
3 Scheduling
So far, we mostly looked at static routing problems such as BMFPs, i.e. all demands (or packets)
are given from the beginning and no new demands (or packets) arrive during the routing. In the real
world, however, packets are usually injected at the nodes in a continuous fashion. Models that take
this into account are called dynamic routing models, as opposed to the static routing models we mostly
considered before. These models can be usually characterized as either stochastic or adversarial. In
stochastic models, the injection of packets is modelled with the help of stochastic processes, whereas
in the adversarial model it is assumed that an adversary controls the injection of new packets [2]. In
this section, we restrict ourselves to considering the following variant of the adversarial model, which
is due to [1].

3.1 The adversarial injection model
In this model we have an adversary that is allowed to demand network bandwidth up to some specified
limit. That is, it is allowed to choose any node at any time step to inject a new packet and it is allowed
to select any path for the injected packet as long as the load of the edges does not exceed a certain
limit. More formally, for any w, λ > 0, an adversary is called a (w, λ)-bounded adversary if for
all edges e and all time intervals I of length w, it injects no more than λ · w packets during I that
contain edge e in their routing paths. λ is called the injection rate and w is called the burstiness of
the adversary. We demand that the adversary has to tell the system the paths it selects. Thus, we are
left with solving a dynamic scheduling problem. An algorithm for this problem is called a scheduling
protocol. A scheduling protocol is called stable for some λ and some network G if for any injection
rate of at most λ and any paths selected for the packets in G the (expected) worst-case routing time of
a packet (i.e. the time it spends in the system) does not grow unboundedly with time. Since an edge
can transport at most one packet per step, λ can be at most 1. A protocol that is stable for any network
and any λ < 1 is called universally stable. We will show that there are both universally stable and
non-universally stable protocols.

3.2 Queueing disciplines
Usually, every node has a packet queue for every outgoing edge. Hence, the simplest form of a
scheduling protocol are protocols in which we just define a rule about how to rank packets in a queue
so that we know which packet to send out next along an edge. Elementary queueing disciplines are:

• FIFO (first in first out): gives preference to the packet that was the first to arrive at the queue
(among those that are still in the queue).

• NTO (nearest to origin): gives preference to the packet that has traveled the smallest amount of
edges so far. Ties are broken arbitrarily.

• FTG (furthest to go): gives preference to the packet that has the largest number of edges to go.
Ties are broken arbitrarily.

• NTG (nearest to go): gives preference to the packet that has the smallest number of edges to go.
Ties are broken arbitrarily.

1



• SIS (shortest in system): gives preference to the youngest packet.

• LIS (longest in system): gives preference to the oldest packet.

Due to its simplicity, FIFO is the most widely used scheduling protocol in practice.

3.3 Universal stability of SIS
The SIS protocol always gives preference to the youngest packet. Ties may be broken arbitrarily. For
this protocol we can prove the following amazing result.

Theorem 3.1 SIS is universally stable.

Proof. Let 0 < ε < 1 be chosen such that λ = 1 − ε. Suppose that there is a packet P that
requires more than

∑d
i=1(w + 1)/εi steps to traverse a path of length d. In this case there must be

an i ∈ {1, . . . , d} for which P was delayed for at least (w + 1)/εi steps at the ith edge of its path.
Consider the minimal i for which this holds. Let e be the corresponding edge on P ’s path. Then the
time difference T between the injection of P and the time at which P had to wait for the (w + 1)/εith
time at e is at most

i∑

j=1

(w + 1)/εj =
w + 1

ε
· (1/ε)i − 1

(1/ε)− 1
= (w + 1) · (1/ε)i − 1

1− ε
.

Since λ = 1− ε, at most

(1− ε)T + w = (w + 1) ·
(
(1/ε)i − 1

)
+ w < (w + 1)/εi

packets can be injected during T time steps that intend to cross e. Only these packets can be preferred
against P at e. However, since our assumption requires P to be delayed by at least (w + 1)/εi packets
at e, we arrive at a contradiction Thus, the delay of a packet following a path of length d can be at most∑d

i=1(w + 1)/εi, and therefore SIS must be stable. ut

3.4 Universal stability of LIS
In contrast to SIS, the LIS protocol always gives preference to the oldest packet. Also LIS is stable.

