
Network Algorithms

Prof. Dr. Christian Scheideler

Technische Universität München, April 17, 2007

1 Introduction
The goal of this lecture is to give an introduction to the state in network algorithms, particularly
algorithms for overlay networks. It is a widely accepted fact that algorithmic advances in the area
of computer science are only useful to society if they are based on models that truthfully reflect the
restrictions and requirements of the corresponding applications. This is certainly also true for network
communication. For example, in general any infrastructure connecting processing units with each
other may be called a network, but certain infrastructures such as a dedicated line between any pair of
nodes are certainly unrealistic, because they are too expensive to build. Thus, messages may have to
traverse several units to reach their destination, causing (among other problems) route selection and
scheduling problems. Also, we will not just study network communication out of context, but we will
also look at various topics that require or support efficient network communication such as distributed
data management or design strategies for overlay networks.

In this section we will first give a basic introduction to graph theory and will then introduce some
popular families of networks and investigate their structural properties.

1.1 Graph theory
A graph G = (V,E) consists of a set of nodes (or vertices) V and a set of edges (or arcs) E. The
nodes represent the processing units and the edges represent the communication links between the
units. Often, we will set n = |V | (the size of V) and m = |E|. The size of G is defined as the number
of nodes it contains. For all v, w ∈ V , (v, w) denotes a directed edge from v to w, and {v, w} denotes
an undirected edge from v to w. G is called undirected if E ⊆ {{v, w} | v, w ∈ V } and directed if
E ⊆ {(v, w) | v, w ∈ V }. Unless explicitly mentioned, we assume for the rest of this lecture that G
is undirected and that each undirected edge {v, w} represents two independent, directed edges (v, w)
and (w, v).

A sequence of contiguous edges in G is called a path. The length of the path is defined as the
number of edges it contains. A path is called node-simple if it visits every node in G at most once.
Similarly, it is called edge-simple (or simple) if it contains every edge in G at most once. G is called
connected if, for any pair of nodes v, w ∈ V , there is a path in G from v to w. We call a simple
path a cycle if it starts and ends at the same node. The girth of a graph G is defined as the length
of the shortest cycle G contains. G is called a tree if it is connected and contains no cycle. A graph
T = (V ′, E ′) is called a spanning tree of G if V ′ = V , E ′ ⊆ E, and T is a tree. G is called bipartite if
its node set can be partitioned into two node sets V1 and V2 such that E ⊆ {{v, w} | v ∈ V1, w ∈ V2}.

1

For any pair of nodes v, w ∈ V , let δ(v, w) denote the distance of v and w in G, that is, the length
of a shortest path from v to w. The diameter D of G is defined as max{δ(v, w) | v, w ∈ V }. If
{v, w} ∈ E then v is called a neighbor of w. For any subset U ⊆ V , the neighborhood of U is defined
as

Γ(U) = {v ∈ V \ U | ∃u ∈ U : {u, v} ∈ E} .

The number of neighbors of v is called the degree of v and denoted by dv. The degree of G is defined
as d = max{dv | v ∈ V }. If all nodes in G have the same degree, then G is called regular.

v

w

Figure 1: An example of an undirected graph with diameter 4.

A family of graphs G = {Gn | n ∈ IN} has degree d(n) if for all n ∈ IN the degree of Gn is d(n).
If it is clear to which family a graph belongs, we say that this graph has constant (or bounded) degree
if and only if its family has constant degree.

A network is specified by a graph G = (V,E) with edge capacities given by a function c : E →
IR+. Given a graph G with capacities c, let the capacity of a node v ∈ V be defined as

c(v) =
∑

w∈V

c(v, w)

and the capacity of any node set or edge set U be defined as c(U) =
∑

u∈U c(u). Given a subset
U ⊆ V , (U, Ū) denotes the set of all edges (u, v) ∈ E (or {u, v} ∈ E if G is undirected) with u ∈ U
and v ∈ Ū . So c(U, Ū) is the sum of the capacities of all edges in (U, Ū). The conductance α of a
network G with capacities c is defined as

α = min
∅6=U⊂V

c(U, Ū)

min{c(U), c(Ū)} .

1.2 Basic network topologies
The most basic network topologies used in practice are trees, cycles, grids and tori. Many other
suggested networks are simply combinations or derivatives of these. The advantage of trees is that
the path selection problem is very easy: for every source-destination pair there is only one possible
simple path. However, since the root of a tree is usually a severe bottleneck, so-called fat trees have
been used. These trees have the property that higher-level edges have a (much) larger capacity than
lower-level edges. See Figure 2 for an example.

