feynman about two decades ago. In that paper, Feynman pointed
out a very curious problem: it appears to be impossible to simulate a general quantum physical
system on a probabilistic Turing machine without an exponential slowdown. The difficulty with
the simulation has nothing to do with the problem of simulating a continuous system with a
discrete one – we may assume that the quantum physical system to be simulated is discrete,
some kind of quantum cellular automaton. It has rather to do with a phenomenon in quan-
tum physics that allows different outcomes of a quantum physical effect to interfere with each
other in a strange way. In view of Feynman’s observation, we must re-examine the foundations
of computational complexity theory and the complexity-theoretic form of the Church-Turing
thesis, and study the computational power of computing devices based on quantum physics.

A first precise model of a quantum physical computer, called the quantum Turing machine,
was formulated by Deutsch. This model may be thought of as a quantum physical analogue of
a probabilistic Turing machine: it has an infinite tape and a finite state control, and the actions
of the machine are local and completely specified by this finite state control. Furthermore, on a
given input a quantum Turing machine produces a random outcome according to a probability
distribution. However, instead of a probabilistic Turing machine, the quantum Turing machine
can generate probability distributions in which the amplitudes of certain configurations can have
complex instead of just positive real numbers.

9.1 Mathematical foundations

In order to understand how quantum computers work, we need some background in linear
algebra and complex numbers.

Complex numbers

The set of complex numbers IC is defined as the set IR× IR with the following two operations:

1

• For all (a, b), (a′, b′) ∈ IC, (a, b) + (a′, b′) = (a + a′, b + b′).

• For all (a, b), (a′, b′) ∈ IC, (a, b) · (a′, b′) = (a · a′ − b · b′, a · b′ + b · a′).
When representing (1, 0) as 1 and (0, 1) as the imaginary number i =

√−1, we can also write
every number z ∈ IC as z = a + ib for some a, b ∈ IR, and we can use the standard addition
and multiplication operations on these numbers. This is correct because for any z = a + ib and
z′ = a′ + ib′ it follows that

• z + z′ = (a + a′) + i(b + b′) and

• z · z′ = (a + ib)(a′ + ib′) = aa′ + iab′ + iba′ + i2bb′ = (aa′ − bb′) + i(ab′ + ba′),

which matches the rules for addition and multiplication above.
There is yet another way of representing a complex number. Any z = a+ ib can be viewed as

a 2-dimensional vector of length ` =
√

a2 + b2 and angle α = tan(b/a). Since the Euler function
extended to the complex numbers has the property that

eiα = cos α + i sin α

it follows that z can also be represented as ` · eiα. This immediately implies that

z2 = (` · eiα)2 = `2 · ei2α

i.e., z2 is a 2-dimensional vector of length `2 and angle 2α. On the other hand, this implies that√
z is a 2-dimensional vector of length

√
` and angle α/2. Hence, if we set z = (−1, 0) = −1,

then
√

z = (0, 1) = i, and so it is natural to define i =
√−1 above.

Given a complex number z = a + ib,

• z∗ = a− ib is called the complex conjugate of z and

• ||z||2 = z · z∗ = a2 + b2 is called the square norm of z

Linear algebra

We start with linear algebra over the real numbers. Let M(m,n; IR) be the space of all m× n-
dimensional matrices

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

with aij ∈ IR for every 1 ≤ i ≤ m and 1 ≤ j ≤ n. If n = 1, we just call A a vector and denote it
by a instead of using a capital letter. When m and n are clear from the context, then we also
write A = (aij) and a = (ai). Addition and multiplication over matrices is defined as follows:

• For all A,B ∈ M(m,n; IR), A + B = C ∈ M(m,n; IR) with cij = aij + bij for all i, j.

• For all A ∈ M(m,n; IR) and B ∈ M(n, p; IR), A · B = C ∈ M(m, p; IR) with cij =∑m
k=1 aik · bkj for all i, j.

2

Given a matrix A ∈ M(m,n; IR), the transpose AT = (a′ij) ∈ M(n,m; IR) of A is defined as
a′ij = aji for all i, j.

