
WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik

TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007



1. Landau Symbols

The definitions above offer us a very detailed look at an
algorithm’s resource usage. But as we will see, we will sometimes
want to reduce the amount of detail.

Uniform and logarithmic time and space complexities depend
considerably on the machine model, i.e. the type of computer
the algorithm is implemented and run on. Differences between
machine models include the instruction set, the cost of
individual instructions, etc.
As a result, running times differ by a constant factor which is
independent of n. We are not interested in the particularities
of individual machines and therefore want to get rid of
constant factors.



1. Landau Symbols

The definitions above offer us a very detailed look at an
algorithm’s resource usage. But as we will see, we will sometimes
want to reduce the amount of detail.

Uniform and logarithmic time and space complexities depend
considerably on the machine model, i.e. the type of computer
the algorithm is implemented and run on. Differences between
machine models include the instruction set, the cost of
individual instructions, etc.
As a result, running times differ by a constant factor which is
independent of n. We are not interested in the particularities
of individual machines and therefore want to get rid of
constant factors.



1. Landau Symbols

The definitions above offer us a very detailed look at an
algorithm’s resource usage. But as we will see, we will sometimes
want to reduce the amount of detail.

Uniform and logarithmic time and space complexities depend
considerably on the machine model, i.e. the type of computer
the algorithm is implemented and run on. Differences between
machine models include the instruction set, the cost of
individual instructions, etc.
As a result, running times differ by a constant factor which is
independent of n. We are not interested in the particularities
of individual machines and therefore want to get rid of
constant factors.



We are not interested in the time and space usage of an
algorithm when executed for some specific input, but instead
consider the worst case scenario, given input size n.
Hence, we look at upper bounds of the time and space
complexities for given input sizes.



We are not interested in the time and space usage of an
algorithm when executed for some specific input, but instead
consider the worst case scenario, given input size n.
Hence, we look at upper bounds of the time and space
complexities for given input sizes.



We are not interested in the time and space usage of an
algorithm when executed for some specific input, but instead
consider the worst case scenario, given input size n.
Hence, we look at upper bounds of the time and space
complexities for given input sizes.



Comparing the efficiency of algorithms by the functions t(n)
and s(n) describing the upper bounds of time and space usage
makes little sense for small values of n.
One function t1(n) that clearly dominates another function
t2(n) may yield smaller values for small input sizes n.
Example: Remember our the functions seen in the first lecture.



Comparing the efficiency of algorithms by the functions t(n)
and s(n) describing the upper bounds of time and space usage
makes little sense for small values of n.
One function t1(n) that clearly dominates another function
t2(n) may yield smaller values for small input sizes n.
Example: Remember our the functions seen in the first lecture.



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



This leads us to the following definitions.

Definition 1
Let f : N −→ R

+ be some real-valued function. Then we define
the following notations:

O(f) := {g : N −→ R
+ : (∃c ∈ R

+, n0 ∈ N : ∀n ≥ n0 : g(n) ≤
c · f(n))}
Ω(f) := {g : N −→ R

+ : (∃c ∈ R
+, n0 ∈ N : ∀n ≥ n0 : g(n) ≥

c · f(n))}
Θ(f) := O(f) ∩ Ω(f)

o(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) <

c · f(n))} = {g : N −→ R
+ : limn→∞

g(n)
f(n) = 0}

ω(f) := {g : N −→ R
+ : (∀c ∈ R

+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) >

c · f(n))} = {g : N −→ R
+ : limn→∞

f(n)
g(n) = 0}



Note on Landau notation: Most everybody in the computer
science world agrees that it is nicer to write f(n) = O(g(n)) or
f = O(g) instead of ∈. This notation is somewhat sloppy, but
most likely you will want to use it, too, once you’re used to it.
Some intuition on Landau symbols:

f = O(g) means that, for almost all n, g(n) ≤ c · f(n), where
c is some existing positive constant. In other words, f grows
at most as fast as g as n grows.

f = Ω(g) conversely means that f grows at least as fast as g
asymptotically.

f = Θ(g) means that, up to some constant factor, f and g
grow equally fast asymptotically.

f = o(g) means that f grows strictly less fast than g
asymptotically.

f = ω(g) menas that f grows strictly faster than g
asymptotically.



Note on Landau notation: Most everybody in the computer
science world agrees that it is nicer to write f(n) = O(g(n)) or
f = O(g) instead of ∈. This notation is somewhat sloppy, but
most likely you will want to use it, too, once you’re used to it.
Some intuition on Landau symbols:

f = O(g) means that, for almost all n, g(n) ≤ c · f(n), where
c is some existing positive constant. In other words, f grows
at most as fast as g as n grows.

f = Ω(g) conversely means that f grows at least as fast as g
asymptotically.

f = Θ(g) means that, up to some constant factor, f and g
grow equally fast asymptotically.

f = o(g) means that f grows strictly less fast than g
asymptotically.

f = ω(g) menas that f grows strictly faster than g
asymptotically.



