
10 Overlay Networks for Heterogeneous Peers
So far, we have only shown how to construct overlay networks for uniform peers. However, the world
is non-uniform. Suppose, for example that we have peers of non-uniform bandwidth. If we then use
a network based on hashing, like Chord, in order interconnect the peers, it is very likely that high-
bandwidth peers will be isolated from other high-bandwidth peers, making them ineffective. Thus, a
different design is needed. On possibility is to simply split the peers into many logical peers of uniform
bandwidth, but then high-bandwidth peers may have many logical peers in the network, making it
more vulnerable and making it more complex for peers to join and leave. Another solution could be to
organize the peers in a multi-tier network. That is, peers are organized into groups of approximately
the same bandwidth, and each group is organized into some hash-based overlay network presented
before. But it is not clear how to interconnect the networks of the various groups because the group
sizes can differ quite significantly from each other.

The solution presented here follows a different direction. Instead of using many logical peers or a
multi-tier network to incorporate peers of non-uniform bandwidth, every peer is just associated with
a single node, and a simple heap property is used to organize the peers in the system: every parent
of a peer must have a bandwidth that is at least as large as the bandwidth of that peer. Thus, local,
relative rules are used to organize peers instead of the rather global nature of the rules using logical
peers or multi-tier networks (since an agreement on the minimum bandwidth and bandwidth-to-tier
assignments is necessary there).

The overlay network behind our approach is called Pagoda [1]. We start with the static version
of the overlay network before we define its dynamic version. Afterwards, we explain how to use the
overlay network for routing, data management, and multicasting.

10.1 The static Pagoda network
Our overlay network is basically a combination of a complete binary tree and a family of leveled
graphs that are similar to the well-known Omega network [2], together with some short-cut edges to
keep the diameter low. It is called Pagoda. We first define a perfect, static form of it before describing
dynamic constructions.

Definition 10.1 Let d ∈ IN0. The d-dimensional deBruijn, DB(d), is an undirected graph with node
set V = [2]d and an edge set E = {{x, y} | x, y ∈ [2]d and there are p, q ∈ {0, 1} so that x =
(b1, b2, . . . , bd−1, p) and y = (q, b1, b2, . . . , bd−1)}.

Definition 10.2 Let d ∈ IN0. The d-dimensional deBruijn exchange network, DXN (d), is an undi-
rected graph with node set V = [d + 1]× [2]d and an edge set:

E = {{(j, x), (j + 1, y)} | j ∈ [d− 1],

x, y ∈ [2]d, {x, y} ∈ E(DB(d)) or x = y}

Figure 1 presents the 3-dimensional deBruijn, DB(3). DB(d) has 2d nodes and a maximum degree
of 4.
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Figure 1: The structure of DB(3)
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Figure 2: The structure of PG(2).

Definition 10.3 Let d ∈ IN0. The d-dimensional Pagoda, PG(d), is an undirected graph that consists
of d + 1 deBruijn exchange networks, DXN (0), . . . ,DXN (d), where each node (i, x) ∈ [i + 1]× [2]i

of DXN (i) is connected to the nodes (0, x0) and (0, x1) in DXN (i + 1) and to all nodes (0, y) in
DXN (i + 1) that have an edge to (1, x0) or (1, x1).

In addition to this, for every i and j ∈ {0, . . . , i}, every node (j, x) in DXN (i) has short-cut edges
to nodes (j, x0), (j, x1), (j + 1, x0), and (j + 1, x1) in DXN (i + 1).

Ignoring the short-cut edges, the Pagoda is a leveled network with the root being at level 0. Levels
are consecutively numbered from 0 to (

∑d
i=0 i)− 1. Given a node at level `, the nodes it is connected

to in level ` − 1 are called its parents, and the nodes it is connected to in level ` + 1 are called its
children.

The Pagoda network consists of the following types of edges:

• column edges connecting (j, x) to (j + 1, x) in a DXN,

• tree edges connecting (i, x) in DXN (i) to (0, x0) and (0, x1) in DXN (i + 1),

• short-cut edges connecting (j, x) in DXN (i) to (j, x0), (j, x1), (j + 1, x0), and (j + 1, x1) in
DXN (i + 1), and
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• deBruijn edges representing all remaining edges.

Each type is important for our protocols to work. Column edges and tree edges allow to keep our
protocols simple and efficient, deBruijn edges allow to perform efficient routing (and deterministic
level balancing in the dynamic Pagoda), and short-cut edges keep the diameter and congestion low.

Basic properties

Figure 2 shows the 2-dimensional Pagoda PG(2). PG(d) has
∑d

i=0(i + 1)2i ≈ (d + 1)2d+1 nodes and
maximum degree 20. Furthermore, the following fact is easy to see:

Lemma 10.4 PG(d) has O(d2) levels and a diameter of O(d).