Given a vector a ∈ IRn, its `1-norm is defined as

|a| = |a1|+ |a2|+ . . . + |an| ,

its `2-norm or Euclidean length is defined as

||a|| =
√

a2
1 + a2

2 + . . . + a2
n

and its square norm is defined as ||a||2.
When applying the matrix product to vectors, we obtain some interesting insights. Given

two vectors a, b ∈ IRn, it holds for the angle α between a and b that

cos α =
aT · b

||a|| · ||b||

Hence, (aT · b)/||a|| is equal to the length of the projection of b onto a. A projection can be
seen as the shadow of one vector on another. As an example, if the two vectors are orthogonal
to each other, i.e., they form a right angle, then their scalar product is 0, but if the two vectors
are parallel to each other, then (aT · b)/||a|| = ||b||. Orthogonal vectors are also called linearly
independent.

The identity matrix In = (eij) ∈ M(n, n; IR) is the matrix with 1’s along the diagonal and
all other entries being 0, i.e., eii = 1 for all i and eij = 0 for all i 6= j. The vector ek = (ei) has
entries that are defined as ek = 1 and ei = 0 for all i 6= k.

A subset U ⊆ M(m,n; IR) is called a subspace of M(m,n; IR) if

• U 6= ∅,
• for all A,B ∈ U , A + B ∈ U , and

• for all α ∈ IR and A ∈ U , αA ∈ U .

As an example, consider any set of matrices A1, . . . , Ak ∈ M(m,n; IR). Then

〈A1, . . . , Ak〉 = {
k∑

i=1

αiAi | α1, . . . , αk ∈ IR}

is a subspace of M(m,n; IR). We will be mostly interested in subspaces generated by vectors, i.e.,
subspaces of the form U = 〈a1, . . . , ak〉 with ai ∈ IRn for every i. We say that a1, . . . , ak form a
basis of U if they are linearly independent, i.e., ai⊥aj resp. aT

i ·aj = 0 for all i 6= j. In this case,
the dimension of a subspace U is equal to k. Two subspaces U1 and U2 are linearly independent,
or U1⊥U2, if and only if any two vectors a ∈ U1 and b ∈ U2 are linearly independent.

Matrices and vectors can also be defined over the complex domain. The conjugate transpose
A† of a matrix A ∈ M(m, n; IC) is defined by taking the transpose of A and conjugating all of
its entries. A matrix A ∈ M(n, n; IC) is called unitary if and only if A† ·A = In.

3

The square norm of a vector a = (ai) ∈ ICn is defined as

||a||2 =
n∑

i=1

||ai||2

Similar to the real numbers, given any two vectors a, b ∈ ICn, the value (a† · b)/||a|| ∈ IC is equal
to the complex value of the projection of b onto a.

Dirac notation

In the quantum physics literature, people often use the Dirac notation, or bracket notation, when
dealing with vectors. Given a vector a ∈ ICn, the bra of a is denoted as 〈a| and represents a†

(i.e., the conjugate transpose of a) whereas the ket of a is denoted as |a〉 and simply represents
a. Finally, the bracket of a is equivalent to its square norm, namely,

〈a|a〉 = 〈a| · |a〉 = a† · a = ||a||2 .

For all vectors a, b, c ∈ ICn it holds:

• 〈a|b〉 = 〈b|a〉∗,
• 〈a|αb〉 = α〈a|b〉 for all α ∈ IC,

• 〈a + b|c〉 = 〈a|c〉+ 〈b|c〉, and

• 〈a|b + c〉 = 〈a|b〉+ 〈a|c〉.
Because 〈e1, . . . , en〉 = ICn, i.e. the unit vectors ei over the complex numbers form a basis of ICn,
it holds that any vector a = (ai) ∈ ICn can be given as a linear combination of the unit vectors
ek ∈ ICn. More precisely,

|a〉 =
n∑

i=1

ai|ei〉 =
n∑

i=1

〈ei|a〉|ei〉

In general, it holds for any basis b1, . . . , bn of ICn that

|a〉 =
n∑

i=1

〈bi|a〉
||bi||2 · |bi〉

because 〈bi|a〉/||bi|| is the (complex) length of the projection of a onto bi and we have to divide
by another ||bi|| because we multiply the term with |bi〉.

Now we have all the necessary ingredients to view computations by classical and quantum
computers as operations in a linear algebra.