Note on Landau notation: Most everybody in the computer
science world agrees that it is nicer to write f(n) = O(g(n)) or
f = O(g) instead of ∈. This notation is somewhat sloppy, but
most likely you will want to use it, too, once you’re used to it.
Some intuition on Landau symbols:

f = O(g) means that, for almost all n, g(n) ≤ c · f(n), where
c is some existing positive constant. In other words, f grows
at most as fast as g as n grows.

f = Ω(g) conversely means that f grows at least as fast as g
asymptotically.

f = Θ(g) means that, up to some constant factor, f and g
grow equally fast asymptotically.

f = o(g) means that f grows strictly less fast than g
asymptotically.

f = ω(g) menas that f grows strictly faster than g
asymptotically.



Note on Landau notation: Most everybody in the computer
science world agrees that it is nicer to write f(n) = O(g(n)) or
f = O(g) instead of ∈. This notation is somewhat sloppy, but
most likely you will want to use it, too, once you’re used to it.
Some intuition on Landau symbols:

f = O(g) means that, for almost all n, g(n) ≤ c · f(n), where
c is some existing positive constant. In other words, f grows
at most as fast as g as n grows.

f = Ω(g) conversely means that f grows at least as fast as g
asymptotically.

f = Θ(g) means that, up to some constant factor, f and g
grow equally fast asymptotically.

f = o(g) means that f grows strictly less fast than g
asymptotically.

f = ω(g) menas that f grows strictly faster than g
asymptotically.



Note on Landau notation: Most everybody in the computer
science world agrees that it is nicer to write f(n) = O(g(n)) or
f = O(g) instead of ∈. This notation is somewhat sloppy, but
most likely you will want to use it, too, once you’re used to it.
Some intuition on Landau symbols:

f = O(g) means that, for almost all n, g(n) ≤ c · f(n), where
c is some existing positive constant. In other words, f grows
at most as fast as g as n grows.

f = Ω(g) conversely means that f grows at least as fast as g
asymptotically.

f = Θ(g) means that, up to some constant factor, f and g
grow equally fast asymptotically.

f = o(g) means that f grows strictly less fast than g
asymptotically.

f = ω(g) menas that f grows strictly faster than g
asymptotically.



Note on Landau notation: Most everybody in the computer
science world agrees that it is nicer to write f(n) = O(g(n)) or
f = O(g) instead of ∈. This notation is somewhat sloppy, but
most likely you will want to use it, too, once you’re used to it.
Some intuition on Landau symbols:

f = O(g) means that, for almost all n, g(n) ≤ c · f(n), where
c is some existing positive constant. In other words, f grows
at most as fast as g as n grows.

f = Ω(g) conversely means that f grows at least as fast as g
asymptotically.

f = Θ(g) means that, up to some constant factor, f and g
grow equally fast asymptotically.

f = o(g) means that f grows strictly less fast than g
asymptotically.

f = ω(g) menas that f grows strictly faster than g
asymptotically.



Note on Landau notation: Most everybody in the computer
science world agrees that it is nicer to write f(n) = O(g(n)) or
f = O(g) instead of ∈. This notation is somewhat sloppy, but
most likely you will want to use it, too, once you’re used to it.
Some intuition on Landau symbols:

f = O(g) means that, for almost all n, g(n) ≤ c · f(n), where
c is some existing positive constant. In other words, f grows
at most as fast as g as n grows.

f = Ω(g) conversely means that f grows at least as fast as g
asymptotically.

f = Θ(g) means that, up to some constant factor, f and g
grow equally fast asymptotically.

f = o(g) means that f grows strictly less fast than g
asymptotically.

f = ω(g) menas that f grows strictly faster than g
asymptotically.



Example 2

n2 + 2n − 1 = O(n2): select n0 = 1, c = 2

n2 + 2n − 1 = Ω(n2): select n0 = 1, c = 1

Hence: n2 + 2n − 1 = Θ(n2)

Equally easy to prove: 3n + 4 = o(n2) and
n2 + 2n − 1 = ω(n log n)

n2 log +4n(log n)2 = Θ(n2 log n)

log n = o (
√

n) (Try to prove this by yourself)

General polynomials:
k∑

i=0
ain

i = Θ(nk) if ak > 0



Example 2

n2 + 2n − 1 = O(n2): select n0 = 1, c = 2

n2 + 2n − 1 = Ω(n2): select n0 = 1, c = 1

Hence: n2 + 2n − 1 = Θ(n2)

