
6 Supervised Overlay Networks I
Every application run on multiple machines needs a mechanism that allows the machines to exchange
information. An easy way of solving this problem is that every machine knows the domain name or IP
address of every other machine. While this may work well for a small number of machines, large-scale
distributed applications such as file sharing or grid computing systems need a different, more scalable
approach: instead of forming a clique (where everybody knows everybody else), each machine should
only be required to know some small subset of other machines. This graph of knowledge can be seen
as a logical network interconnecting the machines, which is also known as an overlay network. A
prerequisite for an overlay network to be useful is that it has good topological properties. Among the
most important are:

• Degree: Ideally, the degree should be kept small to avoid a high update cost if a node enters or
leaves the system.

• Diameter: The diameter should be small to allow the fast exchange of information between any
pair of nodes in the network.

• Expansion: The expansion of a graph G = (V,E) is defined as

β(G) = min
U⊆V : |U |≤|V |/2

|N(U)|
|U |

where N(U) is the set of neighbors of U . To ensure a high fault tolerance, the expansion should
be as large as possible.

The question is how to realize such an overlay network in a distributed environment where peers may
continuously enter and leave the system. This will be the topic of our investigations for the coming
weeks.

We start in this section with the study of supervised overlay networks. These networks were
investigated, e.g., in [1, 2, 3]. In a supervised overlay network, the topology is under the control of
a special machine (or node) called the supervisor. All nodes that want to join or leave the network
have to declare this to the supervisor, and the supervisor will then take care of integrating them into or
removing them from the network. All other operations, however, may be executed without involving
the supervisor. In order for a supervised network to be highly scalable, two central requirements have
to be fulfilled:

1. The supervisor needs to store at most a polylogarithmic amount of information about the network
at any time (i.e., if there are n nodes in the network, storing contact information about O(log2 n)
of these nodes would be fine, for example), and

2. it takes at most a constant number of communication rounds to include a new node into or
exclude an old node from the network.

A communication round is over once all the packets that existed at the beginning of the communica-
tion round have been delivered. The packets generated by these packets will participate in the next
communication round.

1

We show in the following how these requirements can be achieved, using a general approach
called the recursive labeling approach. To simplify the presentation, we assume that all departures are
graceful, i.e., every node leaving the system informs the supervisor about this and may provide some
additional information simplifying the task of the supervisor to repair the network.

6.1 The recursive labeling approach
In the recursive labeling approach, the supervisor assigns a label to every node that wants to join the
system. The labels are represented as binary strings and are generated in the following order:

0, 1, 01, 11, 001, 011, 101, 111, 0001, 0011, 0101, 0111, 1001, 1011, . . .

Basically, when stripping off the least significant bit, then the supervisor is first creating all binary
numbers of length 0, then length 1, then length 2, and so on. More formally, consider the mapping
` : IN0 → {0, 1}∗ with the property that for every x ∈ IN0 with binary representation (xd . . . x0)2

(where d is minimum possible),
`(x) = (xd−1 . . . x0xd) .

Then ` generates the sequence of labels displayed above. In the following, it will also be helpful to
view labels as real numbers in [0, 1). Let the function r : {0, 1}∗ → [0, 1) be defined so that for every
label ` = (`1`2 . . . `d) ∈ {0, 1}∗,

r(`) =
d∑

i=1

`i

2i
.

Then the sequence of labels above translates into

0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, 7/16, 9/16, . . .

Thus, the more labels are used, the more densely the [0, 1) interval will be populated. Furthermore, we
will use the function b : [0, 1) → {0, 1}∗ that translates a real number back into a label.

When using the recursive labeling approach, the supervisor aims to maintain the following invariant
at every step:

Invariant 6.1 The set of labels used by the nodes is {`(0), `(1), . . . , `(n− 1)}, where n is the current
number of nodes in the system.

This invariant is preserved when using the following simple strategy:

• Whenever a new node v joins the system and the current number of nodes is n, the supervisor
assigns the label `(n) to v and increases n by 1.

• Whenever a node w with label ` wants to leave the system, the supervisor asks the node with
currently highest label `(n− 1) to change its label to ` and reduces n by 1.

How does this strategy help us with maintaining dynamic overlay networks? We will see how this
works in the following subsections. To keep things simple, we start with a cycle.