9.2 Classical computing

All known computational models are based on two kinds of operations acting on some state
space Ω: computations and observations.

The most general model of a classical computer is the probabilistic Turing machine. Consider
any probabilistic Turing machine M . Let B denote the set of all possible configurations or basis

4

states of M and let δ be the transition function of M . The state of a probabilistic Turing
machine can be an arbitrary probability distribution on the basis states. Hence, the state space
Ω ⊆ [0, 1]B of M is defined as

Ω = {p = (pC) ∈ [0, 1]B | |p| = ∑

C∈B

pC = 1}

Furthermore, δ can be characterized as a matrix Aδ = (aC,C′) where aC,C′ denotes the probability
of moving from configuration C ′ to C in one step. Hence, aC′ = (aC,C′)C is equal to δ(C ′) for
all C ′. Since δ(C ′) ∈ Ω for all C ′ and therefore

∑
C aC,C′ = 1, Aδ is stochastic.

Given that M starts with distribution p0, the definition of Aδ implies that the state of M
at time t is equal to

At
δ · p0

Besides computations we can also define observations for a probabilistic Turing machine. Sup-
pose that the Turing machine is currently in state p and we observe a certain collection of cells
on the tape. Then there is a collection of alternative outcomes of this observation. Let the
outcomes be denoted by E1, . . . , Ek. Treating these outcomes as events, i.e., subsets of B, it
must hold for them that

• Ei ∩ Ej = ∅ for all i 6= j and

• E1 ∪ . . . ∪ Ek = B

to form a complete, valid set of outcomes.
As an example, suppose that cell c is examined on the tape. For any tape symbol a, let the

event Ea be defined as the set of all configurations in B that have cell c set to a. Then it can
be verified that this collection of events indeed satisfies the requirements above.

In the linear algebra terminology, the outcomes E1, . . . , Ek can be specified as subspaces
U1, . . . , Uk of Ω. More precisely, we define

Ui = 〈eC : C ∈ Ei〉 ,

that is, Ui is generated by all unit vectors eC representing configurations that belong to Ei. In
this case, if E1, . . . , Ek satisfy the conditions of a complete, valid set of outcomes, then

• Ui⊥Uj for all i 6= j and

• U1 × . . .× Uk = IRB.

The former condition is true because eT
C · eC′ = 0 for any pair C, C ′ with C ∈ Ei, C ′ ∈ Ej, and

i 6= j, and the former condition is true because

U1 × . . .× Uk = 〈eC : ∃i C ∈ Ei〉 = 〈eC : C ∈ B〉 = IRB .

Suppose now that we observe outcome E1. Then the state of the Turing machine collapses to
E1, which means that only those configurations C with C ∈ E1 survive. In this case, when
starting with probability distribution p, we are left with

p1 =
∑

C∈E1

pCeC .

5

However, this may not be a valid probability distribution, and therefore, we have to make sure
that we normalize p1 to a vector p′ with |p′| = ∑

C∈E1
p′C = 1. But this is easy:

p′ =
1

|p1|
∑

C∈E1

pCeC .

9.3 Quantum computing

The important difference between quantum computing and classical computing is that the state
of quantum computers is defined over the complex space instead of the real space. Young’s
celebrated two-slit experiment will serve as a background to illustrate this phenomenon.

s

1

2

x

intensity

Figure 1: Young’s two-slit experiment.

In Young’s experiment (Figure 1), light coming out of a hole in the left wall must go through
two small holes in the center wall. A detector on the right wall measures the light intensity at
different positions along the length of the wall. If only one hole is open, the intensity reaches
its maximum at a position directly in line with that hole and the source s. As the detector
moves away from that position, the intensity slowly fades and eventually vanishes. When both
holes are open, the intensity pattern is not the sum of the two one-hole intensities, as one would
expect, but an alternation of bright and dark fringes. This effect is caused by the interference
of the light coming out from both holes. Surprisingly, the interference persists even when the
source s is dim enough to send only one photon at a time: if many runs are made and a photon
count is kept for various positions, the same pattern of bright and dark fringes appears. Each
photon seems to interfere with itself.

