Fundamental Algorithms

Problem 1 (10 Points)

Calculate the cost of calculating $n^{\text {th }}$ Fibonacci number, using the recursive algorithm $F(n)=F(n-1)+F(n-2)$

Solution

First let's try to solve it using trial and error method. Let's examine the first few numbers of the series.

n	1	2	3	4	5	6	7	8
$\mathrm{~F}(\mathrm{n})$	1	1	2	3	5	8	13	21
$\mathrm{~T}(\mathrm{n})=\mathrm{T}(\mathrm{F}(\mathrm{n}))$	0	0	3	6	12	21	36	60

From a careful analysis, we can see that $T(n)=3 F(n)-3$. Let's propose this to be the value of $T(n)$ and see whether we can prove this. We use induction to prove this.

Case $n=1$ We can see that $T(0)=3 F(0)-3=0$
Case $n=2$ We can see that $T(1)=3 F(1)-3=0$
Case $n>2$ Assume that $T(n)=3 F(n)-3$ is true for all $m<n$.

$$
\begin{aligned}
T(n) & =T(n-1)+T(n-2)+3 \\
& =3 F(n-1)-3+3 F(n-2)-3+3 \\
& =3(F(n-1)+F(n-2))+(3-3-3) \\
& =3 F(n)-3
\end{aligned}
$$

Hence proved. So, the cost of calculation of $n^{\text {th }}$ Fibonacci number is $3 F(n)-3$.

Problem 2 (10 Points)

Show: $\left\lfloor 2^{\frac{n-1}{2}}\right\rfloor \leq F(n) \leq\left\lfloor 2^{\frac{n+1}{2}}\right\rfloor$

Solution

As in the above exercise, we can use induction to prove this.

Case $n=1:\left\lfloor 2^{0}\right\rfloor \leq 1 \leq\left\lfloor 2^{1}\right\rfloor$
Case $n=2:\left\lfloor 2^{0}\right\rfloor \leq 1 \leq\left\lfloor 2^{\frac{3}{2}}\right\rfloor$
Case $n>2$: Assume that $\left\lfloor 2^{\frac{n-1}{2}}\right\rfloor \leq F(n) \leq\left\lfloor 2^{\frac{n+1}{2}}\right\rfloor$ is true for all $m<n$.

1. $\left\lfloor 2^{\frac{n-1}{2}}\right\rfloor \leq F(n)$

$$
\begin{aligned}
F(n) & =F(n-1)+F(n-2) \\
& \geq\left\lfloor 2^{\frac{n-1-1}{2}}\right\rfloor+\left\lfloor 2^{\frac{n-2-1}{2}}\right\rfloor \\
& =\left\lfloor 2^{\frac{n-2}{2}}\right\rfloor+\left\lfloor 2^{2^{\frac{n-3}{2}}}\right\rfloor \\
& \geq\left\lfloor 2^{\frac{n-3}{2}}\right\rfloor\left(\left\lfloor 2^{\frac{1}{2}}\right\rfloor+1\right) \\
& =\left\lfloor 2^{\frac{n-3}{2}}\right\rfloor(1+1) \\
& =\left\lfloor 2^{\frac{n-1}{2}}\right\rfloor
\end{aligned}
$$

2. $F(n) \leq\left\lfloor 2^{\frac{n+1}{2}}\right\rfloor$ (Very similar to the above)

$$
\begin{aligned}
F(n) & =F(n-1)+F(n-2) \\
& \leq\left\lfloor 2^{\frac{n-1+1}{2}}\right\rfloor+\left\lfloor 2^{\frac{n-2+1}{2}}\right\rfloor \\
& =\left\lfloor 2^{\frac{n}{2}}\right\rfloor+\left\lfloor 2^{\frac{n-1}{2}}\right\rfloor \\
& \leq\left\lfloor 2^{\frac{n}{2}}\right\rfloor\left(1+\left\lfloor 2^{\frac{-1}{2}}\right\rfloor\right) \\
& =\left\lfloor 2^{\frac{n}{2}}\right\rfloor(1+0) \\
& =\left\lfloor 2^{\frac{n}{2}}\right\rfloor\left(\left\lfloor 2^{\frac{1}{2}}\right\rfloor\right) \\
& \leq\left\lfloor 2^{\frac{n+1}{2}}\right\rfloor
\end{aligned}
$$

Problem 3 (10 Points)

Let SuperComputer be a very fast computer which can perform 10^{9} operations per second, for some problems of size n the table below lists the number of operations necessary.

More specifically, the $i^{\text {th }}$ algorithm needs $t_{i}(n)$ operations.

$$
\begin{aligned}
t_{1}(n) & =2 \cdot n \\
t_{2}(n) & =n \lg (n) \\
t_{3}(n) & =2.5 n^{2} \\
t_{4}(n) & =\frac{1}{1000} \cdot n^{3} \\
t_{5}(n) & =3^{n}
\end{aligned}
$$

Determine, for which maximal input sizes each algorithm needs at most 1 second, 1 minute, 1 hour. How do these values change, if the computer is upgraded to be 10 times faster (i.e., can do 10^{10} operations)?

Solution

If N is the number of operations which the computer can do in time t (which is actually $10^{9} \cdot t$ here), we need to find the value of n for each of the algorithms which will need $t_{i}(n) \leq N$.