2

6.2 Recursively maintaining a cycle
We start with some notation. In the following, the label assigned to some node v will be denoted as
`v. Given n nodes with unique labels, we define the predecessor pred(v) of node v as the node w for
which r(`w) is closest from below to r(`v), and we define the successor succ(v) of node v as the node
w for which r(`w) is closest from above to node r(`v) (viewing [0, 1) as a ring in both cases). Given
two nodes v and w, we define their distance as

δ(v, w) = min{(1 + r(`v)− r(`w)) mod 1, (1 + r(`w)− r(`v)) mod 1} .

In order to maintain a cycle among the nodes, we simply have to maintain the following invariant:

Invariant 6.2 Every node v in the system is connected to pred(v) and succ(v).

Now, suppose that the labels of the nodes are generated via the recursive strategy above. Then we
have the following properties:

Lemma 6.3 Let n be the current number of nodes in the system, and let n̄ = 2blog nc. Then for every
node v ∈ V :

• |`v| ≤ dlog ne and

• δ(v, pred(v)) ∈ [1/(2n̄), 1/n̄] and δ(v, succ(v)) ∈ [1/(2n̄), 1/n̄].

So the nodes are approximately evenly distributed in [0, 1) and the number of bits for storing a
label is almost as low as it can be without violating the uniqueness requirement. But how does the
supervisor maintain the cycle? This is implied by the following demand, where n is again the current
number of nodes in the system.

Invariant 6.4 At any time, the supervisor stores the contact information of pred(v), v, succ(v), and
succ(succ(v)) where v is the node with label `(n− 1).

In order to satisfy Invariants 6.2 and 6.4, the supervisor performs the following actions, where v is
the node with label `(n− 1) in the system.

If a new node w joins, then the supervisor

• informs w that `(n) is its label, succ(v) is its predecessor, and succ(succ(v)) is its successor,

• informs succ(v) that w is its new successor,

• informs succ(succ(v)) that w is its new predecessor,

• asks succ(succ(v)) to send its successor information to the supervisor, and

• sets n = n + 1.

If an old node w leaves and reports `w, pred(w), and succ(w) to the supervisor (recall that we are
assuming graceful departures), then the supervisor

3

• informs v (the node with label `(n− 1)) that `w is its new label, pred(w) is its new predecessor,
and succ(w) is its new successor,

• informs pred(w) that its new successor is v,

• informs succ(w) that its new predecessor is v,

• informs pred(v) that succ(v) is its new successor,

• informs succ(v) that pred(v) is its new predecessor,

• asks pred(v) to send its predecessor information to the supervisor and to ask pred(pred(v)) to
send its predecessor information to the supervisor, and

• sets n = n− 1.

A detailed implementation of the leave and join operations can be found in Figures 1 and 2. In this
implementation, we assume for simplicity that references to relay points can be freely exchanged, i.e.,
identities are not needed. It will be an assignment to implement the join and leave operations with the
identity concept. The following lemma is not difficult to check and will also be an assignment.

Lemma 6.5 The join and leave operations preserve Invariants 6.2 and 6.4.

Hence, we arrive at the following theorem, which implies that our central requirements on a super-
visor are kept.

Theorem 6.6 At any time, the supervisor only needs to store the current value of n and a constant
amount of contact information, and the join and leave operations only need a constant amount of
messages and three communication rounds to complete.

6.3 Concurrency
The above scheme only allows the supervisor to execute join and leave operations in a strictly sequen-
tial manner because it only has sufficient information to integrate or remove one peer at a time. In order
to be able to handle d join or leave requests in parallel, we extend Invariant 6.2 with the following rule:

Invariant 6.7 In addition to Invariant 6.2, every node v in the system is connected to its dth predeces-
sor predd(v) and its dth successor succd(v).

Furthermore, given that v is the node with label `(n− 1), Invariant 6.4 needs to be extended to:

Invariant 6.8 At any time, the supervisor stores the contact information of v, the 2d successors of v,
and the 3d predecessors of v.

These invariants are preserved in the following way.

