4. Schönhage/Paterson/Pippenger-Median-Algorithmus

Definition 81

Sei $k \in \mathbb{N} \setminus \{0\}$. P_k ist die folgende partielle Ordnung:

Also: Spezielle Binomialbäume mit "Zentrum".

Definition 82

- Oer Baum H₀ besteht aus einem Knoten, und dieser ist auch das Zentrum.
- H_{2h}(h > 0) besteht aus zwei H_{2h-1}, deren Zentren durch eine neue Kante verbunden sind. Das Zentrum des H_{2h} ist das kleinere der beiden Zentren der H_{2h-1}.
- *H*_{2h+1}(*h* ≥ 0) besteht aus zwei *H*_{2h}, deren Zentren durch eine neue Kante verbunden sind, sein Zentrum ist das größere dieser beiden Zentren.

Lemma 83 (Zerlegungslemma)

- a) H_h hat 2^h Knoten, es werden $2^h 1$ Vergleiche benötigt, um H_h zu konstruieren.
- b) H_{2h} kann zerlegt werden in
 - sein Zentrum
 - eine Menge {*H*₁, *H*₃,..., *H*_{2*h*-1}} von disjunkten Teilbäumen, deren Zentren alle größer sind als das Zentrum von *H*_{2*h*}.
 - eine Menge { $H_0, H_2, H_4, \dots, H_{2h-2}$ } von disjunkten Teilbäumen mit Zentren kleiner als das von H_{2h} .

Lemma 83 (Zerlegungslemma)

c) H_{2k+1} kann so zerlegt werden, dass die Zusammenhangskomponente des Zentrums genau 2^k Knoten \geq dem Zentrum enthält, indem höchstens $2^{k+1} - 1$ Kanten entfernt werden.

 H_{2k} kann so zerlegt werden, dass die

Zusammenhangskomponente des Zentrums genau 2^k Knoten enthält, die alle \leq dem Zentrum sind, indem höchstens $2^k - 1$ Kanten entfernt werden.

d) Falls k ≤ 2^h − 1, dann kann H_{2h} so zerlegt werden, dass die Zusammenhangskomponente des Zentrums genau 2k + 1 Elemente enthält, von denen k größer und k kleiner als das Zentrum sind (⇒ P_k).
Dazu genügt es, höchstens 3k + 2h Kanten zu entfernen. Die restlichen Zusammenhangskomponenten sind wieder H_i's.

Zerlegungslemma

Bemerkung: Bei jedem Konstruktionsschritt wird ein Vergleich durchgeführt, um zu bestimmen, welcher der beiden Teilbäume das kleinere Zentrum hat. Im Algorithmus von Schönhage, Paterson und Pippenger werden aus Teilstücken H_r größere Bäume H_{r+1} zusammengebaut, wodurch schrittweise eine partielle Ordnung auf den Eingabewerten bestimmt wird. Wurde ein Baum H_{2h} hinreichender Größe hergestellt, so wird er durch Zerlegung in einen Baum umgewandelt, der nur noch sein altes Zentrum sowie k darüberliegende und k darunterliegende Elemente enthält, wobei $k \leq 2^h - 1$.

Beispiel 84

In diesem Beispiel wollen wir H_4 zerlegen und wählen k = 3:

Um einen H_4 derart zu zerlegen, müssen wir 5 Kanten aufbrechen. Dabei werden drei H_0 , ein H_1 sowie ein H_2 abgespalten.

Übrig bleibt die gewünschte Struktur mit k Knoten über dem Zentrum und k unter dem Zentrum, wodurch eine partielle Ordnung auf 2k + 1 Eingabewerten bestimmt wurde:

Die bei der Zerlegung angefallenen Reststücke werden beim Aufbau weiterer Bäume benutzt. So geht das bereits angesammelte Wissen über die Ordnung der Elemente nicht verloren.

Wir beweisen nun die Teile a) bis d) des Zerlegungslemmas.

Lemma 85

 H_r hat 2^r Knoten, es werden $2^r - 1$ Vergleiche benötigt, um H_r aufzubauen.

Beweis:

= A D S

Ernst W. Mavr

In jedem der r Konstruktionsschritte wird die Anzahl der Knoten verdoppelt. Da wir mit einem Knoten beginnen, hat H_r folglich 2^r Knoten. Die Anzahl der notwendigen Vergleiche C_r unterliegt folgender Rekursionsgleichung $(r \ge 1)$:

$$C_r = 1 + 2C_{r-1} \text{ und } C_0 = 0$$
.

Damit folgt sofort $C_r = 2^r - 1$.

Lemma 86

 H_r kann in folgende disjunkte Bereiche unterteilt werden:

- sein Zentrum,
- eine Reihe H₁, H₃,..., H_{r-1} (r gerade) bzw..., H_{r-2} (r ungerade) von Unterbäumen, deren Zentren über dem von H_r liegen,
- eine Reihe $H_0, H_2, ..., H_{r-2}$ (r gerade) bzw. ..., H_{r-1} (r ungerade) von Unterbäumen, deren Zentren unter dem von H_r liegen.