The self-interference appearing in Young’s experiment is just one example illustrating that
classical intuition cannot be applied to quantum systems. Basically, instead of probabilities over
over the real domain, one has to argue with probability amplitudes over the complex domain.
Using such probability amplitudes would allow us to explain the outcome of Young’s experiment.

In a quantum computer, we also have a discrete set B of possible configurations or basis
states. However, the state of a quantum computer can be any vector p ∈ ICB with ||p||2 = 1.

6

That is, our set Ω is now defined as

Ω = {p = (pC) ∈ ICB | ||p||2 =
∑

C∈B

||pC ||2 = 1}

Using Dirac notation, a vector p ∈ ICB is also written as

|p〉 =
∑

C∈B

pC |eC〉 =
∑

C∈B

pC |C〉

i.e., we identify the unit vector eC with its configuration C.
The transition function δ of a quantum computer can specify a complex probability amplitude

aC,C′ for any move from C ′ to C in one step. We can organize all these amplitudes in a matrix
Aδ = (aC,C′). However, in order for Aδ to represent a valid computation, it must preserve the
square norm. More precisely, for any p ∈ Ω it must hold that

||Aδ · p||2 = 1

It turns out that this property is satisfied if and only if Aδ is unitary, i.e., A†
δ ·Aδ = I. This is

true because if Aδ is unitary, then

||Aδ · p||2 = 〈Aδ · p|Aδ · p〉 = 〈p|A†
δ ·Aδ|p〉 = 〈p|p〉 = ||p||2

Since every valid transition must be unitary, it follows that every transition must be reversible. In
fact, the transition reversing Aδ is A†

δ. This, at first glance, seems to limit quantum computing,
because not all computations in classical computers are reversible, but as we will see later, this
requirement is not a limitation.

Besides computations, we can also define observations for quantum computers. In fact,
observations can be modeled in exactly the same way as for classical computers, with the only
difference that now we have to make sure that any vector p describing the state of the system
must have a square norm of 1, i.e., ||p||2 = 1. That is, the vector p1 in our example for classical
computers has to be normalized to

|p′〉 =
1

||p1||
∑

C∈E1

pC |eC〉 =
1

||p1||
∑

C∈E1

pC |C〉 .

Furthermore, the probability that the observation gives E1 is ||p1||2.

9.4 The quantum Turing machine

We are now able to define a quantum Turing machine.

Definition 9.1 A quantum Turing machine (QTM) is denoted by

M = (Q, Σ, Γ, δ, q0, B, F)

where Q, Σ, Γ, q0, B, F are defined as for a probabilistic Turing machine. However, the transition
function δ is now a mapping of the form

δ : Q× Γ×Q× Γ× {L,N, R} → IC

where δ(p, x, q, y, d) gives the amplitude with which the machine in state p reading a will write b,
enter state q, and move in direction d. Furthermore, δ has to be well-formed, that is, it always
preserves the square norm.

7

If we choose the set B to consist of all possible configurations of M , then δ specifies a
linear mapping from B to ICB. This linear mapping can be represented as a transition matrix
Aδ = (αc1,c2)c1,c2∈B in which αc1,c2 ∈ IC specifies the amplitude of going to configuration c1 given
that the current configuration is c2. Since Aδ has to be unitary, the following conditions have
to be satisfied for a transition function δ of a quantum Turing machine to be well-formed, i.e.,
to imply a unitary Aδ:

Theorem 9.2 A transition function δ is well-formed if it satisfies the following conditions:

• The amplitude distribution leaving any state-symbol pair has a unit square norm:

∀p ∈ Q ∀x ∈ Γ :
∑

q,y,d

||δ(p, x, q, y, d)||2 = 1 .

• The amplitude distributions of written character, new state, and direction leaving any two
different state-symbol pairs are orthogonal:

∀(p, x) 6= (p′, x′) :
∑

q,y,d

δ(p, x, q, y, d) · δ∗(p′, x′, q, y, d) = 0 .

The proof of the theorem is left as an assignment. If δ is well-formed, then every transition
of a quantum Turing machine is reversible (simply use A†

δ after using Aδ, and we would be back
at the same state before Aδ). Note that classical computations are usually not reversible. For
instance, the simple command of setting a variable back to 0 may have the effect that several
configurations fall together, and therefore it is not possible to say afterwards from which configu-
ration the Turing machine originally came. We formally define reversibility for the deterministic
Turing machine as follows.