PG(d) also has a good expansion. Recall that the node expansion is defined as α = minU :|U |≤|V |/2

|N(U)|/|U | where N(U) is the neighbor set of U .

Lemma 10.5 PG(d) has an expansion of Ω(1/d).

Proof. Using standard techniques, it is not difficult to show that every permutation routing problem
in the Pagoda can be routed with congestion O(d). Suppose now that the node expansion is o(1/d). In
this case there must be a set U with |N(U)| = o(|U |/d) and |U | ≤ n/2. Then consider the permutation
π that requires to send all packets in nodes in U to Ū = V \ U . In this case, the expected congestion
must be ω(d), contradicting our bound above. Thus, the expansion is Ω(1/d). ut

10.2 The dynamic Pagoda network for uniform nodes
Our basic approach for the dynamic Pagoda network is to keep the nodes interconnected in a network
that represents a subnetwork of the static Pagoda network of infinite dimension. In this section, we
assume that all nodes have a bandwidth of 1. At any time, the dynamic Pagoda network has to fulfill
the following invariant:

Invariant 10.6

(a) For any node in the dynamic Pagoda, all of its parent positions are occupied.

(b) For any pair of nodes v and w in the dynamic Pagoda, v and w are connected in the dynamic
Pagoda if and only if v and w are connected in the static Pagoda.

We start with some facts about the dynamic Pagoda network. A node is called deficient if it has
a missing child along a column or tree edge (i.e. we do not consider missing children reachable via
deBruijn edges).

Lemma 10.7 If Invariant 10.6 is true, then in the dynamic Pagoda with n nodes, the difference be-
tween the largest level and the smallest level with deficient nodes is at most log n.
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Proof. Let v be any node of largest level in the Pagoda. Notice that such a node must be deficient.
Suppose that v is at position (j, x) in some DXN (d). The fact that every node must have all of its
parent positions occupied and the way the DXN is constructed ensure that v is connected to at least
2j nodes at positions (0, y) in DXN (d), where y is either the result of a right shift of x by at most j
positions or a left shift of x by at most j positions, padded with arbitrary 0-1 combinations. Thus, if
j = d, then all positions in row 0 of DXN (d) must be occupied. If j < d, then one can easily check
that all positions in row j in DXN (d− 1) must be occupied. Hence, the difference between the largest
level and the smallest level with a deficient node is at most d. Taking this into account, one can show
that d ≤ log n, which yields the lemma. ut

This lemma has some immediate consequences when combining it with results about the static
Pagoda:

Lemma 10.8 If Invariant 10.6 is true, then the dynamic Pagoda with n nodes is a constant degree
network and has O(log2 n) levels, a diameter of O(log n), and an expansion of Ω(1/ log n).

Next we define local control algorithms that allow nodes to join and leave the system, denoted by
the operations JOIN and LEAVE, while preserving Invariant 10.6 at any time (under the condition that
nodes depart gracefully).

Join and Leave operations

The basic strategy of the join protocol is to make sure that every new node is inserted at a place that
fulfills Invariant 10.6. Suppose that node u wants to join the system. This is done in two stages.

Stage 1 Suppose that node v, at position (j, x) in DXN (i), is initiating JOIN(u) to insert u into the
network. If v has a short-cut edge to a node at position (j, x0) in DXN (i + 1), then it forwards the
request to that node. Let this new node be v′. If v′ does not exist then we refer to node v as v′.

We are now at some node v′, at position (j′, x′) in DXN (i′). If v′ has a short-cut edge to a node at
position (j′, x′1) in DXN (i′ + 1) (here the column with suffix 1 is used to ensure an even spreading of
JOIN requests), then it forwards the request to that node. Let this node be the new v′. We repeat this
until no new v′ exists. Call this last node v′′.

We are now at some node v′′, at position (j′′, x′′) in DXN (i′′). If v′′ is not deficient then v′′ forwards
the request to the node at position (j′′ + 1, x′′) in DXN (i′′) if j′′ < i′′, and else it forwards the request
to the node at position (0, x′′1) in DXN (i′′ + 1). This is the new v′′. This is repeated until no new v′′

exists. Call this last node w. At this point stage 1 ends and we proceed with stage 2 on this node.

Stage 2 Initially, the JOIN request must be at some deficient node w. If w = (i, y) in some DXN (d)
with 0 < i < d, then w requests information about the column child (i.e. the child reachable via the
column edge) from all parents of w. If all parents report an existing child, w can integrate u as its
column child without violating Invariant 10.6(a). Otherwise, w forwards the JOIN request for u to any
parent w′ reporting a missing column child, i.e. it is deficient.