Equally easy to prove: 3n + 4 = o(n2) and
n2 + 2n − 1 = ω(n log n)

n2 log +4n(log n)2 = Θ(n2 log n)

log n = o (
√

n) (Try to prove this by yourself)

General polynomials:
k∑

i=0
ain

i = Θ(nk) if ak > 0



Example 2

n2 + 2n − 1 = O(n2): select n0 = 1, c = 2

n2 + 2n − 1 = Ω(n2): select n0 = 1, c = 1

Hence: n2 + 2n − 1 = Θ(n2)

Equally easy to prove: 3n + 4 = o(n2) and
n2 + 2n − 1 = ω(n log n)

n2 log +4n(log n)2 = Θ(n2 log n)

log n = o (
√

n) (Try to prove this by yourself)

General polynomials:
k∑

i=0
ain

i = Θ(nk) if ak > 0



Example 2

n2 + 2n − 1 = O(n2): select n0 = 1, c = 2

n2 + 2n − 1 = Ω(n2): select n0 = 1, c = 1

Hence: n2 + 2n − 1 = Θ(n2)

Equally easy to prove: 3n + 4 = o(n2) and
n2 + 2n − 1 = ω(n log n)

n2 log +4n(log n)2 = Θ(n2 log n)

log n = o (
√

n) (Try to prove this by yourself)

General polynomials:
k∑

i=0
ain

i = Θ(nk) if ak > 0



Example 2

n2 + 2n − 1 = O(n2): select n0 = 1, c = 2

n2 + 2n − 1 = Ω(n2): select n0 = 1, c = 1

Hence: n2 + 2n − 1 = Θ(n2)

Equally easy to prove: 3n + 4 = o(n2) and
n2 + 2n − 1 = ω(n log n)

n2 log +4n(log n)2 = Θ(n2 log n)

log n = o (
√

n) (Try to prove this by yourself)

General polynomials:
k∑

i=0
ain

i = Θ(nk) if ak > 0



Example 2

n2 + 2n − 1 = O(n2): select n0 = 1, c = 2

n2 + 2n − 1 = Ω(n2): select n0 = 1, c = 1

Hence: n2 + 2n − 1 = Θ(n2)

Equally easy to prove: 3n + 4 = o(n2) and
n2 + 2n − 1 = ω(n log n)

n2 log +4n(log n)2 = Θ(n2 log n)

log n = o (
√

n) (Try to prove this by yourself)

General polynomials:
k∑

i=0
ain

i = Θ(nk) if ak > 0



Example 2

n2 + 2n − 1 = O(n2): select n0 = 1, c = 2

n2 + 2n − 1 = Ω(n2): select n0 = 1, c = 1

Hence: n2 + 2n − 1 = Θ(n2)

Equally easy to prove: 3n + 4 = o(n2) and
n2 + 2n − 1 = ω(n log n)

n2 log +4n(log n)2 = Θ(n2 log n)

log n = o (
√

n) (Try to prove this by yourself)

General polynomials:
k∑

i=0
ain

i = Θ(nk) if ak > 0



Lemma 3
It holds that

1 g = o(f) ⇒ g = O(f)

2 g = o(f) 6⇐ g = O(f)

3 g = ω(f) ⇒ g = Ω(f)

4 g = ω(f) 6⇐ g = Ω(f)

5 g = Ω(f) ⇔ f = O(g)

6 g = o(f) ⇒ g 6= Ω(f)

7 g = ω(f) ⇒ g 6= O(f)



Lemma 3
It holds that

1 g = o(f) ⇒ g = O(f)

2 g = o(f) 6⇐ g = O(f)

3 g = ω(f) ⇒ g = Ω(f)

4 g = ω(f) 6⇐ g = Ω(f)

5 g = Ω(f) ⇔ f = O(g)

6 g = o(f) ⇒ g 6= Ω(f)

7 g = ω(f) ⇒ g 6= O(f)



Lemma 3
It holds that

1 g = o(f) ⇒ g = O(f)

2 g = o(f) 6⇐ g = O(f)

3 g = ω(f) ⇒ g = Ω(f)

4 g = ω(f) 6⇐ g = Ω(f)

5 g = Ω(f) ⇔ f = O(g)

6 g = o(f) ⇒ g 6= Ω(f)

7 g = ω(f) ⇒ g 6= O(f)



Lemma 3
It holds that

1 g = o(f) ⇒ g = O(f)

2 g = o(f) 6⇐ g = O(f)

3 g = ω(f) ⇒ g = Ω(f)

4 g = ω(f) 6⇐ g = Ω(f)

5 g = Ω(f) ⇔ f = O(g)

6 g = o(f) ⇒ g 6= Ω(f)

7 g = ω(f) ⇒ g 6= O(f)



Lemma 3
It holds that

1 g = o(f) ⇒ g = O(f)