2

4

2

1

Figure 2: The structure of a fat tree.

Fat trees belong to a family of networks that require edges of non-uniform capacity to be efficient.
Easier to build are networks with edges of uniform capacity. This is usually the case for grids and
tori. Unless explicitly mentioned, we will treat all edges in the following to be of capacity 1. In the
following, [x] means the set {0, 1, . . . , x− 1}.

Definition 1.1 (Torus, Mesh) Let m, d ∈ IN. The (m, d)-mesh M(m, d) is a graph with node set
V = [m]d and edge set

E =

{
{(ad−1 . . . a0), (bd−1 . . . b0)} | ai, bi ∈ [m],

d−1∑

i=0

|ai − bi| = 1

}
.

The (m, d)-torus T (m, d) is a graph that consists of an (m, d)-mesh and additionally wrap-around
edges from (ad−1 . . . ai+1(m − 1) ai−1 . . . a0) to (ad−1 . . . ai+1 0 ai−1 . . . a0) for all i ∈ [d] and all
aj ∈ [m] with j 6= i. M(m, 1) is also called a line, T (m, 1) a cycle, and M(2, d) = T (2, d) a
d-dimensional hypercube.

Figure 3 presents a linear array, a torus, and a hypercube.

011010

110

100

000 001

101

111

M(2,3)

0 1 2

M(,1)m

−1m

01

02

00 10

11

12

03

20

21

22

13

30

31

32

23 33

(4,2)T

Figure 3: The structure of M(m, 1), T (4, 2), and M(2, 3).

The hypercube is a very important class of networks, and many derivatives, the so-called hyper-
cubic networks, have been suggested for it. Among these are the butterfly, cube-connected-cycles,
shuffle-exchange, and de Bruijn graph. We start with the butterfly, which is basically a rolled out
version of a hypercube.

3

Definition 1.2 (Butterfly) Let d ∈ IN. The d-dimensional butterfly BF (d) is a graph with node set
V = [d + 1]× [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(i, α), (i + 1, α)} | i ∈ [d], α ∈ [2]d}
and

E2 = {{(i, α), (i + 1, β)} | i ∈ [d], α, β ∈ [2]d, α and β differ
only at the ith position} .

The node set {(i, α) | α ∈ [2]d} represents level i of the butterfly. The d-dimensional wrap-around
butterfly W-BF(d) is defined by taking the BF (d) and identifying level d with level 0.

Figure 4 shows the 3-dimensional butterfly BF (3). The BF (d) has (d + 1)2d nodes, 2d · 2d edges
and degree 4. It is not difficult to check that combining the node sets {(i, α) | i ∈ [d]} into a single
node results in the hypercube.

000 100010 110001 101011 111

1

2

0

3

Figure 4: The structure of BF(3).

Next we define the cube-connected-cycles network. It only has a degree of 3 and it results from
the hypercube by replacing the corners by cycles.

Definition 1.3 (Cube-Connected-Cycles) Let d ∈ IN. The cube-connected-cycles network CCC(d) is
a graph with node set V = {(a, p) | a ∈ [2]d, p ∈ [d]} and edge set

E =
{
{(a, p), (a, (p + 1) mod d)} | a ∈ [2]d, p ∈ [d]

}

∪
{
{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], a = b except for ap

}

Two possible representations of a CCC can be found in Figure 5.
The shuffle-exchange is yet another way of transforming the hypercubic interconnection structure

into a constant degree network.

Definition 1.4 (Shuffle-Exchange) Let d ∈ IN. The d-dimensional shuffle-exchange SE(d) is defined
as an undirected graph with node set V = [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(ad−1 . . . a0), (ad−1 . . . ā0)} | (ad−1 . . . a0) ∈ [2]d, ā0 = 1− a0}
and

E2 = {{(ad−1 . . . a0), (a0ad−1 . . . a1)} | (ad−1 . . . a0) ∈ [2]d} .

4

000 001 010 011 100 101 110 111

2

1

0

(110,1)

(011,2)

(101,1)

(001,2)

(001,1)

(001,0)(000,0)

(100,0)

(100,1)

(100,2)

(000,2)

(000,1)

(010,1)

(010,0)

(010,2)

(110,2)

(110,0) (111,0)

(111,1)

(111,2)

(011,1)

(011,0)

(101,2)

(101,0)

Figure 5: The structure of CCC(3).