Theorem 3.2 LIS is universally stable.

Proof. Let λ = 1− ε and let D be the maximal length of a path that can be chosen by the adversary.
Suppose that there is a packet that requires more than

d−1∑

j=0

(w + 1)/εD−j

steps to traverse a path of length d. Let P be the first packet with this property and let its ith edge be
the first edge at which this property is fulfilled. Let e be the ith edge on P ’s path, and let t be chosen
such that at the beginning of time step t P has an age of

∑i−2
j=0(w+1)/εD−j steps. Then P was delayed

2



at e for at least (w + 1)/εD−(i−1) steps following t. Since, according to our assumptions, the maximal
age of any packet before time step t+(w+1)/εD−(i−1) was at most

∑D−1
j=0 (w+1)/εD−j , the difference

T between this age and the age of P at time step t is at most

D−1∑

j=0

(w + 1)/εD−j −
i−2∑

j=0

(w + 1)/εD−j =
D−1∑

j=i−1

(w + 1)/εD−j =
D−i+1∑

j=1

(w + 1)/εj

=
w + 1

ε
· (1/ε)D−i+1 − 1

(1/ε)− 1

= (w + 1) · (1/ε)D−i+1 − 1

1− ε
.

Since λ = 1− ε, at most

(1− ε)T + w = (w + 1)
(
(1/ε)D−i+1 − 1

)
+ w < (w + 1)/εD−i+1

packets can be injected from time step t − ∑D−1
j=0 (w + 1)/εD−j to the injection time of P that intend

to cross e. Since these are the only packets that can delay P at e, and our assumptions require P to be
delayed by at least (w +1)/εD−i+1 packets, we arrive at a contradiction. Hence, LIS must be stable. ut

3.5 Instability of FIFO
The FIFO protocol always gives preference to the packet that was the first to arrive at a node. The next
result demonstrates that FIFO is not universally stable.

Theorem 3.3 For λ ≥ 0.85 there is a network and an adversary that causes FIFO to be unstable.

Proof. The adversary uses the network shown in Figure 1. It is not difficult to check that this network
can be embedded in a grid and a 3-dimensional hypercube. Thus, it is possible for our counterexample
to happen in important standard networks.

f’1

f1

f’0

f0

e

e 0

1

Figure 1: The counterexample for FIFO.

We divide the injection strategy of the adversary into several phases. Our induction hypothesis will
be that at the beginning of phase j there are at least s+ j packets in the buffer of ei that intend to cross
the edges ei and fi, where i = j mod 2 and s is a sufficiently large constant.

In phase 1 we have to inject packets in such a way that at the end of this phase there are m = s + 2
packets in the buffer of e0 that have a remaining path of (e0f0). This can be achieved by attaching a
set of m lines of nodes to the starting node of e0, where line i has a length of i/λ. An injection rate of

3



λ allows m packets to be injected at the endpoints of the lines, one per endpoint, so that all m packets
reach e0 at the same time. This ensures the induction hypothesis for phase 2.

We consider now an arbitrary even phase j. The odd phases work in the same way. We will show
that if at the beginning of phase j the buffer of e0 contains a set M0 of m = s + j packets with
remaining path (e0f0), then at the beginning of phase j + 1 there will be at least m + 1 packets in the
buffer of e1 that have a remaining path of (e1f1).

In the following we describe the injection strategy of the adversary for phase j. To simplify the
proof, we will avoid dealing with floors and ceilings. If m is sufficiently large, then their effects can
be neglected. Phase j consists of 3 stages.

Stage 1 consists of m steps. During this stage we inject a set M1 of λm packets with path
(e0f

′
0e1f1). These packets are blocked by the packets in M0. Furthermore, we inject λm packets

with path (f0). These packets ensure that at the end of stage 1 at least λm packets with remaining path
(f0) are still in the buffer of f0.

