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1. Graph Algorithms

Definition 1
Let G = (V, E) be an undirected graph. Select two nodes v, w,
and two edges e, ẽ.

v, w are called adjacent iff {v, w} ∈ E

v, e are called incident iff v ∈ E

e, ẽ are called adjacent iff |e ∩ ẽ| ≥ 1

e of the form {v, v} = {v} is called loop



Lemma 2
Any undirected graph without loops contains at most
(

n
2

)

= n(n−1)
2 edges, |V | = n. Any undirected graph with loops

contains at most

(

n + 1
2

)

= n(n+1)
2 edges, |V | = n.

Proof.

Easy. Homework. Hint: Use

(

n + 1
2

)

=

(

n
2

)

+ n



Lemma 2
Any undirected graph without loops contains at most
(

n
2

)

= n(n−1)
2 edges, |V | = n. Any undirected graph with loops

contains at most

(

n + 1
2

)

= n(n+1)
2 edges, |V | = n.

Proof.

Easy. Homework. Hint: Use

(

n + 1
2

)

=

(

n
2

)

+ n



Lemma 2
Any undirected graph without loops contains at most
(

n
2

)

= n(n−1)
2 edges, |V | = n. Any undirected graph with loops

contains at most

(

n + 1
2

)

= n(n+1)
2 edges, |V | = n.

Proof.

Easy. Homework. Hint: Use

(

n + 1
2

)

=

(

n
2

)

+ n



Definition 3
Let G = (V, E) be an undirected graph. Select v ∈ V . Define the
neighborhood of v to be N(v) = {w ∈ V : {v, w} ∈ E}.

deg(v) = |N(v)|

δ(G) = min{deg(v) : v ∈ V }

∆(G) = max{deg(v) : v ∈ V }



Lemma 4
For any undirected G = (V, E) the following is satisfied:

∑

v∈V

deg(v) = 2 · |E|

Proof.
∑

v∈V deg(v) counts every edge twice.
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2. Representation of graphs

2.1 Adjacency matrix

Definition 6
An adjacency matrix for G = (V, E), V = |n| is a (n × n)-matrix
A = (ai,j), n ≥ i, j ≥ n such that

Case 1: G is undirected

ai,j =

{

1, {i, j} ∈ E
0, {i, j} /∈ E

Case 2: G undirected

ai,j =

{

1, (i, j) ∈ E
0, (i, j) /∈ E



Required space for adjacency matrix for |V | = n is Θ(n2).

The adjacency matrix for an undirected graph is symmetric.

The adjacency matrix for a directed graph is symmetric iff for
every directed edge the antiparallel edge exists.

The adjacency matrix for a directed graph has diagonal
elements 6= 0 if there are loops.



2.2 Adjacency lists

Definition 7
An adjacency list is an array consisting of |V | lists, which store the
adjacent vertices for every v ∈ V .

The order in which the adjacent vertices are stored can be
chosen arbitrary

For directed graphs two adjacency lists are introduced: for
ancestors and for successors



3. Seaching in Graphs

3.1 Depth-First-Search

3.1.1 Recursive Version

For every vertex v ∈ V let us define its DFS-number to be the
number of the step at which v is visited (initialized with 0)

Let v0 ∈ V be an arbitrary start vertex

Let counter be a global variable initialized with 1.

Algorithm:

void DFS(vertex v){
v.dfsnum:= counter++;
foreach (w|(v, w) ∈ E ({v, w} ∈ E) ) do

if (w.dfsnum=0) then DFS(w);
od }
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The call
counter:=1;
DFS(v0);

leads to visiting all verteces, which are reachable from v0. Thus:

Algorithm:

void DepthFirstSearch(graph G){
counter:=1;
foreach (v ∈ V ) do v.dfsnum := 0 od
while ∃v0 ∈ V : v0.dfsnum = 0 do DFS(v0) od }

Complexity: O(n + m) (every vertex is visited plus every edge is
visited (≤ 2 times)



3.1.2 Iterative version

Consider the data structure called stack. The following operations
have to be supported:

void push(int) – insert the element into the stack

in pop() – delete the element into the stack

Properties:

LIFO (Last Input First Output)

The elements are inserted in the same order push is called

The element deleted from the stack using pop is the one most
recently inserted



DepthFirstSearch:

void DepthFirstSearch(vertex v){
initialize the empty stack; // global variable
foreach (v ∈ V ) do v.dfsnum := 0; od
while ∃v0 ∈ V : v0.dfsnum = 0 do DFS(v0) od
od }

DFS:
void DFS(vertex v){

push(v);
while (stack not empty) do

v:= pop();
if (v.dfsnum = 0) then

v.dfsnum:=counter++;
foreach (w|(v, w) ∈ E ({v, w} ∈ E) ) do

push(w);
od

fi
od }
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push(v);
while (stack not empty) do

v:= pop();
if (v.dfsnum = 0) then

v.dfsnum:=counter++;
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od

fi
od }



3.2 Classification of edges:

DFS performs the partition of edges into four classes:

Tree edges – edge (u, v) is a tree edge if v was first
discovered by exploring edge (u, v).

Back edges – edge (u, v) connecting a vertex u to an
ancestor v in a depth-first tree.

Forward edges – nontree edges (u, v) connecting a vertex u
to a descendant v in a depth-first tree.

Cross edges – are all other edges.
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