000 001

100

010

101

011

110 111 0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

SE(3) SE(4)

E

E
1

2

Figure 6: The structure of SE(3) and SE(4).

Figure 6 shows the 3- and 4-dimensional shuffle-exchange graph.

Definition 1.5 (de Bruijn) The b-ary de Bruijn graph of dimension d DB(b, d) is an undirected graph
G = (V, E) with node set V = {v ∈ [b]d} and edge set E that contains all edges {v, w} with the
property that w ∈ {(x, vd−1, . . . , v1) : x ∈ [b]}, where v = (vd−1, . . . , v0).

Two examples of a de Bruijn graph can be found in Figure 7.

1.3 Direct and indirect networks
Networks are usually separated into direct and indirect networks. Direct networks are networks in
which every node represents a processing unit that can inject and absorb packets, whereas in indirect

5

010

100

001

110

1111100

01

000
101

011

10

Figure 7: The structure of DB(2, 2) and DB(2, 3).

networks only certain nodes (the so-called input nodes) can inject packets and certain nodes (the so-
called output nodes) can absorb packets. An important subclass of indirect networks are the so-called
leveled graphs.

Definition 1.6 (Leveled Graph) A graph G = (V, E) is called leveled with depth D if the nodes
of G can be partitioned into D + 1 levels L0, . . . , LD such that every edge in E connects nodes of
consecutive levels. Nodes in level 0 are called inputs, and nodes in level D are called outputs. If, in
addition, |L0| = |LD| and L0 is identified with LD, then G is called a wrapped leveled graph with
depth D.

Examples of leveled graphs are the fat tree and the butterfly, and an example of a wrapped leveled
graph is the wrap-around butterfly. In a butterfly it is usually assumed that the nodes in L0 represent
the input nodes and the nodes in level LD represent the output nodes. In a fat tree the nodes in level
LD are usually both input and output nodes.

1.4 The diameter
Recall the definition of the diameter in Section 1.1. One important goal in choosing a topology for a
network is that it has a small diameter. The following theorem presents a lower bound for this.

Theorem 1.7 Every graph of maximum degree d ≥ 3 and size n must have a diameter of at least
b(log n)/(log(d− 1))c − 1.

Proof. Suppose we have a graph G = (V,E) of maximum degree d and size n. Start from any node
v ∈ V . In a first step at most d other nodes can be reached. In two steps at most d · (d− 1) additional
nodes can be reached. Thus, in general, in at most k steps at most

1 +
k−1∑

i=0

d · (d− 1)i = 1 + d · (d− 1)k − 1

(d− 1)− 1
≤ d · (d− 1)k

d− 2

nodes (including v) can be reached. This has to be at least n to ensure that v can reach all other nodes
in V within k steps. Hence,

(d− 1)k ≥ (d− 2) · n
d

⇔ k ≥ logd−1

(
(d− 2) · n

d

)
⇔ k ≥ logd−1 n + logd−1

(
d− 2

d

)
.

6

Since logd−1((d− 2)/d) > −2 for all d ≥ 3, this is true only if k ≥ blogd−1 nc − 1. ut

Theorem 1.7 uses as a construction for the lower bound a complete (d − 1)-ary tree with a root
of degree d. However, it is easy to see that in this tree there are two nodes (see the leaves v and w in
Figure 8) with a distance of approximately 2 logd−1 n, which is by a factor of 2 larger than the lower
bound. Can networks with a better diameter be constructed? The next theorem gives an answer to this.

root

v w

n nodes

Figure 8: Nodes with highest distance in a tree.

Theorem 1.8 For every even d > 2 there is an infinite family of graphs Gn of maximum degree d and
size n with a diameter of at most (log n)/(log d− 1).

Proof. The proof is part of the assignment. ut

1.5 The conductance
Recall the definition of the conductance in Section 1.1. We start with an upper bound on the conduc-
tance that must hold for all networks.

Theorem 1.9 For every network G = (V, E) with non-negative edge capacities, the conductance can
be at most 1.