4

Supervisor {

Supervisor() {
n := 0 # counter
v := NULL # node with label `(n− 1)
pv := NULL # pred(v)
sv := NULL # succ(v)
ssv := NULL # succ(succ(v))

}

Join(w: Relay) {
if (n = 0) {

w ← setup(0, w, w)
pv := w
v := w
sv := w
ssv := w

} else {
w ← setup(`(n), sv, ssv)
sv ← setSucc(w)
ssv ← setPred(w)
pv := sv
v := w
sv := ssv
ssv := ssv ← getSucc()

}
n := n + 1

}

Leave(`: Int, pw: Relay, sw: Relay) {
if (n > 0) {

if (n = 1) {
pv := NULL, v := NULL
sv := NULL, ssv := NULL

} else {
remove v from the system
pv ← setSucc(sv)
sv ← setPred(pv)
if (pw = v) pw := pv
if (sw = v) sw := sv
move v into position of w
if (v 6= w) {

v ← setup(`, pw, sw)
pw ← setSucc(v)
sw ← setPred(v)

}
update pointers
if (pv = w) pv := v
if (sv = w) sv := v
ssv := sv
sv := pv
v := pv ← getPred()
pv := pv ← getPredPred()

}
n := n− 1

}
}
}

Figure 1: Operations needed by the supervisor to maintain a cycle.

Concurrent Join Operation. In the following, let v be the node with label `(n − 1). Let succi(v)
denote the ith successor of v on the cycle and predi(v) denote the ith predecessor of v on the cycle.

Let the d new peers be w1, w2, . . . wd. Then the supervisor integrates wi between succi(v) and
succi+1(v) for every i ∈ {1, . . . , d}. As is easy to check, this will violate Invariant 6.7 for the 2d
closest successors of v and the d − 2 closest predecessors of v. But since the supervisor knows all
of these nodes, it can directly inform them about the change. In order to repair Invariant 6.8, the
supervisor will request information about the dth successor from the d furthest successors of v and
will set v to wd.

Concurrent Leave Operation. Let the d peers that want to leave the system be w1, w2, . . . , wd. For
simplicity, we assume that they are outside of the peers known to the supervisor and that they are not
in the neighborhood of each other, but our strategy below can also be extended to these cases. The
strategy of the supervisor is to replace wi by pred2(i−1)(v) for every i. As is easy to check, this will

5

Peer {

Peer() {
label := 0 # label of peer v
succ := NULL # succ(v)
pred := NULL # pred(v)
sr := new Relay() # relay point of v

}

Join(s: Relay) { # relay of supervisor
if (s 6= NULL) {

s ← Join(sr)
super := s # current supervisor

}
}

Leave() {
if (super 6= NULL)

super ← Leave(label, pred, succ)
super := NULL

}

setup(` : Int, p : Relay, s : Relay) {
label := `
pred := p
succ := s

}

setSucc(w: Relay) {
succ := w

}

setPred(w: Relay) {
pred := w

}

getSucc(): Relay {
return succ

}

getPred(): Relay {
return pred

}

getPredPred(): Relay {
return pred ← getPred()

}

Figure 2: Operations needed by a peer to maintain a cycle.

violate Invariant 6.7 for the d closest successors of v and the 3d closest predecessors of v. But since the
supervisor knows all of these nodes, it can directly inform them about the change. In order to repair
Invariant 6.7, the supervisor will request information about the dth predecessor from the d furthest
predecessors of v and their dth predecessors and will set v to pred2d(v).

The operations have the following performance.

Theorem 6.9 The supervisor needs at most O(d) work and O(1) time (given that the work can be
done in parallel) to process d join or leave requests.

6.4 Multiple Supervisors
If a supervised network becomes so large that a single supervisor cannot manage all of the join and
leave requests, one can easily extend the supervised cycle to multiple supervisors. Suppose that we
have k supervisors S0, S1, · · ·Sk−1. Then the [0, 1)-ring is split into the k regions Ri = [(i−1)/k, i/k),
1 ≤ i ≤ k, and supervisor Si is responsible for region Ri. Every supervisor manages its region as
described for a single supervisor above, i.e., it treats it like a [0, 1)-interval, except for the borders,
and the borders are maintained by communicating with the neighboring supervisors on the ring. The
supervisors themselves form a completely interconnected network.

6

Each time a new node v wants to join the system via some supervisor Si, Si forwards it to a random
supervisor to integrate v into the system. Each time a node v under some supervisor Si wants to leave
the system, Si replaces that node with the last node it inserted into Ri. Using standard Chernoff
bounds, we get:

Theorem 6.10 Let n be the total number of nodes in the system. If the join-leave behavior of the
nodes is independent of their positions, then it holds for every i ∈ {1, . . . , k} that the number nodes
currently placed in Ri is in the range n/k ±O(

√
(n/k) log k + log k), with high probability.

