
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Dmytro Chibisov
Sandeep Sadanandan

Winter Semester 2007/08
Solution Sheet 1

October 31, 2007

Fundamental Algorithms

Problem 1 (10 Points)

Calculate the cost of calculating nth Fibonacci number, using the recursive algorithm
F (n) = F (n− 1) + F (n− 2)

Solution
First let’s try to solve it using trial and error method. Let’s examine the first few numbers
of the series.

n 1 2 3 4 5 6 7 8
F(n) 1 1 2 3 5 8 13 21

T(n) = T(F(n)) 0 0 3 6 12 21 36 60

From a careful analysis, we can see that T (n) = 3F (n) − 3. Let’s propose this to be the
value of T (n) and see whether we can prove this. We use induction to prove this.

Case n = 1 We can see that T (0) = 3F (0)− 3 = 0

Case n = 2 We can see that T (1) = 3F (1)− 3 = 0

Case n > 2 Assume that T (n) = 3F (n)− 3 is true for all m < n.

T (n) = T (n− 1) + T (n− 2) + 3

= 3F (n− 1)− 3 + 3F (n− 2)− 3 + 3

= 3(F (n− 1) + F (n− 2)) + (3− 3− 3)

= 3F (n)− 3

Hence proved. So, the cost of calculation of nth Fibonacci number is 3F (n)− 3.

Problem 2 (10 Points)

Show:
⌊
2
n−1

2

⌋
≤ F (n) ≤

⌊
2
n+1

2

⌋



Solution
As in the above exercise, we can use induction to prove this.

Case n = 1: b20c ≤ 1 ≤ b21c

Case n = 2: b20c ≤ 1 ≤
⌊
2

3
2

⌋

Case n > 2: Assume that
⌊
2
n−1

2

⌋
≤ F (n) ≤

⌊
2
n+1

2

⌋
is true for all m < n.

1.
⌊
2
n−1

2

⌋
≤ F (n)

F (n) = F (n− 1) + F (n− 2)

≥
⌊
2
n−1−1

2

⌋
+
⌊
2
n−2−1

2

⌋

=
⌊
2
n−2

2

⌋
+
⌊
2
n−3

2

⌋

≥
⌊
2
n−3

2

⌋
(
⌊
2

1
2

⌋
+ 1)

=
⌊
2
n−3

2

⌋
(1 + 1)

=
⌊
2
n−1

2

⌋

2. F (n) ≤
⌊
2
n+1

2

⌋
(Very similar to the above)

F (n) = F (n− 1) + F (n− 2)

≤
⌊
2
n−1+1

2

⌋
+
⌊
2
n−2+1

2

⌋

=
⌊
2
n
2

⌋
+
⌊
2
n−1

2

⌋

≤
⌊
2
n
2

⌋
(1 +

⌊
2
−1
2

⌋
)

=
⌊
2
n
2

⌋
(1 + 0)

=
⌊
2
n
2

⌋
(
⌊
2

1
2

⌋
)

≤
⌊
2
n+1

2

⌋

Problem 3 (10 Points)

Let SuperComputer be a very fast computer which can perform 109 operations per se-
cond, for some problems of size n the table below lists the number of operations necessary.

2



More specifically, the ith algorithm needs ti(n) operations.

t1(n) = 2 · n
t2(n) = n lg(n)

t3(n) = 2.5n2

t4(n) =
1

1000
· n3

t5(n) = 3n

Determine, for which maximal input sizes each algorithm needs at most 1 second, 1 minute,
1 hour. How do these values change, if the computer is upgraded to be 10 times faster
(i.e., can do 1010 operations)?

Solution
If N is the number of operations which the computer can do in time t (which is actually
109 · t here), we need to find the value of n for each of the algorithms which will need
ti(n) ≤ N .

If we take the first case, the algorithm needs 2 · n operations for an input size of n.