Proof. For every set U ⊆ V let EU = {{v, w} ∈ E | v ∈ U}, where an edge appears twice
in EU if both v and w are in U . Certainly, (U, Ū) ⊆ EU . Since c(U) = c(EU) it must therefore
hold that c(U, Ū) ≤ c(U). Equivalently, it must also hold that c(U, Ū) = c(Ū , U) ≤ c(Ū). Hence,
c(U, Ū) ≤ min{c(U), c(Ū)} and therefore

α(G) = min
U⊆V

c(U, Ū)

min{c(U), c(Ū)} ≤ 1 .

ut

Interestingly, for any d ≥ 3 there are graphs that can achieve a constant conductance. These are
the so-called expanders. One explicit construction is known as the Gabber-Galil graph [4]:

7

Definition 1.10 Let n ∈ IN. The Gabber-Galil graph GG(n) is a graph with node set V = [n]2 and
edge set E consisting of all edges ((x, y), (x′, y′)) with

(x′, y′) ∈ {(x, x + y), (x, x + y + 1), (x + y, y), (x + y + 1, y)} (mod n)

Other explicit constructions of expanders can be found in [8, 9, 10]. Also random regular graphs
are known to be expanders, with high probability. For the classes of graphs we presented above the
conductance is quite complicated to compute. Therefore, we just list some results here.

Theorem 1.11 The d-dimensional hypercube, cube-connected-cycles, butterfly, shuffle-exchange, and
de Bruijn graph with uniform edge capacities all have an conductance of Θ(1/d).

Using the fact that for these networks d = Θ(log n), where n is the number of nodes in the network,
it follows that all of these networks have an conductance of Θ(1/ log n).

1.6 The flow number
In order to define the flow number, we first have to introduce the concept of multicommodity flows.
Consider any (bi-)directed network G = (V, E) with non-negative edge capacities given by c. A
multicommodity flow instance on G is a set of ordered pairs of vertices (s1, t1), (s2, t2), . . . , (sk, tk).
Each pair (si, ti) represents a commodity with source si and target ti. A multicommodity flow for that
instance is a flow f : E × {1, . . . , k} → IR+ with the following properties:

• For all edges e = (v, w),
∑k

i=1 f(e, i) ≤ c(e), and

• for all nodes v and commodities i with v 6∈ {si, ti},
∑

u:(u,v)∈E f((u, v), i) =
∑

w:(v,w)∈E f((v, w), i).

The objective is to maximize the amount of flow traveling from the sources to the corresponding des-
tinations, subject to the capacity constraints. The problem comes in two flavors. In the first, called
the maximum multicommodity flow problem, the total flow, summed over all commodities, is to be
maximized. The second is called the concurrent multicommodity flow problem. Here, for each com-
modity (si, ti) a non-negative demand di is specified. The objective is to maximize the fraction of
the demand that can be shipped simultaneously for all commodities. In other words, we want to find
the maximum ϕ so that a flow of ϕ · di can be shipped for every commodity i without exceeding the
capacities of the edges. ϕ is called the concurrent max-flow. A balanced multicommodity flow prob-
lem (BMFP) is a concurrent multicommodity flow problem in which the sum of the demands of the
commodities originating and the commodities terminating in a node v is equal to c(v) for every v ∈ V .
Both the maximum throughput problem and the maximum concurrent flow problem can be solved in
polynomial time using linear programming.

Given a concurrent multicommodity flow problem with feasible solution S, let the dilation D(S)
of S be defined as the length of the longest flow path in S and the congestion C(S) of S be defined as
the inverse of its concurrent flow value (i.e., the congestion says how many times the edge capacities
would have to be increased in order to satisfy the demands of all commodities when using the same
set of flow paths). Let B be the special BMFP in which each pair of nodes (v, w) has a commodity of
demand c(v) · c(w)/c(V). The flow number F (G) of a network G is defined as the minimum over all
feasible solutions S of B of max{C(S), D(S)} [6]. In the case that there is no risk of confusion, we

8

t
1

t
1

t
2

s
1

s
2

t
2

s
1

s
2

t
1

t
2

s
1

s
2

1 2d = d = 1

(a) (c)(b)

1 1

1 1 1

1

11 1/2 1/2

1/2 1

1/21

1 1/2

1/2 1/2

1/2 1

Figure 9: Solution to a 2-commodity flow problem (a). The routing of the first commodity is shown in
(b) and the second commodity is shown in (c).

will simply write F instead of F (G). Note that the flow number of a network is invariant to a scaling
of the capacities.

The flow number of a network G can be computed in polynomial time. Another advantage of the
flow number is that, as shown by the next theorem, it can be applied to much more general multicom-
modity flow problems than just the one that defines it.