Hence, if n is sufficiently large compared to k, then the multi-supervised cycle has basically the
same properties as the single-supervised cycle above. If the join-leave behavior of the nodes is adver-
sarial, then the rules of assigning every new node to the least loaded region Ri and replacing every
leaving node with the node inserted last into the most loaded region Ri will keep a balanced distribu-
tion of the nodes among the regions.

6.5 Recursively maintaining a tree
The cycle has a low degree but its diameter and expansion are very bad. The simplest way of achieving
a low diameter is to use a tree. Thus, next we discuss how to recursively maintain a tree. As for
the cycle, our basic approach will be to preserve something similar to Invariant 6.1, with the only
difference that we want to keep the labels from `(1) to `(n) (instead of `(0) to `(n− 1)). We will also
preserve Inviarant 6.2, though the edges implied by this Invariant will not be part of the tree. But they
will tremendously simplify the task of maintaining a tree, as we will see. Altogether, the following
connectivity information has to be preserved.

Invariant 6.11 Every node v in the system with label `v = (`1 . . . `d) is connected to

1. pred(v) and succ(v) (to form a cycle) and

2. the nodes with labels (`1 . . . `d−21), (`1 . . . `d−101), and (`1 . . . `d−111), if they exist (to form a
tree).

Suppose that this invariant is kept at any time. Then the following lemma follows.

Lemma 6.12 At any time, the n nodes form a binary tree of depth dlog ne − 1.

Proof. Consider a binary tree with n nodes, and label the edge to the left child of any node “0” and
to the right child of any node “1”. Let the label tv of every node v in this tree be the sequence of edge
labels when moving along the unique path from the root to v. Then every node v with label (`1 . . . `d)
is connected to the node with label (`1 . . . `d−1) (its parent), if it exists, and is also connected to the
nodes with labels (`1 . . . `d0) and (`1 . . . `d1) (its children), if they exist. Defining tv as `v (the label of
v in our network) without the least significant bit, we see that Invariant 6.11(2) fulfills the connectivity
requirements of a tree. Since it follows from Lemma 6.3 that every node has a label of size at most
dlog ne, the depth of the tree can be at most dlog ne − 1. ut

Next we specify the connectivity information the supervisor needs in order to maintain the tree.

7

Invariant 6.13 At any time, the supervisor stores the contact information of pred(v), v, succ(v), and
succ(succ(v)) where v is the node with label `(n).

Hence, the supervisor does not need any further connectivity information beyond what it needs for
the cycle. In order to satisfy Invariants 6.11 and 6.13, the supervisor performs the following actions.
If a new node w joins, then the supervisor

• informs w that `(n+1) is its label, succ(v) is its predecessor, and succ(succ(v)) is its successor,
and succ(v) resp. succ(succ(v)) is its parent (depending on `(n + 1)),

• informs succ(v) that w is its new successor,

• informs succ(succ(v)) that w is its new predecessor,

• asks succ(succ(v)) to send its successor information to the supervisor, and

• sets n = n + 1.

Hence, from the point of view of the supervisor, the inclusion of a new node is almost identical to the
cycle.

If an old node w leaves and reports `w, pred(w), succ(w), parent(w), lchild(w), and rchild(w) to
the supervisor, then the supervisor again executes almost the same steps as for the cycle.

When using the code for the supervisor given in Figure 3 and the code for the peers given in
Figure 4, it is not difficult to prove the following lemma. Notice that for simplicity, we assume again
that relay points can be freely exchanged.

Lemma 6.14 The join and leave operations preserve Invariants 6.11 and 6.13.

Hence, we arrive at the following theorem.

Theorem 6.15 At any time, the supervisor only needs to store the current value of n and a constant
amount of contact information, and the join and leave operations only need a constant amount of
messages and three communication rounds to complete.

Broadcasting

The dynamic tree can be used for efficient broadcasting. Suppose that some node v wants to broadcast
information to all other nodes in the system. One way of solving this is that it forwards the broadcast
message directly to the supervisor (so that the supervisor can authorize the broadcast, for example)
and the supervisor initiates sending the broadcast message down the tree. A prerequisite for this is that
the supervisor remembers the node with label 0, called root by it. If this is the case, then the code in
Figure 5 will be executed correctly.