2 g = o(f) 6⇐ g = O(f)

3 g = ω(f) ⇒ g = Ω(f)

4 g = ω(f) 6⇐ g = Ω(f)

5 g = Ω(f) ⇔ f = O(g)

6 g = o(f) ⇒ g 6= Ω(f)

7 g = ω(f) ⇒ g 6= O(f)



Lemma 3
It holds that

1 g = o(f) ⇒ g = O(f)

2 g = o(f) 6⇐ g = O(f)

3 g = ω(f) ⇒ g = Ω(f)

4 g = ω(f) 6⇐ g = Ω(f)

5 g = Ω(f) ⇔ f = O(g)

6 g = o(f) ⇒ g 6= Ω(f)

7 g = ω(f) ⇒ g 6= O(f)



Lemma 3
It holds that

1 g = o(f) ⇒ g = O(f)

2 g = o(f) 6⇐ g = O(f)

3 g = ω(f) ⇒ g = Ω(f)

4 g = ω(f) 6⇐ g = Ω(f)

5 g = Ω(f) ⇔ f = O(g)

6 g = o(f) ⇒ g 6= Ω(f)

7 g = ω(f) ⇒ g 6= O(f)



Definition 4
A function f is called

constant if f(n) = Θ(1)

logarithmic if f(n) = O(log n)

linear if f(n) = O(n)

quadratic if f(n) = O(n2)

polynomial if f(n) = O(nk) for some k ∈ N

superpolynomial if f(n) = ω(nk) for all k ∈ N

subexponential if f(n) = o(2cn) for all c ∈ R
+

exponential if f(n) = O(2cn) for some c ∈ R
+



Definition 4
A function f is called

constant if f(n) = Θ(1)

logarithmic if f(n) = O(log n)

linear if f(n) = O(n)

quadratic if f(n) = O(n2)

polynomial if f(n) = O(nk) for some k ∈ N

superpolynomial if f(n) = ω(nk) for all k ∈ N

subexponential if f(n) = o(2cn) for all c ∈ R
+

exponential if f(n) = O(2cn) for some c ∈ R
+



Definition 4
A function f is called

constant if f(n) = Θ(1)

logarithmic if f(n) = O(log n)

linear if f(n) = O(n)

quadratic if f(n) = O(n2)

polynomial if f(n) = O(nk) for some k ∈ N

superpolynomial if f(n) = ω(nk) for all k ∈ N

subexponential if f(n) = o(2cn) for all c ∈ R
+

exponential if f(n) = O(2cn) for some c ∈ R
+



Definition 4
A function f is called

constant if f(n) = Θ(1)

logarithmic if f(n) = O(log n)

linear if f(n) = O(n)

quadratic if f(n) = O(n2)

polynomial if f(n) = O(nk) for some k ∈ N

superpolynomial if f(n) = ω(nk) for all k ∈ N

subexponential if f(n) = o(2cn) for all c ∈ R
+

exponential if f(n) = O(2cn) for some c ∈ R
+



Definition 4
A function f is called

constant if f(n) = Θ(1)

logarithmic if f(n) = O(log n)

linear if f(n) = O(n)

quadratic if f(n) = O(n2)

polynomial if f(n) = O(nk) for some k ∈ N

superpolynomial if f(n) = ω(nk) for all k ∈ N

subexponential if f(n) = o(2cn) for all c ∈ R
+

exponential if f(n) = O(2cn) for some c ∈ R
+



Definition 4
A function f is called

constant if f(n) = Θ(1)

logarithmic if f(n) = O(log n)

linear if f(n) = O(n)

quadratic if f(n) = O(n2)

polynomial if f(n) = O(nk) for some k ∈ N

superpolynomial if f(n) = ω(nk) for all k ∈ N

subexponential if f(n) = o(2cn) for all c ∈ R
+

exponential if f(n) = O(2cn) for some c ∈ R
+



Definition 4
A function f is called

constant if f(n) = Θ(1)

logarithmic if f(n) = O(log n)

linear if f(n) = O(n)

quadratic if f(n) = O(n2)

polynomial if f(n) = O(nk) for some k ∈ N

superpolynomial if f(n) = ω(nk) for all k ∈ N

subexponential if f(n) = o(2cn) for all c ∈ R
+

exponential if f(n) = O(2cn) for some c ∈ R
+



Definition 4
A function f is called

constant if f(n) = Θ(1)

logarithmic if f(n) = O(log n)

linear if f(n) = O(n)

quadratic if f(n) = O(n2)

polynomial if f(n) = O(nk) for some k ∈ N

superpolynomial if f(n) = ω(nk) for all k ∈ N

subexponential if f(n) = o(2cn) for all c ∈ R
+

exponential if f(n) = O(2cn) for some c ∈ R
+



Chapter III Sorting Algorithms

1. Introduction

We are given a non-sorted sequence D1, D2, . . . , Dn consisting of
n data elements. Each data element Di consists of a key ki and
some data contents Xi.