Theorem 1.12 For any network G with flow number F and any instance I of the BMFP for G, there
is a feasible solution for I with congestion and dilation at most 2F .

Proof. The idea is to decompose I into two multicommodity flow problems: for every commodity i
with source si and destination ti, the first problem I1 has commodities iu from si to u for all u ∈ V
with demands diu = di · c(u)/c(V), and the second problem I2 has commodities i′u from u to ti for all
u ∈ V with demands di′u = di · c(u)/c(V). For every commodity i from the original problem, the total
demand of corresponding commodities in I1 is di and is di in I2 as well. Moreover, for every node
u ∈ V the amount of commodity i shipped to u in I1 is equal to the amount of commodity i shipped
from u in I2.

Interestingly, both of the flow problems I1 and I2 are equal to the special flow problem B because
for any pair v, w ∈ V , the total demand of the commodities with source v and destination w in I1 is
equal to

∑

i: si=v

di · c(w)

c(V)
=

c(v) · c(w)

c(V)
,

and in I2 it is also equal to
∑

i: ti=w

di · c(v)

c(V)
=

c(v) · c(w)

c(V)
.

Thus, according to the definition of the flow number, both I1 and I2 have a feasible solution with con-
gestion and dilation at most F . Hence, the original problem I has a feasible solution with congestion
and dilation at most 2F , which proves the claim. ut

With techniques similar to those used in the proof of Theorem 5.0.3 in [11] one can also prove the
following result.

9

Theorem 1.13 On average over all BMFPs I , the minimum max{C(S), D(S)} over all feasible so-
lutions S of I is Ω(F).

Hence, the flow number truthfully captures the problem of routing BMFPs in networks. Using
Theorem 1.12, we prove another powerful result, called Shortening Lemma, that shows that the flow
number allows one to convert arbitrary multicommodity flow solutions into solutions with short flow
paths.

Theorem 1.14 (Shortening Lemma [6]) Suppose we are given a network with flow number F . Then,
for any ε ∈ (0, 1] and any feasible multicommodity flow f , there exists a feasible multicommodity flow
f ′ with flow values |f ′i | of at least |fi|/(1 + ε) for every commodity i that uses paths of length at most
2 · F (1 + 1/ε).

Proof. Given a flow solution S , let S ′ ⊆ S consist of all paths from S that are longer than L, for
L = 2 · F/ε. We are going to shorten the paths in S ′ at the cost of slightly decreasing the satisfied
demand of each commodity.

For a path p ∈ S ′ between sp and tp, let ap,1 = sp, ap,2, · · · , ap,L denote its first L nodes and
bp,1, · · · , bp,L−1, bp,L = tp its last L nodes and let fp be the flow value along p. Then the set U =⋃

p∈S′
⋃L

i=1{ap,i, bp,i, fp} is (a subset of) an instance of the BMFP. By Theorem 1.12, there exists a
feasible solution P to U with flow value at least 1/(2F) consisting of paths of length at most 2F . We
are going to combine the initial and final parts of the long paths in S ′ with these “shortcuts” in P to
obtain the desired short solution.

First, decrease the flows along all paths p ∈ S by a factor of 1/(1 + ε) so that we have room to
accommodate new, short paths for the paths in S ′. These short paths are constructed in the following
way:

For every path p ∈ S ′, we replace p by L flow systems Sp,i, i = 1, · · · , L. Each flow system Sp,i

consists of two parts:

1. the flow paths between ap,i and bp,i in P corresponding to the request {ap,i, bp,i, fp} from U , now
with a flow of fp/(L(1 + ε)), and

2. fp/(L(1+ε)) units of flow between ap,1 and ap,i along p, and fp/(L(1+ε)) units of flow between
bp,i and bp,L along p.

For each i, the length of each path in the subsystem Sp,i is at most L + 2 · F , and fP /(L(1 + ε)) units
of flow are shipped along each path system Sp,i. Summed over all i = 1 . . . L, we have fp/(1 + ε)
units of flow between sp = ap,1 and tp = bp,L, which is as high as the original flow through p reduced
by 1/(1 + ε). Hence, we can replace p by the systems Sp,i without changing the amount of flow from
sp to tp.