So we need a value n such that, 2 ·n ≤ 109 · t. Which will be 5 · 108 · t. Now, let’s calculate
this for all the algorithms

2 · n ≤ 109 · t ⇒ n ≤ 5 · 108 · t

n lg(n) ≤ 109 · t ⇒ n ≤ 3.522134445 · 107

2.5 · n2 ≤ 109 · t ⇒ n ≤
√

4 · 108 · t
⇒ n ≤ 2 · 104 ·

√
t

1

1000
· n3 ≤ 109 · t ⇒ n ≤ (1012 · t) 1

3 = 104 · t 1
3

3n ≤ 109 · t ⇒ n ≤ log3(109 · t) = 9 log3(10) + log3(t) ≈ 18.8 + log3(t)

Given these relations, if we know the value of t, finding out the maximum size of input
is just a matter of solving the equations. In case of t2 one has to calculate the values
separately for different values of t, where as for the other algorithms, we can simply use
it as a formula.

1s 1m = 60s 1h = 3600s

t1(n) 5 · 108 3 · 1010 1.8 · 1012

t2(n) ≈ 3.96 · 107 ≈ 1.94 · 109 ≈ 9.86 · 1010

t3(n) 20000 ≈ 1.55 · 105 1.2 · 106

t4(n) 10000 ≈ 39149 ≈ 1.53 · 105

t4(n) ≈ 18 ≈ 22 ≈ 26

3



Now if we increase the processing power by a factor of 10, it is very evident that the input
size can be multiplied by 10 in the case of t1.

Let’s see what happens with t5. The following was valid when the processing power was
109.

3n ≤ 109 · t⇒ n ≤ log3(109 · t) = 9 log3(10) + log3(t) ≈ 18.8 + log3(t)

When the power is 1010, the relation will change to:

3n ≤ 1010 · t⇒ n ≤ log3(1010 · t) = 10 log3(10) + log3(t) ≈ log3(10) + 18.8 + log3(t)

It is clear that the size of n can be increased by a value of log3(10). 1 Now if we continue
to analyse the same with other algorithms, we get the following.

t1 t2 t3 t4 t5
·10 ≈ ·10 ·

√
10 ·10

1
3 + log3 10

Problem 4 (20 Points)

Design iterative and recursive algorithms to compute 2n. Show that there exists a recursive
algorithm which performs better than the iterative naive algorithm.

Solution
Let’s try to make two algorithms of which one is iterative and other is recursive.

Iterative algorithm

We multiply 2 n times

Algorithm PowerOfTwoIterative(n)
(∗ The iterative algorithm for 2n ∗)
1. returnval← 1
2. if n = 0
3. then return returnval
4. while n > 0
5. returnval = returnval ∗ 2
6. n = n− 1
7. return returnval

It is easily seen that the number of operations needed for this algorithm is n− 1.

1Note: NOT by a factor

4



Recursive Algorithm

The main idea of recursive algorithm is from the fact that 2n = 2
n
2 ∗ 2

n
2

Algorithm PowerOfTwoRecursive(n)
(∗ The recursive algorithm for 2n ∗)
1. if n = 1
2. then return 2
3. if n is EV EN
4. then
5. PartialResult = PowerOfTwoRecursive(n

2
)

6. return PartialResult ∗ PartialResult
7. else
8. return 2 ∗ PowerOfTwoRecursive(n− 1)

Analysis

We can assume that n is greater than one. Let’s consider the values of n in a sequence
of recursive calls which would happen once PowerOfTwoRecursive(n) is called. It could
be:

1. All the values are EV EN

In the case of sequence of all n being EV EN , we will be dividing n by 2 in all the
calls. The maximum number of this calls can be lg n.

In every call, we have 2 operations. Hence the number of operations will be 2 · lg n.

2. A sequence with alternate ODD and EV EN values of n. In this case, the maximum
number of recursive calls will be 2 ∗ lg n since the operations n = n− 1 and division
by 2 will come alternatively.

In every call, we have 2 operations. So the number of operations is 2∗2 · lg n = 4 lgn.

3. We cannot have a sequence with two consecutive ODD values. Any other sequence
will have number of recursive calls varying between lgn and 2 · lg n. So the number
of operations will be definitely less than the second case.

The maximum number of operations needed with the recursive algorithm is 4 ∗ lg n. As
seen in the graph, for any n > 16, the recursive algorithm has a better performance than

5



the iterative one.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

n

t(n)

t(n) = 4 lg n

t(n) = n

6