Beweis: Durch Induktion über r. Induktionsanfang: für H_0 gilt die Behauptung.

Induktionsannahme: die Behauptung gelte für H_{r-1} .

Beweis:

 H_{2h} besteht aus zwei H_{2h-1} , wobei das kleinere der beiden alten Zentren das neue Zentrum z bildet. Wende auf den H_{2h-1} , der z enthält, die Induktionsannahme an. Wir können diesen Unterbaum also in z sowie $H_1, H_3, \ldots, H_{2h-3}$ (Zentren über z) und $H_0, H_2, \ldots, H_{2h-2}$ (Zentren unter z) partitionieren. Zusammen mit dem H_{2h-1} , dessen Zentrum über z liegt, ergibt sich die Induktionsbehauptung für H_{2h} .

Beweis:

Sei r = 2h + 1, h ≥ 0. H_{2h+1} besteht aus zwei H_{2h}, wobei das größere der beiden alten Zentren das neue Zentrum z bildet. Wende auf den H_{2h}, der z enthält, die Induktionsannahme an. Wir können diesen Unterbaum also in z sowie H₁, H₃,..., H_{2h-1} (Zentren über z) und H₀, H₂,..., H_{2h-2} (Zentren unter z) partitionieren. Zusammen mit dem H_{2h}, dessen Zentrum unter z liegt, ergibt sich die Induktionsbehauptung für H_{2h+1}.

Wir bezeichnen im Folgenden mit H_{2h}^- den Baum, der entsteht, wenn wir H_{2h} so zerlegen, dass alle Elemente oberhalb des Zentrums wegfallen. Mit H_{2h+1}^+ bezeichnen wir den Baum, der entsteht, wenn wir H_{2h+1} so zerlegen, dass alle Elemente unterhalb des Zentrums wegfallen.

Lemma 87 H_{2h}^- und H_{2h+1}^+ haben jeweils 2^h Knoten. Bei der Herstellung aus H_{2h} bzw. H_{2h+1} werden $2^h - 1$ bzw. $2^{h+1} - 1$ Kanten aufgebrochen. Die wegfallenden Teile haben die Form H_s , s < 2hbzw. s < 2h + 1.

Beweis:

Durch Induktion über r.

Induktionsanfang: für H_0 und H_1 gilt die Behauptung. Induktionsannahme: die Behauptung gilt für alle H_p , p < r.

Sei r = 2h, h > 0. Wir betrachten die Partitionierung von H_{2h} mit Zentrum z wie in Lemma 86. Die Unterbäume H₁, H₃, ..., H_{2h-1} haben ihre Zentren oberhalb von z. Wir trennen sie von H_{2h}, indem wir h Kanten aufbrechen. Die abgetrennten Teile haben offensichtlich die Form H_s, s < 2h. Bei den Unterbäumen H₀, H₂, ..., H_{2h-2}, mit Zentren unterhalb von z, wenden wir jeweils die Induktionsannahme an, d.h. wir erzeugen H₀⁻, H₂⁻, ..., H_{2h-2}⁻. Als Ergebnis erhalten wir H_{2h}⁻.

Damit gilt für die Zahl der aufzubrechenden Kanten $K^-(2h)$ zur Herstellung von $H^-_{2h}\!\!:$

$$K^{-}(2h) = h + \sum_{i=0}^{h-1} K^{-}(2i) \stackrel{I.A.}{=} h + \sum_{i=0}^{h-1} (2^{i} - 1) = \sum_{i=0}^{h-1} 2^{i} = 2^{h} - 1.$$

Für die Zahl $E^-(2h)$ der Elemente in H^-_{2h} gilt:

$$E^{-}(2h) = 1 + \sum_{i=0}^{h-1} E^{-}(2i) \stackrel{I.A.}{=} 1 + \sum_{i=0}^{h-1} 2^{i} = 1 + \underbrace{\sum_{i=1}^{h} 2^{i-1}}_{2^{h}-1} = 2^{h}.$$

2 Sei r = 2h + 1, h > 0. Wir betrachten die Partitionierung von H_{2h+1} mit Zentrum z wie in Lemma 86. Die Unterbäume H_0 , H_2, \ldots, H_{2h} haben ihre Zentren unterhalb von z. Wir trennen sie von H_{2h+1} , indem wir h+1 Kanten aufbrechen. Die abgetrennten Teile haben offensichtlich die Form H_s , s < 2h + 1. Bei den Unterbäumen $H_1, H_3, \ldots, H_{2h-1}$, mit Zentren oberhalb von z, wenden wir jeweils die Induktionsannahme an, d.h. wir erzeugen H_1^+ , H_3^+ , ..., H_{2h-1}^+ . Als Ergebnis erhalten wir H_{2h+1}^+ . Damit gilt für die Zahl der aufzubrechenden Kanten $K^+(2h+1)$ zur Herstellung von H_{2h+1}^+ :

$$K^{+}(2h+1) = h + 1 + \sum_{i=1}^{h} K^{+}(2(i-1)+1)$$
$$\stackrel{I.A.}{=} h + 1 + \sum_{i=1}^{h} (2^{i}-1) = 1 + \sum_{i=1}^{h} 2^{i}$$
$$= 1 + \underbrace{\sum_{i=1}^{h+1} 2^{i-1} - 1}_{2^{h+1}-1} = 2^{h+1} - 1.$$

