WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik
TU München
http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007

1. Graph Algorithms

Definition 1
Let $G=(V, E)$ be an undirected graph. Select two nodes v, w, and two edges e, \tilde{e}.

- v, w are called adjacent iff $\{v, w\} \in E$
- v, e are called incident iff $v \in E$
- e, \tilde{e} are called adjacent iff $|e \cap \tilde{e}| \geq 1$
- e of the form $\{v, v\}=\{v\}$ is called loop

Lemma 2

Any undirected graph without loops contains at most $\binom{n}{2}=\frac{n(n-1)}{2}$ edges, $|V|=n$. Any undirected graph with loops
contains at most $\binom{n+1}{2}=\frac{n(n+1)}{2}$ edges, $|V|=n$.

Lemma 2

Any undirected graph without loops contains at most $\binom{n}{2}=\frac{n(n-1)}{2}$ edges，$|V|=n$ ．Any undirected graph with loops
contains at most $\binom{n+1}{2}=\frac{n(n+1)}{2}$ edges，$|V|=n$ ．

Proof．

Easy．Homework．

Lemma 2

Any undirected graph without loops contains at most
$\binom{n}{2}=\frac{n(n-1)}{2}$ edges, $|V|=n$. Any undirected graph with loops
contains at most $\binom{n+1}{2}=\frac{n(n+1)}{2}$ edges, $|V|=n$.
Proof.
Easy. Homework. Hint: Use $\binom{n+1}{2}=\binom{n}{2}+n$

Definition 3

Let $G=(V, E)$ be an undirected graph. Select $v \in V$. Define the neighborhood of v to be $N(v)=\{w \in V:\{v, w\} \in E\}$.

- $\operatorname{deg}(v)=|N(v)|$
- $\delta(G)=\min \{\operatorname{deg}(v): v \in V\}$
- $\Delta(G)=\max \{\operatorname{deg}(v): v \in V\}$

Lemma 4
For any undirected $G=(V, E)$ the following is satisfied:

$$
\sum_{v \in V} \operatorname{deg}(v)=2 \cdot|E|
$$

Lemma 4

For any undirected $G=(V, E)$ the following is satisfied:

$$
\sum_{v \in V} \operatorname{deg}(v)=2 \cdot|E|
$$

Proof.
 $\sum_{v \in V} \operatorname{deg}(v)$ counts every edge twice.

Definition 5

Let $G=(V, E)$ be an undirected graph. Select $v \in V$. Define the neighborhood of v to be $N(v)=\{w \in V:\{v, w\} \in E\}$.

- $\operatorname{deg}(v)=|N(v)|$
- $\delta(G)=\min \{\operatorname{deg}(v): v \in V\}$
- $\Delta(G)=\max \{\operatorname{deg}(v): v \in V\}$

2．Representation of graphs

2．1 Adjacency matrix

Definition 6
An adjacency matrix for $G=(V, E), V=|n|$ is a $(n \times n)$－matrix $A=\left(a_{i, j}\right), n \geq i, j \geq n$ such that
－Case 1：G is undirected
－ $\mathrm{a}_{i, j}= \begin{cases}1, & \{i, j\} \in E \\ 0, & \{i, j\} \notin E\end{cases}$
－Case 2：G undirected
－$a_{i, j}= \begin{cases}1, & (i, j) \in E \\ 0, & (i, j) \notin E\end{cases}$

- Required space for adjacency matrix for $|V|=n$ is $\Theta\left(n^{2}\right)$.
- The adjacency matrix for an undirected graph is symmetric.
- The adjacency matrix for a directed graph is symmetric iff for every directed edge the antiparallel edge exists.
- The adjacency matrix for a directed graph has diagonal elements $\neq 0$ if there are loops.

2.2 Adjacency lists

Definition 7
An adjacency list is an array consisting of $|V|$ lists, which store the adjacent vertices for every $v \in V$.

- The order in which the adjacent vertices are stored can be chosen arbitrary
- For directed graphs two adjacency lists are introduced: for ancestors and for successors

3. Seaching in Graphs

3.1 Depth-First-Search

3.1.1 Recursive Version

- For every vertex $v \in V$ let us define its DFS-number to be the number of the step at which v is visited (initialized with 0)

3．Seaching in Graphs

3．1 Depth－First－Search

3．1．1 Recursive Version

－For every vertex $v \in V$ let us define its DFS－number to be the number of the step at which v is visited（initialized with 0 ）
－Let $v_{0} \in V$ be an arbitrary start vertex

3. Seaching in Graphs

3.1 Depth-First-Search

3.1.1 Recursive Version

- For every vertex $v \in V$ let us define its DFS-number to be the number of the step at which v is visited (initialized with 0)
- Let $v_{0} \in V$ be an arbitrary start vertex
- Let counter be a global variable initialized with 1.

3. Seaching in Graphs

3.1 Depth-First-Search

3.1.1 Recursive Version

- For every vertex $v \in V$ let us define its DFS-number to be the number of the step at which v is visited (initialized with 0)
- Let $v_{0} \in V$ be an arbitrary start vertex
- Let counter be a global variable initialized with 1.

Algorithm:
void DFS (vertex v) $\{$
$v . d f$ snum: $=$ counter ++ ;
foreach $(w \mid(v, w) \in E(\{v, w\} \in E))$ do
if $(w . d f$ snum $=0)$ then $\operatorname{DFS}(w)$;
od \}

The call
counter:=1;
DFS $\left(v_{0}\right)$;
leads to visiting all verteces, which are reachable from v_{0}. Thus:
Algorithm:
void DepthFirstSearch(graph $G)\{$
counter:=1;
foreach $(v \in V)$ do $v . d f$ snum $:=0$ od while $\exists v_{0} \in V: v_{0} \cdot d f$ snum $=0$ do $\operatorname{DFS}\left(v_{0}\right)$ od $\}$

Complexity: $O(n+m)$ (every vertex is visited plus every edge is visited (≤ 2 times)

3.1.2 Iterative version

Consider the data structure called stack. The following operations have to be supported:

- void push(int) - insert the element into the stack
- in pop() - delete the element into the stack

Properties:

- LIFO (Last Input First Output)
- The elements are inserted in the same order push is called
- The element deleted from the stack using pop is the one most recently inserted

DepthFirstSearch:

void DepthFirstSearch(vertex v) $\{$ initialize the empty stack; // global variable foreach $(v \in V)$ do v.df snum $:=0$; od while $\exists v_{0} \in V: v_{0}$.df snum $=0$ do $\operatorname{DFS}\left(v_{0}\right)$ od od \}

DepthFirstSearch:

void DepthFirstSearch(vertex v) $\{$
initialize the empty stack; // global variable foreach $(v \in V)$ do $v . d f$ snum $:=0$; od while $\exists v_{0} \in V: v_{0}$.df snum $=0$ do $\operatorname{DFS}\left(v_{0}\right)$ od od \}

DFS:
void DFS(vertex $v)\{$
push(v);
while (stack not empty) do
$v:=\operatorname{pop}()$;
if $(v . d f$ snum $=0)$ then
v.df snum: $=$ counter + +; foreach $(w \mid(v, w) \in E(\{v, w\} \in E))$ do push (w);
od
fi
od \}

3．2 Classification of edges：

DFS performs the partition of edges into four classes：
－Tree edges－edge (u, v) is a tree edge if v was first discovered by exploring edge（ u, v ）．
－Back edges－edge (u, v) connecting a vertex u to an ancestor v in a depth－first tree．
－Forward edges－nontree edges (u, v) connecting a vertex u to a descendant v in a depth－first tree．
－Cross edges－are all other edges．

