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1. AVL Trees

As we saw in the previous section, the efficiency of standard
operations on binary search trees depends on the maximum tree
height. Using height balancing, we ensure that trees cannot
degenerate linearly but instead have logarithmic height.

Definition 1
Let v be a vertex in a binary search tree. Then v is height balanced
if and only if the heights of v’s subtrees differ by at most one.
A binary search tree in which every vertex is height balanced is an
AVL Tree (named after its inventors Adelson, Velskii, Landis).
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Example 2

The internal vertices in the trees below are annotated with balance
values, defined as the difference between the heights of the right
and the left subtree. These values have to range between -1 and 1.
Thus, the first example is an AVL tree, whereas the second is not.



Lemma 3
An AVL tree of height h has at least fib(h + 3)− 1 vertices (where
fib(k) := fk is the k-th Fibonacci number) and at most 2h+1 − 1
vertices.

Proof
a. The upper bound is immediate: A tree of height h has h + 1
levels, and on each level i (counting from 0), the number of
vertices is at most 2i. Thus,

n ≤
h
∑

i=0

2i = 2h+1 − 1.

b. The lower bound can be shown by induction on h. Base case:
For h = 0, 1, the statement is obviously true.



Proof (cont.)
Inductive step: Assuming that the statement is correct for AVL
trees of height < h, we can conclude the following for height h:
A minimal AVL tree of height h consists of an AVL tree of height
h − 1 and an AVL tree of height h − 2, plus one common root:

Using the induction hypothesis, we obtain
n ≥ (fib(h + 1)− 1) + (fib(h + 2)− 1) + 1 = fib(h + 3)− 1.



Corollary 4

The height of an AVL tree containing n vertices is Θ(log n).

Proof.
This follows directly from an equality seen in the first chapter:
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implying
fib(k) ≥ 2⌊(k−1)/2⌋.

Note that this also implies logarithmic complexity for the
is element operation. In the following subsections we shall see
details on AVL tree operations.
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1.1 Operations on AVL Trees

1.1.1 is element

This operation has to be implemented precisely as specified for
general binary search trees. The only difference is that, in the case
of AVL trees, its logarithmic complexity is guaranteed even in the
worst case.

1.1.2 insert

The first two steps of the general procedure resemble the insert
operation in unbalanced binary search trees:

(i) The is element operation leads to a vertex where a new leaf
can be added

(ii) Attach the leaf containing the new key

(iii) Restore the height balancing, if necessary
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Rebalancing AVL Trees After an Insertion:

There are multiple cases to be distinguished:

1 The newly attached leaf already has a left or right brother: In
this case no subtree changes in height as a result of step (ii).
No rebalancing is needed.

2 The newly attached leaf is an only child of its father v. In this
case, v and all ancestors of v have a subtree whose height
changes as a result of step (ii). This may lead to height
balance violations.

Let us examine the potential problem cases:
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Case 1: The outer subtree below p increases its height from h − 1
to h, pushing q’s balance from −1 to −2. Note that the single
rotation preserves the subtree ordering required of search trees
(sorting condition) and, at the same time, repairs the balance
violation at the root of the considered subtree.

Single Rotation
−−−−−−−−−−−→



Case 2: The inner subtree below p increases its height from h − 1
to h, pushing q’s balance from −1 to −2.

Try what happens if a similar approach is taken as in Case 1. —
You will see that this doen’t help yet. It turns out that this case
requires a closer look into the subtree of p



Double Rotation−−−−−−−−−−−−→

Note that the double rotation preserves the subtree ordering
required of search trees (sorting condition) and, at the same time,
repairs the balance violation at the root of the considered subtree.



Also note that a single insertion of a new leaf can cause balance
violations on the entire path from that leaf up to the root.

Example 5

Insert a−−−−−−→



Important observation: After the rebalancing procedure, applied
to vertex v, the entire subtree rooted at v regains the same height
as before the insertion of the new leaf (key a). This means that
legal balance values are re-established at vertex v and all its
ancestors. Therefore, the rebalancing has to be performed at the
deepest vertex with illegal balance. In the example (rebalancing at
node c):
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