Für die Zahl $E^+(2h+1)$ der Elemente in H^+_{2h+1} gilt:

$$E^{+}(2h+1) = 1 + \sum_{i=1}^{h} E^{+}(2(i-1)+1) \stackrel{I.A.}{=} 1 + \underbrace{\sum_{i=1}^{h} 2^{i-1}}_{2^{h}-1} = 2^{h}.$$

Lemma 88

Falls $k \leq 2^h - 1$, dann kann H_{2h} so zerlegt werden, dass die Komponente des Zentrums genau 2k + 1 Elemente enthält, kdavon über und k unter dem Zentrum. Dazu müssen $\leq 3k + 2h$ Kanten entfernt werden. Die entfernten Teile sind von der Form H_s , s < 2h.

Beweis:

Betrachte die Binärdarstellung von $k = k_0 2^0 + k_1 2^1 + \dots + k_{h-1} 2^{h-1}$ und die Partitionierung von H_{2h} mit Zentrum z wie in Lemma 86.

Für jedes i mit $k_i = 1$, betrachte H_{2i+1} aus der Sequenz H_1 , H_3 , ..., H_{2h-1} von Unterbäumen, deren Zentren oberhalb von z liegen, und schneide alle Elemente aus H_{2i+1} , die kleiner als sein Zentrum sind (bilde also H_{2i+1}^+). Dazu müssen höchstens 2k Kanten aufgebrochen werden, denn jedes $k_i = 1$ steht für 2^i in k, kostet aber nach Lemma 87 $K^+(2i+1) = 2^{i+1} - 1$ Kanten, also:

$$\sum_{i=0}^{h-1} k_i K^+(2i+1) \le 2k \,.$$

Für jedes *i* mit $k_i = 0$, schneide H_{2i+1} ganz weg. Dabei werden $\leq h$ Kanten aufgebrochen. Genau *k* Elemente oberhalb *z* bleiben zurück, da jedes $k_i = 1$ für 2^i in *k* steht, und ein H_{2i+1}^+ genau $E^+(2i+1) = 2^i$ Elemente enthält, also:

$$\sum_{i=0}^{h-1} k_i E^+(2i+1) = k \,.$$

Für jedes *i* mit $k_i = 1$, betrachte H_{2i} aus der Sequenz H_0 , H_2 , ..., H_{2h-2} von Unterbäumen, deren Zentren unterhalb von *z* liegen, und schneide alle Elemente aus H_{2i} , die größer als sein Zentrum sind (bilde also H_{2i}^-). Dazu müssen höchstens k-1 Kanten aufgebrochen werden, denn jedes $k_i = 1$ steht für 2^i in k und kostet uns nach Lemma 87 $K^-(2i) = 2^i - 1$ Kanten, also:

$$\sum_{i=0}^{h-1} k_i (2^i - 1) \le k - 1.$$

Für jedes *i* mit $k_i = 0$, schneide H_{2i} ganz weg. Dabei werden höchstens *h* Kanten aufgebrochen. Genau *k* Elemente unterhalb von *z* bleiben zurück, da jedes $k_i = 1$ für 2^i in *k* steht, und ein $H_{2i}^$ genau $E^-(2i) = 2^i$ Elemente enthält, also:

$$\sum_{i=0}^{h-1} k_i E^-(2i) = k \,.$$

Damit ergibt sich für die Gesamtanzahl aufzubrechender Kanten eine obere Schranke von 3k + 2h. Lemma 87 liefert uns darüber hinaus die gewünschte Aussage über die Form der abgetrennten Teile.

EADS

CErnst W. Mayr

Betrachte H_{2h} .

- "größer": $H_{2h-1}, H_{2h-3}, \ldots, H_1$
- "kleiner": $H_{2h-2}, H_{2h-4}, \ldots, H_0$

$$\begin{array}{l} U(h) := \text{Anzahl der Elemente in } H_{2h} \geq \text{Zentrum:} \\ U(h) = 2U(h-1) = 2^h; \ U(0) = 1 \\ D(h) := \text{Anzahl der Elemente in } H_{2h} \leq \text{Zentrum:} \\ D(h) = 2D(h-1) = 2^h; \ D(0) = 1 \end{array}$$

Anzahl der Kanten, die entfernt werden müssen:

$$C_u(h) \leq 2 + 2C_u(h-1) \\ = 2 + 4 + 2^3 + \ldots + 2^h \\ = 2^{h+1} - 2 \\ C_d(h) \leq 1 + 2C_d(h-1) \\ = 2^h - 1$$

$$C_H \leq 2^{h+1} - 2 + 2^h - 1 \approx 3 \cdot 2^h$$