If i = 0, then w requests information from its parents about each tree child that is a parent of its
column child. If all relevant tree children exist, w can integrate u as its column child, and otherwise w
forwards the JOIN request to any parent w′ reporting a missing tree child.
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Finally, if i = d, then w picks any of its missing tree children v and requests information from
w’s parents about each column child that is a parent of v. If all relevant column children exist, w can
integrate u at the position of v, and otherwise w forwards the JOIN request to any parent w′ reporting
a missing column child.

This is continued until u can be integrated.

Suppose that a node u wants to leave the Pagoda. This is also done in two stages. Stage 1 is the
same as stage 1 for the JOIN protocol.

Stage 2 Initially, the LEAVE request must be at some deficient node w. If w has a child, then w
forwards the request to any one of its children. This is continued until w does not have any children.
Once this is the case, w exchanges its position with u so that u can leave the network.

The JOIN and LEAVE protocols above achieve the following result.

Theorem 10.9 Any isolated JOIN or LEAVE operation can be executed in O(log n) time and with
constant topological update work.

Proof. Consider any JOIN request starting at some node v. From the construction, it can be seen
that the request is transferred through at most d short-cut edges until the request reaches a node v′ in
DXN (d− 1) (the second largest DXN in the system). From a node in DXN (d− 1), at most O(log n)
column or tree edges have to be traversed to reach a deficient node w in DXN (d) or DXN (d − 1).
From node w on, every time the request is transferred to a deficient node, the level of the node w′

receiving the request decreases by one. Hence, it follows from Lemma 10.7 that the JOIN request can
be transferred along at most log n deficient nodes. Thus, an isolated JOIN request can be executed in
O(d) = O(log n) time.

Also every LEAVE request is sent along at most d short-cut edges and O(d) column or tree edges
until it reaches a deficient node w. From w, it takes at most log n further nodes to reach a node without
children, at which the LEAVE request can be finished. Hence, also any isolated LEAVE request can be
executed in O(d) = O(log n) time.

The bound on the update work (i.e. the number of edge changes) is obvious. ut

10.3 Routing
Suppose that we want to route unicast messages in the Pagoda network. Consider any such unicast
packet p with source s = (j, x) in DXN (i) and destination t = (j′, z) in DXN (i′). First, p picks a
random pair of real values (c, r) ∈ [0, 1)2 (a precision of log n bits for each is sufficient). Then, p is
sent in three stages:

1. Spreading stage: First, send p from s along column edges and a tree edge to (i − 1, x/2) in
DXN (i − 1). Then, send p upwards to the node (0, y) in DXN (i − 1) with y being the closest
prefix of r. From there, forward p to the node (k, y/2) in DXN (i − 2) with k/(i − 2) being
closest to c.

2. Shuttle stage: Forward p along short-cut edges across nodes (k′, y′) with k′ being closest to c
and y′ being the closest prefix of r until a node (k′, y′) in DXN (i′ − 2) is reached.
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3. Combining stage: Perform stage 1 in reverse direction (with s replaced by t) to forward p to t.

Notice that as long as s and t are non-deficient nodes, this strategy is successful even while nodes join
and leave the system, because the position of every node that is an non-deficient node will be fixed
in the Pagoda. Also, whenever a node leaves, the node replacing it can inherit its packets so that no
packet gets lost. More general strategies for ensuring reliable communication even while nodes are
moving, using the concept of virtual homes, can be found in Section 10.8.

With these facts in mind, one can easily design a protocol based on the random rank protocol (see,
e.g., [3]) to show the following result:

Theorem 10.10 If every node wants to send at most one packet, the packets have random destinations,
and every node being the destination of a packet does not move for O(log n) steps, the routing strategy
above can route the packets in O(log n) time, with high probability.

10.4 Data management
Finally, we show how to dynamically manage data in Pagoda. We use a simple trick to distribute
data evenly among the nodes of the Pagoda so that it is searchable. Suppose that we have a (pseudo-
)random hash function mapping each data item to some real vector (c, r) ∈ [0, 1)2. The current place
of a data item d is always the lowest possible position (j, x) in the Pagoda where x is the closest prefix
of r and j/|x| is closest to c among all j′/|x| with 0 ≤ j′ ≤ |x| (|x| denotes the length of x, and thus
the dimension of the DXN owning (j, x)).

This strategy implies that if DXN (d) represents the largest exchange network that has occupied
positions in the Pagoda, then all data items will be stored at nodes in DXN (d − 2), DXN (d − 1),
or DXN (d). Since every node will at most have to store an O(1/(d · 2d)) fraction of the data and
d · 2d = Θ(n), we get:

Theorem 10.11 The data management strategy ensures that every node is only responsible for an
expected O(1/n) fraction of the data at any time, and this bound even holds with high probability if
there are at least n log n data items in the system.