The data contents can be of any form, e.g. a number, a string
or some representation of a picture.
The set of keys has a total ordering ”≤”.
We make the temporary assumption that the keys all have
distinct values that are stored in an array.
In particular, we assume that the set of keys is {1, 2, . . . , n}.

Definition 5
The sorting problem consists in determining a permutation, i.e. a
bijection π : {1, 2, . . . , n} −→ {1, 2, . . . , n} such that

kπ(1) ≤ kπ(2) ≤ · · · ≤ kπ(n).



Chapter III Sorting Algorithms

1. Introduction

We are given a non-sorted sequence D1, D2, . . . , Dn consisting of
n data elements. Each data element Di consists of a key ki and
some data contents Xi.

The data contents can be of any form, e.g. a number, a string
or some representation of a picture.
The set of keys has a total ordering ”≤”.
We make the temporary assumption that the keys all have
distinct values that are stored in an array.
In particular, we assume that the set of keys is {1, 2, . . . , n}.

Definition 5
The sorting problem consists in determining a permutation, i.e. a
bijection π : {1, 2, . . . , n} −→ {1, 2, . . . , n} such that

kπ(1) ≤ kπ(2) ≤ · · · ≤ kπ(n).



Chapter III Sorting Algorithms

1. Introduction

We are given a non-sorted sequence D1, D2, . . . , Dn consisting of
n data elements. Each data element Di consists of a key ki and
some data contents Xi.

The data contents can be of any form, e.g. a number, a string
or some representation of a picture.
The set of keys has a total ordering ”≤”.
We make the temporary assumption that the keys all have
distinct values that are stored in an array.
In particular, we assume that the set of keys is {1, 2, . . . , n}.

Definition 5
The sorting problem consists in determining a permutation, i.e. a
bijection π : {1, 2, . . . , n} −→ {1, 2, . . . , n} such that

kπ(1) ≤ kπ(2) ≤ · · · ≤ kπ(n).



Chapter III Sorting Algorithms

1. Introduction

We are given a non-sorted sequence D1, D2, . . . , Dn consisting of
n data elements. Each data element Di consists of a key ki and
some data contents Xi.

The data contents can be of any form, e.g. a number, a string
or some representation of a picture.
The set of keys has a total ordering ”≤”.
We make the temporary assumption that the keys all have
distinct values that are stored in an array.
In particular, we assume that the set of keys is {1, 2, . . . , n}.

Definition 5
The sorting problem consists in determining a permutation, i.e. a
bijection π : {1, 2, . . . , n} −→ {1, 2, . . . , n} such that

kπ(1) ≤ kπ(2) ≤ · · · ≤ kπ(n).



Chapter III Sorting Algorithms

1. Introduction

We are given a non-sorted sequence D1, D2, . . . , Dn consisting of
n data elements. Each data element Di consists of a key ki and
some data contents Xi.

The data contents can be of any form, e.g. a number, a string
or some representation of a picture.
The set of keys has a total ordering ”≤”.
We make the temporary assumption that the keys all have
distinct values that are stored in an array.
In particular, we assume that the set of keys is {1, 2, . . . , n}.

Definition 5
The sorting problem consists in determining a permutation, i.e. a
bijection π : {1, 2, . . . , n} −→ {1, 2, . . . , n} such that

kπ(1) ≤ kπ(2) ≤ · · · ≤ kπ(n).



Chapter III Sorting Algorithms

1. Introduction

We are given a non-sorted sequence D1, D2, . . . , Dn consisting of
n data elements. Each data element Di consists of a key ki and
some data contents Xi.

The data contents can be of any form, e.g. a number, a string
or some representation of a picture.
The set of keys has a total ordering ”≤”.
We make the temporary assumption that the keys all have
distinct values that are stored in an array.
In particular, we assume that the set of keys is {1, 2, . . . , n}.

Definition 5
The sorting problem consists in determining a permutation, i.e. a
bijection π : {1, 2, . . . , n} −→ {1, 2, . . . , n} such that

kπ(1) ≤ kπ(2) ≤ · · · ≤ kπ(n).



Chapter III Sorting Algorithms

1. Introduction

We are given a non-sorted sequence D1, D2, . . . , Dn consisting of
n data elements. Each data element Di consists of a key ki and
some data contents Xi.

The data contents can be of any form, e.g. a number, a string
or some representation of a picture.
The set of keys has a total ordering ”≤”.
We make the temporary assumption that the keys all have
distinct values that are stored in an array.
In particular, we assume that the set of keys is {1, 2, . . . , n}.