Definition 9.3 A Turing machine M is reversible if reversing its arrows gives a deterministic
mapping of configurations T that undoes the computation of M : for any pair of configurations

c1 and c2, c1
M→ c2 if and only if c2

T→ c1.

Note that the arrow reversal of a reversible Turing machine M is not necessarily a Turing
machine, since the reverse of a transition that both writes and moves must write in a non-local
cell. Hence, we only spoke about a mapping T instead of a Turing machine T in the definition.

Now, suppose we have a Turing machine M which computes a function f , i.e. it outputs f(x)
on input x. If f is not injective, then there can clearly be no reversible Turing machine that
computes f (i.e. has f(x) on its output tape and all other work tapes erased). However, Lecerf
and independently Bennett showed that for any deterministic Turing machine M computing a
function f there is a reversible Turing machine M ′ such that M ′ computes x f(x) on input x.
The runtime of M ′ is within a constant factor of the runtime of M .

A reversibility condition can be also formulated for probabilistic and quantum Turing ma-
chines: the transition function δ′ resulting from δ by reversing the arrows and conjugating the

amplitudes of δ undoes the computation of δ. That is, for any superpositions v1 and v2, v1
δ→ v2

if and only if v2
δ′→ v1. Since this is a generalization of reversibility for deterministic Turing

machines and quantum Turing machines fulfill this reversibility condition (unless observations
are made), it is not surprising that Benioff and Deutsch were able to show that quantum Turing
machines can efficiently simulate classical reversible Turing machines.

8

Theorem 9.4 Any function f that can be computed efficiently by a classical (deterministic or
probabilistic) Turing machine can also be computed efficiently by a quantum Turing machine.

Theorem 9.4 implies that quantum computing is at least as powerful as classical computing.
But does there exist a quantum computer that can execute arbtrary quantum programs in
an efficient way? Or in other words: is there a universal quantum Turing machine that can
simulate any specific quantum Turing machine in an efficient way? The answer to this was
given by Bernstein and Vazirani. They showed the following theorem.

Theorem 9.5 There exists a universal quantum Turing machine U which when given a descrip-
tion of any quantum Turing machine M and any t > 0, simulates M for t steps with accuracy
ε and with slowdown polynomial in t and 1/ε.

Hence, in principle it is possible to construct a quantum computer that can execute arbi-
trary quantum programs. However, how susceptible would such a machine be to errors in the
computation? Bernstein and Vazirani showed in their proof of Theorem 9.5 that O(t) bits of
accuracy are sufficient to simulate t steps of computation with accuracy ε. However, Lipton
pointed out that in order to claim that a model of computation is truly discrete, it is necessary
that any constants in the specification should only be required to be accurate up to O(log t)
bits. This is because a constant that is accurate up to k bits can lie in one of 2k distinct ranges,
and the task of verifying that the machine meets the specifications seems to require effort that
is proportional to 2k. The following theorem shows that we need only O(log t) bits of precision
in the specification of each of the complex numbers defining a single-step transition function of
a quantum Turing machine. The theorem is due to Bennett, Bernstein, Brassard, and Vazirani.
|φM

t 〉 in the theorem denotes the superposition of a quantum Turing machine M at time t.

Theorem 9.6 For any two quantum Turing machines M and M̂ with the same configuration set
and tape alphabet and the property that for every transition amplitude λ of M , the corresponding
transition amplitude λ̂ of M̂ satisfies ||λ̂ − λ||2 ≤ ε, it holds that for all inputs that |||φM

t 〉 −
|φM̂

t 〉||2 = O(ε · t) for any time step t.