Notice that none of the DHT-based systems can achieve the bounds above in their basic form –
they only achieve a bound of O(log n/n). Combining the data management strategy with our routing
strategy above, requests to arbitrary, different data items with one request per node can be served in
O(log n) time, w.h.p. The results in Section 10.6 imply that this also holds for cases in which some
nodes want to access the same data item, i.e. we have a multicast problem, if requests can be combined.

10.5 The dynamic Pagoda network for non-uniform nodes
Next we show that the Pagoda network can also be used for arbitrary non-uniform node bandwidths.
In this case, we want to maintain the following heap property to allow efficient multicasting.

Invariant 10.12 For any node v in the Pagoda,

(a) all of its parent positions are occupied, and

(b) the bandwidth of v is at most the bandwidth of any of its parents.
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Similar to the uniform case, we require these invariants to be fulfilled while nodes join and leave
the system. Because of item (b), we cannot just do a single exchange operation to integrate or remove
a node but we have to be more careful. First, we describe the JOIN and LEAVE operations for the
isolated case, and then we consider the concurrent case.

Join and Leave operations

For any node u in the Pagoda, max-child(u) refers to the child of maximum bandwidth and min-
parent(u) refers to the parent with minimum bandwidth.

Suppose that node v is executing JOIN(u) to insert a new node u with bandwidth b(u) into the
network. This is done in three stages. Stages 1 and 2 are identical to the uniform case. So it remains
to describe stage 3 which is similar to inserting a node in a binary heap.

Stage 3 Once the JOIN request for u has reached a deficient node with an empty column or tree
child position in which u can be integrated without violating Invariant 10.12(a), u is integrated there
with active bandwidth a(u) equal to the minimum of b(u) and the bandwidth of its min-parent. The
active bandwidth is the bandwidth it is allowed to use without violating Invariant 10.12(b). Then, u
repeatedly compares b(u) with a(u). If a(u) < b(u), it replaces its position with the position of its
min-parent and afterwards updates a(u) to min{b(u), b(min-parent(u))}. Once u reaches a position
with a(u) = b(u), the JOIN protocol terminates. The process of moving u upwards is called shuffle-up.

Suppose that a node u wants to leave the Pagoda. Then it first sets its active bandwidth to b(u).
Afterwards, u repeatedly replaces its position with its max-child and updates its active bandwidth to
a(u) = b(max-child(u)) until it reaches a position with no child. At this point, u is excluded from the
system so that Invariant 10.12 is maintained. The process of moving u downwards is called shuffle-
down.

Bandwidth changes

If the bandwidth of some node u increases, we use the shuffle-up procedure, and if the bandwidth of
some node u decreases, we use the shuffle-down procedure to repair the invariant.

Isolated update requests have the following performance.

Theorem 10.13 Any isolated join operation, leave operation, or bandwidth change of a node needs
O(log2 n) time and work to repair the invariant.

Proof. First, consider the insertion of some node u. The process of moving the request of u downwards
only needs O(log n) time. According to Lemma 10.8, u is integrated at some level ` = O(log2 n).
Hence, the shuffle-up process only requires O(log2 n) messages and edge changes because each ex-
change of positions between u and some parent v to repair Invariant 10.12 moves u one level upwards
and requires updating only a constant number of edges. Every shuffle operation maintains the invariant
for all nodes involved in it. Hence, the total time and work is O(log2 n).

Similar arguments can be used for node departures and bandwidth changes. ut
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The concurrent JOIN protocol

The only difference between the isolated and concurrent JOIN protocol is that we are more careful
about exchanging positions. If a node u wants to replace its position with some parent v, then u checks
whether v is a node that has not finished its JOIN operation or bandwidth increase operation yet (i.e.
a(v) < b(v)). If so, u does nothing. Otherwise, u replaces its position with v.

The concurrent LEAVE protocol

Also the concurrent LEAVE protocol is similar to the isolated LEAVE protocol, with the only difference
that if some node u in the process of leaving the network wants to replace its position with some child
v, u first checks whether v is a node that has not finished its LEAVE operation or bandwidth decrease
yet (i.e. a(v) > b(v)). If so, u does nothing. Otherwise, u replaces its position with v.

Bandwidth increase or decrease is handled similarly. The next lemma shows that the concurrent
operations always terminate with a work that is at most the sum of the work for isolated update opera-
tions.

Lemma 10.14 For any set of k concurrent insertions, deletions, and bandwidth changes of nodes, the
work and time required to repair Invariant 10.12 is O(k log2 n).

Proof. The work bound is obvious. Thus, it remains to prove the time bound.
Consider k concurrent update requests. From the analysis in the uniform case we know that

O(k log n) work is necessary for nodes of JOIN requests to be integrated into the system. Each time
step progress is made here until all JOIN requests are integrated.