Inspecting the code, we arrive at the following result, which is optimal for broadcasting in constant
degree networks. Here, the dilation means the longest path taken by a message in the broadcast
operation.

Theorem 6.16 The broadcast operation has a dilation of O(log n) and requires a work of O(n).

8

Supervisor {

Supervisor() {
n := 0 # counter
v := NULL # node with label `(n)
pv := NULL # pred(v)
sv := NULL # succ(v)
ssv := NULL # succ(succ(v))

}

Join(w: Relay) {
n := n + 1
if (n = 1) {

w ← setup(0, w, w, NULL, NULL, NULL)
pv := w
v := w
sv := w
ssv := w

} else {
if (`(n)&2 = 0) {

w ← setup(`(n), sv, ssv, ssv, NULL, NULL)
ssv ← setRightChild(w)

} else {
w ← setup(`(n), sv, ssv, sv, NULL, NULL)
sv ← setLeftChild(w)

}
sv ← setSucc(w)
ssv ← setPred(w)
pv := sv
v := w
sv := ssv
ssv := ssv ← getSucc()

}
}

Leave(`: Int, pw: Relay, sw: Relay,
fw, lcw, rcw: Relay) {

if (n > 0) {
if (n = 1) {

pv := NULL, v := NULL
sv := NULL, ssv := NULL

} else {
remove v from tree
if (`(n− 1)&2 = 0) sv ← setRightChild(NULL)

else pv ← setLeftChild(NULL)
pv ← setSucc(sv)
sv ← setPred(pv)
if (pw = v) pw := pv
if (sw = v) sw := sv
if (lcw = v) lcw := NULL
if (rcw = v) rcw := NULL
move v into position of w
if (v 6= w) {

v ← setup(`, pw, sw, fw, lcw, rcw)
pw ← setSucc(v)
sw ← setPred(v)
if (`&2 = 0)

fw ← setRightChild(v)
else

fw ← setLeftChild(v)
if (lcw 6= NULL) lcw ← setParent(v)
if (rcw 6= NULL) rcw ← setParent(v)

}
update pointers
if (pv = w) pv := v
if (sv = w) sv := v
ssv := sv
sv := pv
v := pv ← getPred()
pv := pv ← getPredPred()

}
n := n− 1

}
}
}

Figure 3: Operations needed by the supervisor to maintain a tree.

References
[1] K. Kothapalli and C. Scheideler. Supervised peer-to-peer systems. In Proc. of the 2005 International

Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN), 2005.

[2] C. Riley and C. Scheideler. A distributed hash table for computational grids. In 18th Int. Parallel and
Distributed Processing Symposium (IPDPS), 2004.

[3] C. Riley and C. Scheideler. Guaranteed broadcasting using SPON: A supervised peer overlay network. In
3rd International Zürich Seminar on Communications (IZS), 2004.

9

Peer {
Peer() {

label := 0 # label of peer v
succ := NULL # succ(v)
pred := NULL # pred(v)
parent := NULL
lchild := NULL
rchild := NULL
sr := new Relay() # relay point of v

}

Join(s: Relay) {
if (s 6= NULL) {

s → Join(sr)
super := s # current supervisor

}
}

Leave() {
if (super 6= NULL)

super ← Leave(label, pred, succ, parent, lchild, rchild)
super := NULL

}

setup(` : Int, p : Relay, s : Relay, f : Relay,
lc: Relay, rc: Relay) {

label := `
pred := p
succ := s
parent := f
lchild := lc
rchild := rc

}

setSucc(w: Relay) {
succ := w

}

setPred(w: Relay) {
pred := w

}

setParent(w: Relay) {
parent := w

}

setLeftChild(w: Relay) {
lchild := w

}

setRightChild(w: Relay) {
rchild := w

}

getSucc(): Relay {
return succ

}

getPred(): Relay {
return pred

}

getPredPred(): Relay {
return pred ← getPred()

}

Figure 4: Operations needed by a peer to maintain a tree.

10

operations of supervisor

Broadcast(m : Message) {
root ← sendDown(m)

}

operations of peer

Broadcast(m : Message) {
if (super 6= NULL) super ← Broadcast(m)

}

sendDown(m : Message) {
if (lchild 6= NULL) lchild ← sendDown(m)
if (rchild 6= NULL) rchild ← sendDown(m)
handle broadcast message

}

Figure 5: Implementation of a broadcast operation in the dynamic tree.

11