Proof. Let U be the unitary transformation specified by M , and Û be the unitary transfor-
mation specified by M̂ . We will first prove that for any superposition |φ〉, U |φ〉 is close to Û |φ〉.
Let

|φ〉 =
∑

i

αi|ci〉

be some superposition over configurations ci. Then,

U |φ〉 − Û |φ〉 =
∑

i

 ∑

j∈P (i)

(λj,i − λ̂j,i)αj

 |ci〉

where P (i) is the set of j such that configuration |cj〉 can lead to |ci〉 in a single step of M or M̂ .
Note that every j can occur in at most c different sets P (i), where c is some constant depending

9

only on the number of states and tape symbols used in the definition of M . So we have,

||U |φ〉 − Û |φ〉||2 =
∑

i

|| ∑

j∈P (i)

(λj,i − λ̂j,i)αj||2 ≤ ∑

i

∑

j∈P (i)

||(λj,i − λ̂j,i)αj||2

≤ ∑

i

∑

j∈P (i)

||λj,i − λ̂j,i||2||αj||2 ≤ ∑

i

∑

j∈P (i)

ε||αj||2

= ε
∑

i

∑

j∈P (i)

||αj||2 ≤ ε · c ∑

j

||αj||2

≤ ε · c .

We will use this to prove that the superpositions of M and M̂ are close together for any input
string.

Let x be an arbitrary input string. Then we will show that the superpositions of M and M̂
at time t, |φM

t 〉 and |φM̂
t 〉, are close together.

Û t|x〉 = Û t−1(U |x〉+ |∆1〉)
= Û t−1(U |x〉) + Û t−1|∆1〉
= Û t−2(U2|x〉) + Û t−2|∆2〉+ Û t−1|∆1〉

= U t|x〉+
t∑

i=1

Û t−i|∆i〉

where each |∆i〉 has the property that ||∆i||2 ≤ ε · c. Therefore,

|||φM
t 〉 − |φM̂

t 〉||2 = ||U t|x〉 − Û t|x〉||2 ≤ ||
t∑

i=1

Û t−i|∆i〉||2

≤
t∑

i=1

||Û t−i|∆i〉||2 =
t∑

i=1

||∆i||2

≤ t · ε · c .

ut

The theorem shows that in order to obtain a sufficiently good error bound after t steps, the
error in each step has to be of order O(1/t). Using error correcting codes, Shor showed that it
is even possible to tolerate an error of O(1/ logc t) for some constant c in each step to obtain a
sufficiently small overall error after t steps.

9.5 Quantum complexity classes

Similar to P we define the time complexity class QP to be the set of all languages L for which
there exists a quantum Turing machine M with the property that

• for all x ∈ L, Pr[M accepts x] = 1 and

• for all x 6∈ L, Pr[M accepts x] = 0.

Furthermore, the class BQP is defined as the set of all languages L for which there exists a
quantum Turing machine M with the property that

10

• for all x ∈ L, Pr[M accepts x] ≥ 2/3 and

• for all x 6∈ L, Pr[M accepts x] ≤ 1/3.

From the previous subsection we know that

P ⊆ QP and BPP ⊆ BQP .

Whether or not P = QP or BPP = BQP is still wide open. However, there is some evidence
that the quantum complexity classes are more powerful than the classical counterparts. We will
investigate this in more detail in the next section. An upper bound for the complexity of QP
and BQP is provided by the following theorem. Its proof is left as an exercise.

Theorem 9.7 BQP ⊆ PSPACE.

Only slighty better upper bounds are known for the complexity of BQP to date.

9.6 References

• C.H. Bennett. Local reversibility of computations. IBM Journal of Research and Devel-
opment 17:525–532, 1973.

• C.H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of
quantum computing. SIAM Journal on Computing 26(5):1510–1523, 1997.

• E. Bernstein and U. Vazirani. Quantum complexity theory. In Proc. of the 25th ACM
Symp. on Theory of Computing, pp. 11–20, 1993.

• A. Berthiaume. Quantum Computation. In Complexity Theory Retrospective II, Springer
Verlag, 1996

• D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proc. of the Royal Society, London, A400:97–117, 1985.

• R.P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics 21(6/7):467–488, 1982.

• Y. Lecerf. Machines de Turing réversibles. Récursive insolubilité en n ∈ IN de l’équation
u = Θn où Θ est un isomorphisme de codes. In Comptes rendus de l’Académie française
ds sciences 257:2597–2600, 1963.

• P. Shor. Fault-tolerant quantum computation. In Proc. of the 37th IEEE Symp. on
Foundations of Computer Science, pp. 56–65, 1996.

11