Afterwards, we mark all nodes with 1 that have not completed their JOIN or bandwidth increase
operation yet, all nodes with -1 that have not completed their LEAVE or bandwidth decrease operation
yet, and all other nodes with 0. Suppose that there is at least one node marked as 1. Then let v be
any of these nodes of minimum level. Since the level of v must be at least 1 (as the root cannot be a
1-node), it can replace its position with its min-parent, thereby making progress. On the other hand,
suppose that there is at least one node marked as -1. Then let v′ be any of these nodes of maximum
level. If v′ does not have any children, then v′ can leave, and otherwise it can replace its position with
its max-child, thereby making progress in any case.

Hence, we make progress in every step. Since the total work of the shuffle-up, shuffle-down, and
departure operations is bounded by O(k log2 n), the time spent for executing these operations is also
bounded by O(k log2 n). ut

10.6 Multicasting
Finally, we study how well the non-uniform Pagoda supports arbitrary concurrent multicasting.

Competitiveness

In this section we show that the Pagoda network is O(∆OPT + log n)-competitive with respect to
congestion in the best possible network of degree ∆OPT when the multicast problem is posed as a flow
problem. We are given a set of client-server-demand triples called streams, (Tk, sk, Dk), where Tk is
a set of client nodes served by a server node sk and Dk is a demand vector which specifies the flow
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demanded of sk by each client node. We start by constructing a flow system for one server, sk, and
one client t ∈ Tk. We name this flow system, fk,t. We assume that sk is a node in DXN (i) and t is a
node in DXN (j).

1. Spreading stage: This stage spreads flow originating at sk in DXN (i) evenly among the nodes
in DXN (i− 2). This is done in three steps.

a. Move the flow from sk along column edges to the top node in DXN (i).

b. Move the flow upwards to the bottom node in DXN (i− 1) along the tree edge connecting
the two DXN ’s. From there, cut the flow into 2i−1 flow pieces of uniform size and send
piece i upwards to node (0, i) along the unique path of deBruijn edges representing right
shifts.

c. Move all flow from the top nodes in DXN (i−1) to the bottom nodes in DXN (i−2) along
tree edges. Every bottom node in DXN (i − 2) sends flow along its column edges so that
each node in the column gets the same fraction of flow. That is, at the end every node in
DXN (i− 2) has a 1/((i− 1)2i−2) fraction of the flow of sk.

2. Shuttle stage: Short-cut edges are used to send the flows forward to DXN (j − 2) (which may
be upwards or downwards in the Pagoda) so that the flows remain evenly distributed among the
nodes in each exchange network visited from DXN (i− 2) to DXN (j − 2).

3. Combining stage: This stage is symmetric to stage 1, i.e. we reverse stage 1 to accumulate all
flow in t.

This results in a flow system, fk,t, for a source sk and a destination t ∈ Tk. Let fk,t(e) be the flow
through any edge e in this flow system. The procedure is repeated for each client t ∈ Tk. We now
construct a flow system, fk, for the stream k. We lay the flow systems fk,t one on top of the other. The
flow through an edge in system fk is the maximum flow through the same edge in each fk,t. That is, let
fk(e) be the flow through any edge e in flow system fk. Then fk(e) = maxt∈Tk

fk,t(e). Note that we
select the maximum flow because if there are two flows of the same stream going through an edge then
we simply keep the one with the higher bandwidth (the lower bandwidth stream may be reconstructed
from the higher one). We use flow system fk to route multicast flow for stream k. We show that this
strategy yields a low congestion.

Theorem 10.15 The Pagoda network on n nodes of non-uniform bandwidth that satisfies Invari-
ant 10.12 has a competitive ratio of O(∆OPT + log n) for any multicast flow problem compared to
the congestion in an optimal network for this problem whose degree is bounded by ∆OPT.

Proof. Let OPT be a network that routes the given flow system with minimum possible congestion
COPT, i.e. that minimizes the maximum amount of flow through a node. W.l.o.g. we assume that every
demand is at most the bandwidth of the source and destination.