Now, it holds for every edge e that the flow traversing e due to the paths in S is at most c(e)/(1+ε),
and due to the shortcuts in P is at most

∑

p∈P: e∈p

fp

L(1 + ε)
≤ 2F

L(1 + ε)
· c(e) =

ε · c(e)
1 + ε

,

since ∑

p∈P: e∈p

fp

2F
≤ c(e) .

10

Thus, the flows in S and P sum up to at most c(e) for an edge e. Therefore, the modification yields a
feasible solution satisfying the desired properties. ut

Next, we explore the relationship of the flow number with the diameter and the conductance of a
network. The first result immediately follows from the definition of F .

Fact 1.15 For every network with diameter D and flow number F , it holds that F ≥ D.

The next result reveals a very close relationship between the conductance and the flow number of
a network.

Theorem 1.16 For any network G with conductance α and flow number F it holds that

α−1 ≤ F ≤ c · α−1 log n

for some constant c.

Proof. We only prove here that F ≥ α−1. (The entire proof can be found in [6].) For this we need
some notation. Given a concurrent multicommodity flow problem, the cut ratio of a cut (U, Ū) is
defined as

RU =
c(U, Ū)

d(U, Ū)
where d(U, Ū) =

∑

(si,ti)∈(U×Ū)∪(Ū×U)

di .

Now, let f be the concurrent max-flow of the problem B used for the definition of F . Consider any cut
(U, Ū) and let i1, i2, . . . , ir denote the commodities whose source and target are separated by this cut.
Since all flows for these commodities must cross (U, Ū), we know that

r∑

j=1

f · dij ≤ c(U, Ū) .

Since
∑r

j=1 dij = d(U, Ū), this means that

f ≤ c(U, Ū)

d(U, Ū)
.

For B it holds that

d(U, Ū) =
∑

(u,v)∈(U×Ū)∪(Ū×U)

c(u) · c(v)

c(V)
=

2c(U) · c(Ū)

c(V)
.

We distinguish between two cases. If c(U) ≥ c(V)/2, then c(U) · c(Ū)/c(V) ≥ c(Ū)/2. Thus,

f ≤ c(U, Ū)

2 · c(Ū)/2
=

c(U, Ū)

min{c(U), c(Ū)} .

If c(Ū) ≥ c(V)/2, then c(U) · c(Ū)/c(V) ≥ c(U)/2 and therefore

f ≤ c(U, Ū)

2 · c(U)/2
=

c(U, Ū)

min{c(U), c(Ū)} .

11

Hence, in both cases,

f ≤ c(U, Ū)

min{c(U), c(Ū)}
and therefore f ≤ α or 1/f ≥ α−1. Since according to the definition of F , F ≥ 1/f , it follows that
F ≥ α−1. ut

Since the flow number of a network is an upper bound on its diameter, it follows from Theo-
rem 1.16:

Corollary 1.17 For every network with conductance α the diameter is at most O(α−1 log n).

From Theorem 1.7 it follows that this bound is exact for constant degree expanders. Do there exist
networks where the flow number is in O(max{D, α−1})? The next theorem lists some.

Theorem 1.18 The d-dimensional hypercube, cube-connected-cycles, butterfly, shuffle-exchange, and
de Bruijn graph with uniform edge capacities all have a flow number of Θ(d).

For proofs see, for example, [7] or [11]. Thus, for these networks it actually holds that F =
Θ(α−1), i.e. the conductance describes very well the routing ability of the network. It also follows
from the bound that all networks must have a diameter of O(log n).

1.7 Expansion and span
We end this section with the definition of two more parameters: the expansion and the span of a graph
G = (V,E). The expansion β measures how well a graph can sustain adversarial node faults, and the
span σ measures how well a graph can sustain random node faults.

In the past, researchers have mostly studied the problem up to which point a network can sustain
faults so that the size of its largest connected component is still a constant fraction of its original size.
However, for network theory, such a question is not too useful as it only gives a qualitative statement
about the state of the graphs after faults and not a quantitative statement. Hence, a better question
would be:

Up to which fault probability does a network still contain a network of at least a constant fraction
of its original size that still has approximately the same expansion?

Knowing an answer to this question would have many useful consequences for distributed data
management, routing, and distributed computing. Research on load balancing has shown that if the
expansion basically stays the same, the ability of a network to balance single-commodity or multi-
commodity load basically stays the same, and this ability can be exploited through simple local algo-
rithms [5, 2, 1]. Hence, we will study the two parameters under the question above.