Stage 2 consists of λm steps. During this stage we inject a set M2 of λ2m packets with path
(f0e1f1). These are blocked by the packets that are already in the buffer of f0. Furthermore, we inject
λ2m packets with path (f ′0). These mix with the packets in M1. Every 1/λ steps we have in addition
to 1/λ packets from M1 that reach the buffer of f ′0 one packet with path (f ′0). This has the effect that
every 1 + 1/λ steps 1/λ packets from M1 pass f ′0, which reduces the number of packets in the buffer
of f ′0 after stage 2 to

λm− λm

1 + 1/λ
· 1

λ
= λm− λm

λ + 1
=

λ2m

λ + 1
.

Stage 3 consists of λ2m steps. During this stage, the packets in M1 and M2 move forward and
mix in the buffer of e1. Furthermore, λ3m packets are injected with path (e1f1). Since λ2m packets
traverse e1, the number of packets in the buffer of e1 with remaining path (e1f1) after stage 3 is equal
to λ3m + λ2m/(λ + 1).

This ends phase j. Since for λ ≥ 0.85 we have that λ3 +λ2/(λ+1) > 1, we arrive at the induction
hypothesis for phase j + 1. ut

Although FIFO cannot handle well adversarial traffic, it was shown by Bramson that it is actually
universally stable for stochastic traffic [3]. Since FIFO queues are so much easier to build than other
queues and Internet traffic is of somewhat stochastic nature, this explains why there has been no need
so far to choose queueing disciplines other than FIFO in Internet routers.

3.6 Routing in leveled networks
The stability results for SIS and LIS above demonstrate that the worst-case delay of a packet is finite,
but it may be very large. In this section we demonstrate that in certain situations much better delay
bounds can be shown.

Consider using the LIS rule in leveled networks. We assume that every packet has a rank that is
determined by its birth date plus some small offset < 1 that gives the packets a strict ordering (so that
we never run into a tie). When using the adversary in a leveled network, we only allow the adversary
to inject paths that go from lower to higher levels, i.e. for every edge e on such a path, e must go from
some node in level k to some node in level k + 1.

4



Theorem 3.4 Let L denote the depth of the leveled network. For any (w, λ)-bounded adversary with
λ ≤ 1, LIS is stable, and every packet reaches its destination in at most (1 + λw)L time steps.

Proof. Suppose on the contrary that there is a packet p0 that needs more than (1 + λw)L time steps
to reach its destination. We will use a delay sequence argument to show that this is not possible. First,
we follow p0 backwards in time from the point where it reached its destination until it was delayed
by some packet p1. We then follow p1 backwards in time until is was delayed by some packet p2,
and so on, until we get to a packet ps that had no prior delays. The path q recorded in this process is
called a delay path and must have a length of at most L, because we only allow the adversary to inject
paths with edges from level k to k + 1 for some k. Since LIS is used, we also know that for every
i ∈ {1, . . . , s}, pi must be at least as old as pi−1. Hence, the time spanned by the delay sequence must
be more than

(birth(p0)− birth(ps)) + (1 + λw)L ,

and the total amount of delay events must therefore be more than

(birth(p0)− birth(ps)) + λwL .

Furthermore, for every edge e along the delay path q we can associate an interval Ie containing the
birth dates of all packets recorded in the delay sequence at e. Since the birth dates of the packets are
strictly decreasing, the Ie’s can be chosen so that

• ∑
e∈q |Ie| ≤ birth(p0)− birth(ps), where

• for every edge e at which no delay was recorded, Ie = [r, r] where r is the rank of the packet
that passed through e, and

• for any two edges e and e′ on the delay path q, Ie ∩ I ′e = ∅.

On the other hand, the number of packets that can be injected during Ie with a path through e is at
most λ(|Ie|+ w). Hence, the number of packets that can be injected during the time span of the delay
sequence,

⋃
e Ie, is at most

∑
e∈q

λ(|Ie|+ w) ≤ ∑
e∈q

|Ie|+ λwL ≤ (birth(p0)− birth(ps)) + λwL ,

which contradicts the fact that there have to be more than (birth(p0)− birth(ps)) +λwL delays along
the delay path. ut

Though LIS works fine if there is always sufficient space for packet buffering, it can run into
problems if this is not the case. Here, the enforced longest in system (or ELIS) protocol can be used.

Enforced longest in system

ELIS is a variant of LIS that was developed for leveled graphs to enforce that packets arrive at their
destinations in a strictly ordered way based on their age. This can be important, for example, for
consistent data updates.