Select any node u in pagoda. Let it be in exchange network DXN (i). We show that the congestion
at this node due to the flow system resulting from our routing strategy above is no more than O(log n) ·
COPT due to stages 1 and 3 and O(∆OPT) · COPT due to stage 2. We show these bounds in parts. We
first bound the congestion at u due to stage 1, c1(u). The flows through u due to stage 1 are the sum of
the flows that originate in DXN (i), DXN (i + 1) and DXN (i + 2). Let the congestion due to each of
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these be c1a(u), c1b(u) and c1c(u) respectively. Clearly, c1(u) = c1a(u) + c1b(u) + c1c(u). We bound
each of these three separately:
Stage 1a: Node u receives flow from nodes that are below it (in the same column) in exchange network
DXN (i). We call this set S. The flow is

∑
k maxv∈S{dk(v)}. Note that the max term is used since

flows belonging to the same stream are combined, resulting in a flow of largest demand among these.
Therefore, the congestion at u is c1a(u) = 1

b(u)

∑
k maxv∈S{dk(v)} ≤ ∑

v∈S

∑
k

dk(v)
b(v)

≤ |S| · COPT.
The set S contains at most log n nodes. Therefore c1a(u) ≤ log n · COPT.
Stage 1b: Node u receives flow from the bottom nodes of DXN(i). Let f ′k(·) be the flow sent up by a
bottom node. Thus, each bottom node sends a flow of f ′k(·)/n to each top node. Note that f ′ is purely
the spreading caused by stage 1b.

Let S be the set of bottom nodes with paths crossing u, and let D be the set of top nodes with paths
crossing u. We bound |S| and |D| as follows:

Let u be in level h of DXN(i). There are 2i nodes in each level of DXN(i), and each node has an
address of i bits. Due to the bit-shift routing of the de Bruijn graphs, the nodes in set S must have the
same i− h first bits as u has last bits. Thus, the first h bits can be anything, and |S| = 2h. In a similar
manner, the nodes in D must have the same first h bits as the nodes in S, thus |D| = 2i−h. Now, the
number of paths crossing u is |S| · |D| = 2i.

The flow from each node v ∈ S that reaches u is f ′k(v)·|D|
2i , which is the number of nodes in D times

the amount of flow destined for each node in the top row of DXN (i). Since |D|
2i = 1

|S| , this becomes
f ′k(v)

|S| .
Since flows belonging to the same multicast group merge into one flow equal to the maximum of

the two it follows that the flow that reaches u is
∑

k maxv∈S
f ′k(v)

|S| . Assuming v1 and v2 are the two tree
children of v, the congestion at u is

c1b(u) =
1

b(u) · |S|
∑

k

maxv∈Sf ′k(v) ≤ ∑

v∈S

∑
k f ′k(v)

b(v) · |S|
≤ 1

|S|
∑

v∈S

c1a(v1) + c1a(v2) ≤ 2 log n · COPT

Stage 1c: Node u receives flow from the bottom node in its column. Therefore, the congestion at u,
c1c(u) is at most the congestion at the bottom node in the exchange network. The bottom node receives
flow from its two descendants in DXN(i + 1). Note that the two descendants will send up equal flows,
let one of them be v. So, c1c(u) ≤ 2c1c(v) ≤ 4 log n · COPT.

We show the bounds for flows due to stage 2 with the help of Lemma 10.16. We need to lower
bound the congestion that an optimal network can achieve. We do this by showing how an optimal
network with bounded degree has limited bandwidth to send flows.

Lemma 10.16 Let EOPT be the set of edges in the optimum network. For any pair of sets X and
Y that are subsets of the set of nodes, let D(X, Y ) =

∑
sk∈X maxv∈Tk∩Y {dk(v)} and B(X, Y ) =∑

(u,v)∈EOPT∩X×Y min{b(u), b(v)}. Then COPT ≥ D(X,Y )/B(X, Y ).

Proof. Consider any pair of sets X,Y ⊆ V . B(X,Y ) as defined in the statement measures the
bandwidth between sets X and Y . Note that it is not necessary that X and Y form a cut. Similarly,
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D(X, Y ) is the demand that X asks of Y . The ratio of B(X, Y ) to D(X,Y ) is the average congestion.
The max congestion must be at least the average congestion. Therefore COPT ≥ D(X,Y )

B(X,Y )
. ut

Stage 2: Let U be the set of nodes in the Pagoda which belong to all exchange networks above and
including DXN(i + 1). Let Z be all nodes in exchange network DXN(i + 2). Let V be all nodes below
and including exchange network DXN(i+3). Let the collective flow through exchange network DXN(i)
be f . Any stream whose source is in U ∪ Z and has a destination in V ∪ Z must go through DXN(i).
The expression for the flow is:f =

∑
sk∈U∪Z maxv∈V ∪Zdk(v). Due to lemma 10.16 we bound f as

follows: f ≤ (|U |∆OPT maxi∈V ∪Z{bi}+ |U ∪Z|∆OPT maxi∈V {bi}+ |Z|∆OPT maxi∈Z{bi}) ·COPT.
The first term accounts for bandwidth between U and V ∪ Z, the second term for bandwidth be-

tween V and U∪Z, and the third term for bandwidth within Z. Hence, f ≤ 3 |U∪Z|∆OPT maxi∈V ∪Z{bi}·
COPT ≤ 3 |U ∪ Z|∆OPT bu · COPT.