If we take the first case, the algorithm needs $2 \cdot n$ operations for an input size of n.
So we need a value n such that, $2 \cdot n \leq 10^{9} \cdot t$. Which will be $5 \cdot 10^{8} \cdot t$. Now, let's calculate this for all the algorithms

$$
\begin{aligned}
2 \cdot n \leq 10^{9} \cdot t & \Rightarrow n \leq 5 \cdot 10^{8} \cdot t \\
n \lg (n) \leq 10^{9} \cdot t & \Rightarrow n \leq 3.522134445 \cdot 10^{7} \\
2.5 \cdot n^{2} \leq 10^{9} \cdot t & \Rightarrow n \leq \sqrt{4 \cdot 10^{8} \cdot t} \\
& \Rightarrow n \leq 2 \cdot 10^{4} \cdot \sqrt{t} \\
\frac{1}{1000} \cdot n^{3} \leq 10^{9} \cdot t & \Rightarrow n \leq\left(10^{12} \cdot t\right)^{\frac{1}{3}}=10^{4} \cdot t^{\frac{1}{3}} \\
3^{n} \leq 10^{9} \cdot t & \Rightarrow n \leq \log _{3}\left(10^{9} \cdot t\right)=9 \log _{3}(10)+\log _{3}(t) \approx 18.8+\log _{3}(t)
\end{aligned}
$$

Given these relations, if we know the value of t, finding out the maximum size of input is just a matter of solving the equations. In case of t_{2} one has to calculate the values separately for different values of t, where as for the other algorithms, we can simply use it as a formula.

	1 s	$1 \mathrm{~m}=60 \mathrm{~s}$	$1 \mathrm{~h}=3600 \mathrm{~s}$
$t_{1}(n)$	$5 \cdot 10^{8}$	$3 \cdot 10^{10}$	$1.8 \cdot 10^{12}$
$t_{2}(n)$	$\approx 3.96 \cdot 10^{7}$	$\approx 1.94 \cdot 10^{9}$	$\approx 9.86 \cdot 10^{10}$
$t_{3}(n)$	20000	$\approx 1.55 \cdot 10^{5}$	$1.2 \cdot 10^{6}$
$t_{4}(n)$	10000	≈ 39149	$\approx 1.53 \cdot 10^{5}$
$t_{4}(n)$	≈ 18	≈ 22	≈ 26

Now if we increase the processing power by a factor of 10 , it is very evident that the input size can be multiplied by 10 in the case of t_{1}.

Let's see what happens with t_{5}. The following was valid when the processing power was 10^{9}.

$$
3^{n} \leq 10^{9} \cdot t \Rightarrow n \leq \log _{3}\left(10^{9} \cdot t\right)=9 \log _{3}(10)+\log _{3}(t) \approx 18.8+\log _{3}(t)
$$

When the power is 10^{10}, the relation will change to:

$$
3^{n} \leq 10^{10} \cdot t \Rightarrow n \leq \log _{3}\left(10^{10} \cdot t\right)=10 \log _{3}(10)+\log _{3}(t) \approx \log _{3}(10)+18.8+\log _{3}(t)
$$

It is clear that the size of n can be increased by a value of $\log _{3}(10) .{ }^{1}$ Now if we continue to analyse the same with other algorithms, we get the following.

t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
$\cdot 10$	$\approx \cdot 10$	$\cdot \sqrt{10}$	$\cdot 10^{\frac{1}{3}}$	$+\log _{3} 10$

Problem 4 (20 Points)

Design iterative and recursive algorithms to compute 2^{n}. Show that there exists a recursive algorithm which performs better than the iterative naive algorithm.

Solution

Let's try to make two algorithms of which one is iterative and other is recursive.

Iterative algorithm

We multiply $2 n$ times

Algorithm PowerOfTwoIterative(n)
(* The iterative algorithm for $2^{n} *$)

1. returnval $\leftarrow 1$
2. if $n=0$
3. then return returnval
4. while $n>0$
5. returnval $=$ returnval $* 2$
6. $\quad n=n-1$
7. return returnval

It is easily seen that the number of operations needed for this algorithm is $n-1$.

[^0]
Recursive Algorithm

The main idea of recursive algorithm is from the fact that $2^{n}=2^{\frac{n}{2}} * 2^{\frac{n}{2}}$

```
Algorithm PowerOfTwoRecursive(n)
(* The recursive algorithm for \(2^{n} *\) )
    if \(n=1\)
    then return 2
    if \(n\) is \(E V E N\)
    then
        PartialResult \(=\) PowerOfTwoRecursive \(\left(\frac{n}{2}\right)\)
        return PartialResult * PartialResult
    else
        return 2 * PowerOfTwoRecursive \((n-1)\)
```


Analysis

We can assume that n is greater than one. Let's consider the values of n in a sequence of recursive calls which would happen once PowerOfTwoRecursive (n) is called. It could be:

1. All the values are $E V E N$

In the case of sequence of all n being $E V E N$, we will be dividing n by 2 in all the calls. The maximum number of this calls can be $\lg n$.

In every call, we have 2 operations. Hence the number of operations will be $2 \cdot \lg n$.
2. A sequence with alternate $O D D$ and $E V E N$ values of n. In this case, the maximum number of recursive calls will be $2 * \lg n$ since the operations $n=n-1$ and division by 2 will come alternatively.
In every call, we have 2 operations. So the number of operations is $2 * 2 \cdot \lg n=4 \lg n$.
3. We cannot have a sequence with two consecutive $O D D$ values. Any other sequence will have number of recursive calls varying between $\lg n$ and $2 \cdot \lg n$. So the number of operations will be definitely less than the second case.

The maximum number of operations needed with the recursive algorithm is $4 * \lg n$. As seen in the graph, for any $n>16$, the recursive algorithm has a better performance than
the iterative one.

[^0]: ${ }^{1}$ Note: NOT by a factor