12

Expansion

Recall the definition of the neighbor set Γ(U). The expansion of a graph G = (V, E) is defined as

β = min
∅6=U⊆V,|U |≤|V |/2

|Γ(U)|
|U |

In words, the expansion measures the impact node failures can have on disconnecting intact nodes
from the rest of the network. In [3] the following result was shown.

Theorem 1.19 Let G be any graph with n nodes, maximum degree δ and expansion β. Suppose that
the adversary can select up to f = βn

4δk2 faulty nodes for some constant k > 1. Then there is a subgraph
H in G of size at least n− f ·k

β
with expansion at least (1− 1

k
) · β.

Hence, for constant degree graphs, f adversarial faults still leave a subgraph H of n−O(f) nodes
that essentially has the same expansion as the original graph.

Span

Interestingly, the expansion of a network cannot be used to predict how well a network can sustain
random faults. In fact, networks with expansion 1/

√
n (e.g., 2-dimensional meshes) are known that

can sustain a constant fault probability whereas other networks with expansion 1/
√

n (e.g., n-node
expanders in which every edge is replaced by a path of length n) are known that can only sustain a
fault probability of O(1/

√
n). Hence, a new parameter is needed. A very promising parameter appears

to be the span of a graph, which is defined as follows [3]:
Consider a graph G = (V, E). Let U ⊆ V be any subset of nodes. U is defined to be compact if

and only if U and V \ U are connected in G. Let U be the set of all compact sets of G. Let P (U) be
the smallest tree in G which connects every node in Γ(U) (i.e., it essentially spans the boundary of U).
Note that the set of nodes in P (U) need not be from U alone or from V \ U alone. Then the span of a
graph is defined as:

σ = max
U∈U

{ |P (U)|
|Γ(U)|

}

Using this parameter, the following theorem was recently shown [3]:

Theorem 1.20 Consider any graph G with maximum degree δ, span σ, and expansion β ≥ (γδ ln3 n)/n
for some sufficiently large constant γ and |Γ(U)| ≥ logδ |U | for every node set U in G with |U | ≤
|V |/2. Then, with high probability, provided the fault probability p ≤ 1/(16e · δ8σ) and ε ≤ 1/4, there
is a non-faulty subgraph H ⊆ G of size |H| ≥ n/3 with expansion at least (ε/δ) · β.

Since it is not difficult to see that all d-dimensional meshes with constant d have a constant span,
this means that all of these can sustain a constant fault probability and still have a large connected
component of essentially the same expansion. We believe that also the hypercubic networks have a
constant span and that Theorem 1.20 is far from being tight, so investigating the span further is an
ongoing, interesting research issue.

13

References
[1] A. Anagnostopoulos, A. Kirsch, and E. Upfal. Load balancing in arbitrary network topologies with stochas-

tic adversarial input. SIAM Journal on Computing, 34(3):616–639, 2005.

[2] E. Anshelevich, D. Kempe, and J. Kleinberg. Stability of load balancing algorithms in dynamic adversarial
systems. In Proc. of the 34th ACM Symp. on Theory of Computing (STOC), 2002.

[3] A. Bagchi, A. Bhargava, A. Chaudhary, D. Eppstein, and C. Scheideler. The effect of faults on network
expansion. In Proc. of the 16th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 286–
293, 2004.

[4] O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. Journal of Computer
and System Sciences, 22:407–420, 1981.

[5] B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Rajaraman, A. W. Richa,
R. E. Tarjan, and D. Zuckermann. Tight analyses of two local load balancing algorithms. SIAM Journal
on Computing, 29(1):29–64, 1999.

[6] P. Kolman and C. Scheideler. Improved bounds for the unsplittable flow problem. In ACM/SIAM Symp. on
Discrete Algorithms (SODA), 2002.

[7] F. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays · Trees ·Hypercubes. Morgan
Kaufmann Publishers (San Mateo, CA), 1992.

[8] A. Lubotzky, R. Phillips, and R. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.

[9] G. Margulis. Explicit group theoretical constructions of combinatorial schemes and their application to the
design of expanders and superconcentrators. Problems Inform. Transmission, 11:39–46, 1988.

[10] M. Morgenstern. Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime
power q. Journal of Combinatorial Theory, Series B, 62:44–62, 1994.

[11] C. Scheideler. Universal Routing Strategies for Interconnection Networks, volume 1390 of Lecture Notes
in Computer Science. Springer, 1998.

14