Since the Pagoda spreads tree flow evenly across all nodes in each exchange network, the flow
through u is at most f

|DXN (i)| . Therefore c2(u) ≤ f
|DXN (i)|·bu

. The construction of the Pagoda implies

that |U ∪ Z| < 2 |Z|, and |DXN (i)| ≥ |Z|
12

. Thus, c2(u) ≤ 72 ∆OPT · COPT.
The congestion at u due to stage 3 is identical to the congestion due to stage 1 because the two

cases are symmetric. Hence, c(u) = 2 c1(u) + c2(u) ≤ (14 log n + 72 ∆OPT) · COPT. The theorem
follows. ut ut

10.7 Turning multicast flows into trees
In practice, it may be expensive or impossible to divide and recombine streams. Instead, we choose a
pseudo-random hash function h that maps every node v in the Pagoda to a pair of real values (c, r) ∈
[0, 1)2. Similar to the routing strategy in Section 10.3, we can then adapt the multicast scheme in the
following way for a source s and target t:

1. Spreading stage: (a) is the same as above, but instead of spreading the flow in (b), we route all
flow to the node (0, y) in DXN (i− 1) with y being the closest prefix of r. From there, forward
the flow to the node (k, y/2) in DXN (i− 2) with k/(i− 2) being closest to c.

2. Shuttle stage: Forward the flow along short-cut edges across nodes (k′, y′) with k′ being closest
to c and y′ being the closest prefix of r until a node (k′, y′) in DXN (j − 2) is reached.

3. Combining stage: Reverse the spreading stage to send the flow to t.

Multicast flows that belong to the same stream are combined so that for every edge e, the flow for that
stream through e is the maximum demand over all flows of targets t that are part of that stream.

Using this rule, it is not surprising that the expected congestion of our integral flow scheme is equal
to the congestion of the divisible flow scheme above.

Theorem 10.17 The integral multicast flow scheme has an expected competitive ratio of O(∆OPT +
log n) compared to an optimal network with degree ∆OPT.

Proof. The theorem can be shown by following the line of arguments in the proof of Theorem 10.15.
Here, we just give an intuition of why the theorem is correct. We start with bounding the expected
congestion for stages 1 and 3.
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Lemma 10.18 The expected congestion from routing the spreading stage is O(log n)-competitive
against an optimal network of degree ∆OPT.

Proof. Let di be the total demand requested by node i across all streams, and let bi be node i’s
bandwidth. Consider the congestion on any node in DXN(i) first. Since flow is sent up along column
edges, the worst congestion occurs at the top nodes of DXN (i). If dmax is the largest demand of any
node in some node v’s column, then v must route at most (i + 1) · dmax demand, under the worst case
assumption that the demands are for different streams and cannot be combined. Since v has at least the
bandwidth of every node with demand dmax, this is O(log n)-competitive. This analysis also applies
to routing along column edges in the final stage.

Now consider the congestion on any node in DXN(i− 1) caused by the spreading stage. We know
that the nodes on the bottom of DXN(i − 1) are O(log n)-competitive, because their congestion is at
most twice the congestion at the nodes at the top of DXN(i). Since each stream is going to a random,
independently selected location in DXN(i−2), each is going to a random node at the top of DXN(i−1).
Thus, the expected congestion at the top is balanced and therefore is O(log n)-competitive. Further-
more, congestion is caused by streams crossing nodes in the middle of the DXN, but the self-routing
properties of the deBruijn graph (which extend to the DXN) imply that the maximum expected con-
gestion in the middle is between the maximum expected congestion in the bottom and the maximum
expected congestion in the top part and therefore no worse. Hence, also the nodes in the middle of the
graph are O(log n)-competitive in congestion. ut

Next we consider stage 2.

Lemma 10.19 The expected congestion from routing flow in the shuttle stage is O(∆OPT + log n)-
competitive against an optimal network of degree ∆OPT.

Proof. Consider the boundary between any two DXN networks. The flows crossing this boundary
upwards (resp. downwards) along short-cut edges must have a set of sources S and a set of destinations
T with S ∩ T = ∅. Hence, there is a cut in the optimal network that all these flows have to cross.
Furthermore, since we are sending exactly one copy of the stream across the cut, we are sending no
more flow than OPT must send. The same upper bound on the amount of flow across a cut holds as
in the divisible flow case. Since the nodes along which the flows travel are randomly selected, the
expected congestion at any node is a fraction of the total flow proportional to the number of nodes in
the DXN, which implies that the congestion is expected to be O(∆OPT + log n)-competitive. ut