We assume that every node has a queue of size q for every incoming edge. The packets are assigned
ranks in order to decide which packet is preferred in case of contention. For each packet p, let birth(p)

5



denote the time step at which p was injected. The rank of p is set to birth(p) plus some small value x
from the interval [0, κ), for some κ < 1, where x is chosen such that each packet has its own, unique
rank (e.g., by using the identification number of the process that injected the packet). Packets with
smaller ranks, i.e., older packets, are always preferred against packets with higher rank, i.e., younger
packets. Special ghost packets help the algorithm to maintain the following invariant:

A packet is routed along an edge only after all the other packets with lower ranks that must pass
through the edge have done so.

Suppose that we have a network with L+1 levels, numbered from 0 to L. For every packet injected
into the system, the adversary has to provide a path that starts at some source node in level i, ends at
some destination in level j > i, and that only uses edges that go from some level k to some level k+1.
In order to give time for initializing the network, we assume that packet injections on level k do not
start before time step k.

The following algorithm is executed for each outgoing link e of a node v on level k in each time
step t ≥ k (recall that each edge buffer can hold up to q packets):

• Let r denote the minimum rank of a packet that is stored in one of v’s buffers and that aims to
pass edge e. If there is no such packet then r = ∞.

• Let g denote the minimum over all ranks of packets or ghost packets that arrived at v at the
beginning of step t. If there is no such packet (as v is a node without incoming edges, e.g., on
level 0) then g is set to t + κ.

• if r < g then
if the buffer of e contains less than q packets at the beginning of step t then

forward the (unique) packet with rank r along e
else send a ghost packet with rank r along e

else send a ghost packet with rank g along e.

Ghost packets are discarded as soon as they are delayed in a step. Thus, they never block the buffer for
following packets. The role of the ghost packets is to enforce the invariant given above. They make
sure that edges in larger levels are always kept informed about which is the largest rank of a packet at
a smaller level that may still want to traverse that edge.

Theorem 3.5 ([4]) Let L denote the depth of the leveled network and q be the size of the edge buffers.
For any (w, λ)-bounded adversary with w ≤ (q − 2)/(2λ) and 0 ≤ λ ≤ 1, ELIS is stable, and every
packet reaches its destination in at most (1 + λ · w)L time steps.

3.7 Routing in arbitrary networks
Suppose that we want to route packets efficiently in an arbitrary network. If we make sure that all paths
used by the packets are shortest possible (or short-cut free) paths (as this is the case for x−y-routing in
the mesh), we can use the growing rank protocol or GRP to achieve a low delay. The GRP is basically
a combination of LIS and NTO. The initial rank of a packet is equal to its injection time. Every time a
packet crosses an edge, its rank is increased by some parameter σ. For any edge queue in the system,

6



GRP gives preference to the packet with smallest rank. Ties are broken based on the source ID of the
packet (or other unique information).

Using a stochastic injection model (λ represents the average number of packets injected at a step
that traverse an edge, and each injection process at a node injects packets independently from other
processes and other steps), the following result can be shown for the GRP.

Theorem 3.6 ([4]) Suppose all routing paths are shortest paths. Then GRP is stable for any injection
rate λ up to some 1− ε with ε = Θ((log σ)/

√
σ). Furthermore, the routing time for any packet p that

has to travel along a routing path of length d is O(σ · d), expected, and O(σ · (d + log N)), with high
probability.

References
[1] M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, and Z. Liu. Universal stability results

for greedy contention-resolution protocols. In Proc. of the 37th IEEE Symp. on Foundations of Computer
Science (FOCS), pages 380–389, 1996.

[2] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Adversarial queueing theory. In
Proc. of the 28th ACM Symp. on Theory of Computing (STOC), pages 376–385, 1996.

[3] M. Bramson. Convergence to equilibria for fluid models of fifo queueing networks. Queueing Systems,
22:5–45, 1996.

[4] C. Scheideler and B. Vöcking. From static to dynamic routing: Efficient transformations of store-and-
forward protocols. In Proc. of the 31st ACM Symp. on Theory of Computing (STOC), pages 215–224, 1999.

7