Definition 5
The sorting problem consists in determining a permutation, i.e. a
bijection π : {1, 2, . . . , n} −→ {1, 2, . . . , n} such that

kπ(1) ≤ kπ(2) ≤ · · · ≤ kπ(n).



2. Algorithm Design by Induction

We now introduce a methodology that allows us to derive first
algorithmic approaches to many types of problems in which the
sizes of problem instances depend on a parameter n. We are
interested in an algorithm that can solve arbitrary problem
instances of size n, for all n ∈ N.
Basic Approach:

I. Base Case: We give solutions to ”small” problem instances,
where n is at most some fixed constant, e.g. n = 1.

II. Inductive Step:

We pretend to have a method that solves problem instances of
size < n. This is often called the induction hypothesis.
For instances of size n, we devise a method that decomposes
the given problem instance into smaller instances of size < n,
e.g. n − 1 or ⌊n/2⌋. It is essential that this be instances of the
same problem, just smaller.



2. Algorithm Design by Induction

We now introduce a methodology that allows us to derive first
algorithmic approaches to many types of problems in which the
sizes of problem instances depend on a parameter n. We are
interested in an algorithm that can solve arbitrary problem
instances of size n, for all n ∈ N.
Basic Approach:

I. Base Case: We give solutions to ”small” problem instances,
where n is at most some fixed constant, e.g. n = 1.

II. Inductive Step:

We pretend to have a method that solves problem instances of
size < n. This is often called the induction hypothesis.
For instances of size n, we devise a method that decomposes
the given problem instance into smaller instances of size < n,
e.g. n − 1 or ⌊n/2⌋. It is essential that this be instances of the
same problem, just smaller.



2. Algorithm Design by Induction

We now introduce a methodology that allows us to derive first
algorithmic approaches to many types of problems in which the
sizes of problem instances depend on a parameter n. We are
interested in an algorithm that can solve arbitrary problem
instances of size n, for all n ∈ N.
Basic Approach:

I. Base Case: We give solutions to ”small” problem instances,
where n is at most some fixed constant, e.g. n = 1.

II. Inductive Step:

We pretend to have a method that solves problem instances of
size < n. This is often called the induction hypothesis.
For instances of size n, we devise a method that decomposes
the given problem instance into smaller instances of size < n,
e.g. n − 1 or ⌊n/2⌋. It is essential that this be instances of the
same problem, just smaller.



2. Algorithm Design by Induction

We now introduce a methodology that allows us to derive first
algorithmic approaches to many types of problems in which the
sizes of problem instances depend on a parameter n. We are
interested in an algorithm that can solve arbitrary problem
instances of size n, for all n ∈ N.
Basic Approach:

I. Base Case: We give solutions to ”small” problem instances,
where n is at most some fixed constant, e.g. n = 1.

II. Inductive Step:

We pretend to have a method that solves problem instances of
size < n. This is often called the induction hypothesis.
For instances of size n, we devise a method that decomposes
the given problem instance into smaller instances of size < n,
e.g. n − 1 or ⌊n/2⌋. It is essential that this be instances of the
same problem, just smaller.



2. Algorithm Design by Induction

We now introduce a methodology that allows us to derive first
algorithmic approaches to many types of problems in which the
sizes of problem instances depend on a parameter n. We are
interested in an algorithm that can solve arbitrary problem
instances of size n, for all n ∈ N.
Basic Approach:

I. Base Case: We give solutions to ”small” problem instances,
where n is at most some fixed constant, e.g. n = 1.

II. Inductive Step:

We pretend to have a method that solves problem instances of
size < n. This is often called the induction hypothesis.
For instances of size n, we devise a method that decomposes
the given problem instance into smaller instances of size < n,
e.g. n − 1 or ⌊n/2⌋. It is essential that this be instances of the
same problem, just smaller.



2. Algorithm Design by Induction

We now introduce a methodology that allows us to derive first
algorithmic approaches to many types of problems in which the
sizes of problem instances depend on a parameter n. We are
interested in an algorithm that can solve arbitrary problem
instances of size n, for all n ∈ N.
Basic Approach:

I. Base Case: We give solutions to ”small” problem instances,
where n is at most some fixed constant, e.g. n = 1.

II. Inductive Step:

We pretend to have a method that solves problem instances of
size < n. This is often called the induction hypothesis.
For instances of size n, we devise a method that decomposes
the given problem instance into smaller instances of size < n,
e.g. n − 1 or ⌊n/2⌋. It is essential that this be instances of the
same problem, just smaller.



II. Cont.

We use the induction hypothesis to solve the smaller instances.
This can be translated into recursive calls.
Finally, we give a method to recombine the smaller solutions
into a solution of the original size-n problem.

Examples of this will be seen in the follwing sections (and in most
of the remainder of this course).