Combining the two lemmata yields Theorem 10.17. ut ut

10.8 Multicast streaming
Next, we address the issue of how to use the multicasting capabilities for multimedia streaming where
peers can enter and leave a multicast stream at any time. To ensure reliable streaming, a mechanism is
needed to join and leave a multicast stream, to reserve bandwidth in the nodes along that stream, and
to use a local admission control rule for admitting multicast stream requests in a fair and transparent
way.
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Joining and leaving a multicast stream

Consider the situation that node u in the Pagoda wants to join a multicast stream S of source s. Node
u then prepares a control packet containing the demand d requested by it and sends the control packet
to s as described in Section 10.7. Along its way, the control packet will try to reserve a bandwidth of
d. If it succeeds, it will continue to reserve bandwidth along its way until it reaches a point in which
for the stream S a bandwidth of at least d is already reserved.

Every node along the multicast stream will only store for each of its incoming edges the client
requesting the stream with the largest demand.

Suppose now that some node u wants to leave a multicast stream S. Then it first checks whether
it is the client with largest demand for S that traverses itself by checking its incoming edges. If not, u
does not need to send any control packet. Otherwise, u checks whether there is a path of some client
v for S into u. If so, u prepares a control packet with the largest demand of these clients. Otherwise,
u prepares a control packet with demand 0. This control packet is sent towards the source s of S as in
Section 10.7. Each time the control packet reaches a node v that is also traversed by other clients to
S (that arrive at different incoming edges), the demand of the control packet is updated to the largest
demand of these clients. This is continued until the control packet reaches a node v traversed by some
client for S with demand larger than the original demand of u.

Rate reservation

For a rate reservation scheme to be transparent and fair, a policy is needed that gives every peer a
simple, local admission control rule with the property that if a request is admissible according to this
rule, then the rate reservation request should succeed with high probability. We will investigate two
such rules:

Suppose that every node v representing a server in the network offers multimedia streams s
(v)
1 , s

(v)
2 , . . .

with rates r
(v)
1 , r

(v)
2 , . . . so that

∑
i r

(v)
i ≤ b(v). Then consider the following rules for some client v.

• Admission rule 1: Admit any multicast request to some server w as long as b(v) ≤ b(w) and
the total demand of the requests in v does not exceed εb(v)/ log n.

• Admission rule 2: Admit any multicast request to some server w as long as v is not belonging to
any other multicast group and the demand of the request does not exceed ε min{b(v), b(w)}/ log n.

Rule 1 will normally be the case in practice because servers of streams usually have a higher bandwidth
than clients, but rule 2 would also allow multicasting if this is not true.

Theorem 10.20 When using admission rule 1 or 2, every request fulfilling this rule can be accommo-
dated in the Pagoda, w.h.p.

Proof. Recall the integral multicast routing strategy in Section 10.7. Consider any multicast problem
that fulfills rule 1 or rule 2. Using the proof of Theorem 10.15, one can easily show that for any node u
in the Pagoda, c1a(u) = c1b(u) = c1c(u) = O(ε) and c2(u) = O(ε). Hence, the expected total amount
of demand traversing u is O(εb(u)). Since any single demand through u can be at most εb(u)/ log n
(demands from or to a node v will always traverse only nodes w with b(w) ≥ b(v)), and the flows
for different servers follow paths chosen independently at random, it follows from the well-known
Chernoff bounds that the total amount of demand traversing u is also O(ε) with high probability.
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Hence, making the constant ε small enough, the admission rules 1 and 2 will work correctly with high
probability. ut

Notice that also a combination of rules 1 and 2 is allowed.

10.9 Multicasting in a dynamic setting: virtual homes
Our multicast tree approach above has several problems. First, it requires to know the position of the
server in the Pagoda to join a stream from it, and second, it requires to update the multicast stream each
time the server or a client moves. Fortunately, this problem has an easy solution: For every node v,
let h(v) ∈ [0, 1)2 be chosen independent on its position in the Pagoda. For example, h(v) may depend
on v’s IP address. Then v can treat the node closest to h(v) two DXNs above v as its personal virtual
home that only has to move if v leaves its current DXN.

Suppose that every node continuously informs its virtual home about its current position and that
virtual home responsibilities are exchanged whenever nodes exchange positions. Then v only has to
update its connection to the multicast stream if it leaves its current DXN. However, when using the
short-cut edges, such an update can be done in constant time so that the disruption of service to v is
kept at a minimum. While frequent switches between DXNs could cause frequent update operations,
a lazy virtual home update strategy can be used to easily solve this problem.

A third problem with dynamic conditions is that intermediate nodes may change their requested
bandwidth. We can use active bandwidth restrictions to ensure that the previous invariant continues to
hold, so that routing is still valid. Since the invariant continues to hold, congestion remains low and
the admission control theorems remain true.
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