II. Cont.

We use the induction hypothesis to solve the smaller instances.
This can be translated into recursive calls.
Finally, we give a method to recombine the smaller solutions
into a solution of the original size-n problem.

Examples of this will be seen in the follwing sections (and in most
of the remainder of this course).



3. Selection Sort

We now directly apply the aforementioned framework to derive a
relatively simple algorithm for the sorting problem.

I. Base case for n = 1: Sorting one key value is easy, just do
nothing.

√
II. Inductive Step: Suppose we are given an array containing n

keys.
Let us assume we know how to sort (n − 1) keys.
To reduce the problem size from n down to (n − 1), we
remove one key from the array. Here we select the smallest key.
(Hence ”Selection Sort”). We need to make sure that the form
of the problem does not change. The remaining keys must be
stored in an array, at consecutive positions. To avoid a gap, we
exchange the smallest key with the one at the first position.
We sort the remaining keys by induction, applying our
hypothesis to the array, excluding the first position.
The smallest key is already in its correct position and, by
induction, so are all other keys. Recombination is trivial.



3. Selection Sort

We now directly apply the aforementioned framework to derive a
relatively simple algorithm for the sorting problem.

I. Base case for n = 1: Sorting one key value is easy, just do
nothing.

√
II. Inductive Step: Suppose we are given an array containing n

keys.
Let us assume we know how to sort (n − 1) keys.
To reduce the problem size from n down to (n − 1), we
remove one key from the array. Here we select the smallest key.
(Hence ”Selection Sort”). We need to make sure that the form
of the problem does not change. The remaining keys must be
stored in an array, at consecutive positions. To avoid a gap, we
exchange the smallest key with the one at the first position.
We sort the remaining keys by induction, applying our
hypothesis to the array, excluding the first position.
The smallest key is already in its correct position and, by
induction, so are all other keys. Recombination is trivial.



3. Selection Sort

We now directly apply the aforementioned framework to derive a
relatively simple algorithm for the sorting problem.

I. Base case for n = 1: Sorting one key value is easy, just do
nothing.

√
II. Inductive Step: Suppose we are given an array containing n

keys.
Let us assume we know how to sort (n − 1) keys.
To reduce the problem size from n down to (n − 1), we
remove one key from the array. Here we select the smallest key.
(Hence ”Selection Sort”). We need to make sure that the form
of the problem does not change. The remaining keys must be
stored in an array, at consecutive positions. To avoid a gap, we
exchange the smallest key with the one at the first position.
We sort the remaining keys by induction, applying our
hypothesis to the array, excluding the first position.
The smallest key is already in its correct position and, by
induction, so are all other keys. Recombination is trivial.



3. Selection Sort

We now directly apply the aforementioned framework to derive a
relatively simple algorithm for the sorting problem.

I. Base case for n = 1: Sorting one key value is easy, just do
nothing.

√
II. Inductive Step: Suppose we are given an array containing n

keys.
Let us assume we know how to sort (n − 1) keys.
To reduce the problem size from n down to (n − 1), we
remove one key from the array. Here we select the smallest key.
(Hence ”Selection Sort”). We need to make sure that the form
of the problem does not change. The remaining keys must be
stored in an array, at consecutive positions. To avoid a gap, we
exchange the smallest key with the one at the first position.
We sort the remaining keys by induction, applying our
hypothesis to the array, excluding the first position.
The smallest key is already in its correct position and, by
induction, so are all other keys. Recombination is trivial.



3. Selection Sort

We now directly apply the aforementioned framework to derive a
relatively simple algorithm for the sorting problem.

I. Base case for n = 1: Sorting one key value is easy, just do
nothing.

√
II. Inductive Step: Suppose we are given an array containing n

keys.
Let us assume we know how to sort (n − 1) keys.
To reduce the problem size from n down to (n − 1), we
remove one key from the array. Here we select the smallest key.
(Hence ”Selection Sort”). We need to make sure that the form
of the problem does not change. The remaining keys must be
stored in an array, at consecutive positions. To avoid a gap, we
exchange the smallest key with the one at the first position.
We sort the remaining keys by induction, applying our
hypothesis to the array, excluding the first position.
The smallest key is already in its correct position and, by
induction, so are all other keys. Recombination is trivial.



3. Selection Sort

We now directly apply the aforementioned framework to derive a
relatively simple algorithm for the sorting problem.

I. Base case for n = 1: Sorting one key value is easy, just do
nothing.

√
II. Inductive Step: Suppose we are given an array containing n

keys.
Let us assume we know how to sort (n − 1) keys.
To reduce the problem size from n down to (n − 1), we
remove one key from the array. Here we select the smallest key.
(Hence ”Selection Sort”). We need to make sure that the form
of the problem does not change. The remaining keys must be
stored in an array, at consecutive positions. To avoid a gap, we
exchange the smallest key with the one at the first position.
We sort the remaining keys by induction, applying our
hypothesis to the array, excluding the first position.
The smallest key is already in its correct position and, by
induction, so are all other keys. Recombination is trivial.



3. Selection Sort

We now directly apply the aforementioned framework to derive a
relatively simple algorithm for the sorting problem.

I. Base case for n = 1: Sorting one key value is easy, just do
nothing.

√
II. Inductive Step: Suppose we are given an array containing n

keys.
Let us assume we know how to sort (n − 1) keys.
To reduce the problem size from n down to (n − 1), we
remove one key from the array. Here we select the smallest key.
(Hence ”Selection Sort”). We need to make sure that the form
of the problem does not change. The remaining keys must be
stored in an array, at consecutive positions. To avoid a gap, we
exchange the smallest key with the one at the first position.
We sort the remaining keys by induction, applying our
hypothesis to the array, excluding the first position.
The smallest key is already in its correct position and, by
induction, so are all other keys. Recombination is trivial.



Let us suppose that the array can be accessed through a global
variable A[].

Algorithm:

void SelectionSort recursive(unsigned l, r){
if (l = r) then return
else let ks := min{kl, kl+1, . . . , kr}

swap A[kl] and A[ks]
SelectionSort recursive(l + 1, r)

fi
}
This function is initially called by ”SelectionSort recursive(1,n)”.



Let us suppose that the array can be accessed through a global
variable A[].

Algorithm:

void SelectionSort recursive(unsigned l, r){
if (l = r) then return
else let ks := min{kl, kl+1, . . . , kr}

swap A[kl] and A[ks]
SelectionSort recursive(l + 1, r)

fi
}
This function is initially called by ”SelectionSort recursive(1,n)”.



For the sake of efficiency, and sometimes code legibility, we often
try to avoid recursion. An equivalent algorithm can be formulated
using iteration rather than recursive calls. The strategy applied
here is only slightly different.

Algorithm:

void SelectionSort iterative(key A[], unsigned n){
for i := 1 to n − 1 do

for j := i + 1 to n do
if (A[j] < A[i]) then

swap A[i] and A[j]
fi

od
od

}



For the sake of efficiency, and sometimes code legibility, we often
try to avoid recursion. An equivalent algorithm can be formulated
using iteration rather than recursive calls. The strategy applied
here is only slightly different.

Algorithm:

void SelectionSort iterative(key A[], unsigned n){
for i := 1 to n − 1 do

for j := i + 1 to n do
if (A[j] < A[i]) then

swap A[i] and A[j]
fi

od
od

}



Complexity:

We measure the efficiency of the above algorithm by counting the
number c(n) of key comparisons needed to sort n keys. (This is
the traditional way of comparing the complexities of sorting
algorithms.)
Let us consider the iterative algorithm. In the i-th iteration of the
outer for-loop, we have (n − i) comparisons. (A[i + 1] vs. A[i],
A[i + 2] vs. A[i], · · · , A[n] vs. A[i]). Hence:

c(n) =
n−1∑

i=1

(n − i) =
n−1∑

i=1

i =
n(n − 1)

2
=

1

2
(n2 − n) = Θ(n2).

This means we have just derived a quadratic-time sorting
algorithm.



Complexity:

We measure the efficiency of the above algorithm by counting the
number c(n) of key comparisons needed to sort n keys. (This is
the traditional way of comparing the complexities of sorting
algorithms.)
Let us consider the iterative algorithm. In the i-th iteration of the
outer for-loop, we have (n − i) comparisons. (A[i + 1] vs. A[i],
A[i + 2] vs. A[i], · · · , A[n] vs. A[i]). Hence:

c(n) =
n−1∑

i=1

(n − i) =
n−1∑

i=1

i =
n(n − 1)

2
=

1

2
(n2 − n) = Θ(n2).

This means we have just derived a quadratic-time sorting
algorithm.



Complexity:

We measure the efficiency of the above algorithm by counting the
number c(n) of key comparisons needed to sort n keys. (This is
the traditional way of comparing the complexities of sorting
algorithms.)
Let us consider the iterative algorithm. In the i-th iteration of the
outer for-loop, we have (n − i) comparisons. (A[i + 1] vs. A[i],
A[i + 2] vs. A[i], · · · , A[n] vs. A[i]). Hence:

c(n) =
n−1∑

i=1

(n − i) =
n−1∑

i=1

i =
n(n − 1)

2
=

1

2
(n2 − n) = Θ(n2).

This means we have just derived a quadratic-time sorting
algorithm.


	Landau Symbols
	Introduction
	Algorithm Design by Induction
	Selection Sort

